首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To comply with regulatory restrictions, with regard to graft of human islets immunoprotected within artificial microcapsules, into patients with type 1 diabetes mellitus (T1DM) with no recipient immunosuppression, we have prepared standard protocols on: (1) sodium alginate purification (clinical grade) for microcapsule fabrication; (2) preparation of biocompatible and permselective microcapsules containing human islets; and (3) minimally invasive techniques for grafting of the encapsulated human islets into the recipients' peritoneal cavity. As to no. 1, starting from pharmaceutical grade, raw sodium alginate powder, we prepared a pyrogen- and endotoxin-free 1.6% alginate solution by means of dialysis, multiple filtrations, and dilution/osmolality adjustments. As to no. 2, we have selected human islet preparations associated with >80% purity/viability, which underwent careful functional quality control testing prior to encapsulation; namely, most capsules contained one islet. As for no. 3, we have devised a simple intraperitoneal injection method under abdominal echography guidance with only local anesthesia to deposit the encapsulated islets in saline within the peritoneal leaflets. These technical protocols were officially approved by the Italian Ministry of Health which has released permission to conduct a phase I, closed human trial in 10 patients using encapsulated human islet grafts into nonimmunosuppressed patients with T1DM.  相似文献   

2.
Chae SY  Kim YY  Kim SW  Bae YH 《Transplantation》2004,78(3):392-397
BACKGROUND: Facilitated oxygen transport by crosslinked hemoglobin (Hb-C) in islet microcapsules may promote transplanted graft function by improving islet functionality and viability. METHODS: This study investigated the in vivo efficacy of Hb-C as an oxygen carrier on the functionality and viability of microencapsulated rat islets. Hb-C by poly(ethylene glycol) was introduced into rat islet microcapsules (alginate-poly[L-lysine]-alginate microcapsule), and 500 suboptimal encapsulated islets were xenotransplanted into each streptozotocin-induced diabetic BALB/c mouse. The graft efficacy over time was evaluated by measuring nonfasting blood glucose level, body weight, and glucose tolerance. RESULTS: Mice that received Hb-C-containing microcapsules maintained normoglycemia for at least 8 weeks with normal glucose clearance, determined by intraperitoneal glucose tolerance test. However, the mice that received the conventional control islet microcapsule (without Hb-C) transplant showed graft failure in 4 weeks, exhibited by hyperglycemia, weight loss, and deteriorated glucose tolerance. Severe central necrosis of retrieved islets was observed for the control islet capsule graft after 8 weeks. CONCLUSION: The present study revealed that the incorporation of Hb-C in islet microcapsules promotes graft function for a longer period of time than the conventional islet capsules. Therefore, Hb-C coencapsulation is a potential approach for prolonging graft function of islet microcapsules and reducing the number of islets required for normoglycemia.  相似文献   

3.
BACKGROUND: To follow up on previously successful transplantation of encapsulated islets in mice, the present study was performed in rats to determine the effects of several factors, including alginate composition and concentration of cross-linking agent and capsule size on the effectiveness of encapsulated islets. METHODS: Highly purified alginate of either high guluronic acid or high mannuronic acid (M) with low endotoxin content was used. Regular-size (0.8-1.1 mm) or small microcapsules (0.5-0.7 mm) were produced by cross-linking with BaCl2 without additional poly-L-lysine coating and were transplanted into abdominal cavity of normoglycemic (empty capsules) or streptozotocin induced diabetic Lewis rats (islet containing capsules). RESULTS: Empty regular-size capsules made of different alginate compositions had similar biocompatibility and stability results. Compared with empty capsules, regular-size capsules made of high-M alginate containing syngeneic islets had inferior stability indicated with lower fractional volume retrieved. Islet-containing smaller-size microcapsules made of high-M alginate were more stable and had less cellular attachment compared with the regular-size capsules, although the normoglycemic period was comparable between two groups of rats receiving transplants with smaller-size microcapsules (48+/-8 days, n=8) or regular-size capsules (59+/-11 days, n=4) in allogeneic experiments. In syngeneic experiments, all of the rats (n=4) maintained normoglycemia up to 210 days after transplantation. CONCLUSION: These results indicate that regular-size alginate capsules do less well in rats than in our previous experiments with mice. Smaller capsules made of alginate cross-linked with barium appear to provide better stability and may be a useful strategy for use in larger recipients.  相似文献   

4.
微囊化新生猪甲状旁腺细胞异种移植的实验研究   总被引:4,自引:0,他引:4  
目的 探讨微囊化新生猪甲状旁腺细胞异种移植治疗大鼠甲状旁腺功能低下症的效果。方法 应用微囊化技术,制备微囊化(海藻酸钠-聚赖氨酸-海藻酸钠生物微胶囊)新生猪甲状旁腺细胞,32只去甲状旁腺的Wistar大鼠随机分成微囊组、非微囊组、空囊组和对照组,分别移植微囊化新生猪甲状旁腺细胞、甲状旁腺细胞、空微囊及生理盐水。移植后监测血钙及甲状旁腺素水平40周,40周后回收移植物,透射电镜检查。结果 移植后,微囊组大鼠血钙及甲状旁腺素水平恢复到正常范围内,直至观察结束时(40周),透射电镜检查显示移植物存活良好;非微囊组、空囊组和对照组大鼠的血钙及甲状旁腺素水平无改善。结论 微囊化新生猪甲状旁腺细胞异种移植在不用免疫抑制剂情况下,可以在大鼠体内存活,且有功能;海藻酸钠-聚赖氨酸-海藻酸钠生物微胶囊对免疫活性细胞及抗体具有屏蔽作用。  相似文献   

5.
HOE 077对胰岛细胞微囊外纤维化反应及其活力的影响   总被引:3,自引:0,他引:3  
目的 研究抗肝纤维化药物HOE 0 77对胰岛微囊外纤维化反应及细胞活力的影响。方法 猪胰岛分离后包裹在海藻酸钡微囊内 ,移植于Balb/c小鼠肝内。术后HOE 0 77通过溶解于饮用水中给药 ,对照组饮水中不含HOE 0 77。 1个月后处死动物 ,病理检查观察包囊外的纤维化反应程度 ,评价囊内细胞的存活情况。结果 对照组显示了明显的纤维化反应 ,纤维包裹层厚度平均为(6 2 .12± 3.84) μm ,细胞活力为 (15 .16± 2 .32 ) % ;而HOE 0 77治疗组纤维包裹厚度为 (4 1.44±2 .45 ) μm ,活力为 (2 3 .0 8± 2 .45 ) %。统计学分析表明 ,两组在囊外纤维包裹层的厚度及细胞活力上差异均有显著性 (P <0 .0 0 0 1和P <0 .0 1)。结论 抗肝纤维化药物HOE 0 77的应用为减轻微包囊的纤维化反应提供了一个新的途径  相似文献   

6.
微囊化异种甲状旁腺组织移植的研究   总被引:4,自引:0,他引:4  
目的探讨微囊化异种甲状旁腺(PTG)组织移植对Wistar大鼠甲状旁腺功能低下的治疗作用及微囊的通透性。方法 40只去甲状旁腺Wistar大鼠随机分为微囊组、非微囊组、空囊组、空白对照组。用海藻酸-钡交联微囊包裹兔甲状旁腺组织,移植至Wistar大鼠肾包囊。移植后每隔2周取血测血钙,移植后第16周取移植物进行透射电镜检查及T淋巴细胞、大鼠IgG抗体的免疫组织化学染色。结果微囊组移植后第4周血清钙由(1.62±0.04)mmol/L恢复至正常水平 (2.2~2.6)mmol/L,9例维持至观察期结束(P<0.01),非微囊组、空囊组及空白对照组血清钙差异无统计学意义(P>0.05)。第16周取出移植物检测显示移植物活性良好,微囊周围可见较多T 淋巴细胞浸润,囊壁及囊内IgG抗体染色阳性。结论海藻酸-钡交联微囊可对甲状旁腺组织起到有效的保护作用,使甲状旁腺组织较长时间存活并发挥正常功能。但海藻酸-钡交联微囊并未减轻受体免疫排斥反应的激活且未有效的免疫隔离IgG抗体。  相似文献   

7.
The use of nonautologous cell lines producing a therapeutic substance encapsulated within alginate microcapsules could be an alternative way of treating different diseases in a cost-effective way. Malignant brain tumors have been proposed to be treated locally using engineered cells secreting proteins with therapeutic potential encapsulated within alginate microcapsules. Optimization of the alginate capsule bioreactors is needed before this treatment can be a reality. Recently, we have demonstrated that alginate-poly-L-lysine microcapsules made with high-G alginate and a gelled core disintegrated as cells proliferated. In this study we examined the growth and endostatin secretion of 293-EBNA (293 endo) cells encapsulated in six different alginate microcapsules made with native high-G alginate or enzymatically tailored alginate. Stability studies using an osmotic pressure test showed that alginate-poly-L-lysine-alginate microcapsules made with enzymatically tailored alginate was mechanically stronger than alginate capsules made with native high-G alginate. Growth studies showed that the proliferation of 293 endo cells was diminished in microcapsules made with enzymatically tailored alginate and gelled in a barium solution. Secretion of endostatin was detected in lower amounts from the enzymatically tailored alginate microcapsules compared with the native alginate microcapsules. The stability of the alginate microcapsules diminished as the 293 endo cells grew inside the capsules, while empty alginate microcapsules remained stable. By using microcapsules made of fluorescenamine-labeled alginate it was clearly visualized that cells perforated the alginate microcapsules as they grew, destroying the alginate network. Soluble fluorescence-labeled alginate was taken up by the 293 endo cells, while alginate was not detected in live spheroids within fluorescence-labeled alginate microcapsules. Despite that increased stability was achieved by using enzymatically tailored alginate, the cell proliferation destroyed the alginate microcapsules with time. It is therefore necessary to use cell lines that have properties more suited for alginate encapsulation before this technology can be used for therapy.  相似文献   

8.
Abstract: Rat pancreatic islets were microencapsulated with multilayer protamine–heparin (PH) membrane. Basal and stimulatory insulin secretion of microencapsulated islets was similar to the controlled free islets in vitro. During the long–term culture (up to 2 weeks) mean insulin release of encapsulated islets did not significantly differ from the mean of free ones (the ratio of mentioned means was 54–167%). Empty PH microcapsules transplanted into Wistar rats intraperitoneally and under the kidney capsule were generally harmless up to 4 months. In only a few cases traces of fibrotic tissue around capsules entrapped in the omentum were found. No damage of microcapsules structure was observed. The worst results were obtained in the instance of retroperitoneal transplantation. We conclude, therefore, that PH membrane was proved to be highly biocompatible, nontoxic for islets, and did not impair viability and glucose–dependent insulin secretion of Langerhans islets in in vitro culture.  相似文献   

9.
海藻酸-壳聚糖-聚乙烯乙二醇微囊生物相容性的研究   总被引:11,自引:0,他引:11  
目的比较海藻酸-壳聚糖-聚乙烯乙二醇微囊(ACP微囊)和海藻酸-聚赖氨酸-海藻酸微囊(APA微囊)的生物相容性。方法(1)两种微囊(50、100和200个)与健康人血清共浴,检测微囊对补体的激活程度。(2)1000个APA和ACP微囊分别植入Wistar大鼠的腹腔,4d和3周时统计取出的微囊数和微囊的纤维化率。(3)Wistar大鼠胰岛用ACP微囊和APA微囊包裹,分别贯续置于含3.3mmol/L和16.7mmol/L葡萄糖的Hank's溶液中培养,测定培养液中胰岛素的浓度。结果(1)ACP微囊组残余补体活性高于APA微囊组。(2)4d时,ACP和APA微囊的取出数分别是845.0±40.4和807.6±45.7(P>0.05),囊周纤维化率分别是16.40%和65.68%(P<0.05);3周时两种微囊的取出数分别为715.0±133.0和367.5±105.6(P<0.05),囊周纤维化率为27.8%和83.9%(P<0.05)。(3)在含3.3mmol/L葡萄糖的Hank's液中,未微囊胰岛组、APA和ACP微囊化胰岛组的胰岛素浓度分别是(123.48±4.70)mIU/L、(110.11±12.18)mIU/L和(110.90±11.95)mIU/L,当葡萄糖浓度为16.7mmol/L时,胰岛素浓度分别是(754.75±13.81)mIU/L、(689.30±27.71)mIU/L和(684.28±70.10)mIU/L。结论海藻酸-壳聚糖-聚乙烯乙二醇微囊的生物相容性要优于海藻酸-聚赖氨酸-海藻酸微囊,前者更适合应用于微囊化胰岛移植。  相似文献   

10.
Yang H  Wright JR 《Transplantation》1999,67(6):815-820
BACKGROUND: We previously demonstrated that alginate microencapsulation can prolong fish (tilapia) islet xenograft survival in diabetic animals. However, at present, microencapsulation does not provide complete immune protection to discordant islet xenografts, and long-term graft survival requires supplemental low-dose systemic immunosuppression. In the present study, fish islets were co-encapsulated with Sertoli enriched testicular cell fractions to find out whether this would further prolong fish islet graft survival in diabetic mice. METHODS: Sertoli enriched testicular cell fractions were enzymatically harvested from adult Balb/c or Wistar-Furth rats. They were cultured and co-encapsulated with fragmented tilapia islets in alginate microcapsules. Encapsulated islets alone or islets co-encapsulated with Sertoli cells were then intraperitoneally transplanted into streptozotocin-diabetic Balb/c mice, and graft survival times were compared. Encapsulated and co-encapsulated islet function was also confirmed in streptozotocin-diabetic athymic nude mice. RESULTS: Co-encapsulation with Sertoli enriched testicular cell fractions further prolonged mean fish islet graft survival time from 21+/-6.7 days (encapsulated islet cells alone) to >46+/-6.3 days (co-encapsulated with syngeneic murine Sertoli cells), without additional systemic immunosuppression. Testicular cells harvested from xenogeneic Wistar-Furth rats produced similar protective results (>46+/-10.9 days). CONCLUSIONS: Our results support the theory that Sertoli cells produce local immunosuppressive factors. These factors supplement the immune protective feature of alginate microcapsules in our model. Testicular cell fractions may be an important naturally occurring facilitator in the development of new microencapsulation systems for islet xenotransplantation.  相似文献   

11.
Allogeneic islets encapsulated in an alginate/poly-L-lysine membrane and transplanted into diabetic BB/W rats resulted in graft failure within 2 weeks of transplantation. Graft failure was associated with a dense pericapsular infiltrate (PCI) that resulted in necrosis of the encapsulated islets. The PCI could be inhibited by immunosuppressive agents, including cyclosporine and dexamethasone, and this resulted in a significant increase in graft survival. Immunopathological characterization of the PCI indicated that there was a predominance of macrophages. T helper cells also appeared to be present in this PCI. Empty capsules were also found to induce a similar PCI that was identical in composition to that found around encapsulated islets. Thus alginate/poly-L-lysine capsules do not appear to be biocompatible and may account for the variable results in islet graft survival found with these capsules.  相似文献   

12.
BACKGROUND: Microencapsulation of pancreatic islets with polymeric compounds constitutes an attractive alternative therapy for type 1 diabetes mellitus. The major limiting factor is the availability of a biocompatible and mechanically stable polymer. We investigated the potential of Biodritin, a novel polymer constituted of alginate and chondroitin sulfate, for islet microencapsulation. METHODS: Biodritin microcapsules were obtained using an air jet droplet generator and gelated with barium or calcium chloride. Microencapsulated rat insulinoma RINm5F cells were tested for viability using the [3-(4,5-dimetyl-thiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide] [MTT] colorimetric assay. Microencapsulated rat pancreatic islets were coincubated with macrophages derived from mouse peritoneal liquid to assess the immunomodulatory potential of the microcapsules, using quantitative real time-PCR (qPCR). Biodritin biocompatibility was demonstrated by subcutaneous injection of empty microcapsules into immunocompetent Wistar rats. Insulin secretion by microencapsulated human pancreatic islets was evaluated using an electrochemoluminescent assay. Microencapsulated human islets transplanted into chemically induced diabetic mice were monitored for reversal of hyperglycemia. RESULTS: The metabolic activity of microencapsulated RINm5F cells persisted for at least 15 days. Interleukin-1beta expression by macrophages was observed during coculture with islets microencapsulated with Biodritin-CaCl2, but not with Biodritin-BaCl2. No statistical difference in glucose-stimulated insulin secretion was observed between nonencapsulated and microencapsulated islets. Upon microencapsulated islet transplantation, the blood glucose level of diabetic mice normalized; they remained euglycemic for at least 60 days, displaying normal oral glucose tolerance tests. CONCLUSION: This study demonstrated that Biodritin can be used for islet microencapsulation and reversal of diabetes; however, further investigations are required to assess its potential for long-term transplantation.  相似文献   

13.
《Cell transplantation》1997,6(4):387-394
Transplantation of pancreatic islets in alginate polylysine microcapsules is a potential useful method for treating type I diabetes. In this study, the permeability for alginate-polylysine microcapsules to cytokines an immunoglobulines has been investigated by a newly developed method. Magnetic monodisperse polymer particles (Dynabeads) coated with antibodies against selected proteins were encapsulated in 0.7 mm alginate polylysine microcapsules. The capsule membrane permeability to IgG (150 kDa), Transferrin (81 kDa), Tumor necrosis factor (TNF, 51 kDa), Interleukin-1β (IL-1β, 17.5 kDa), and insulin (5.8 kDa) was estimated by measuring the binding of 125I-labeled proteins to the encapsulated antibody coated Dynabeads. Capsules with an inhomogeneous solid gel core were made of alginates with high guluronic or high mannuronic acid content and poly-l (PLL)- or poly-d-lysine (PDL) of concentrations varied from 0.05–0.2%. The various capsules examined were all impermeable to IgG. The capsules made with a PLL-, but not PDL-membranes were permeable for transferrin. IL-1β was found to penetrate all of the different capsule types. The high-G capsules, however, could be made impermeable to TNF and still allowed transferrin to pass. The permeability of these capsules to IL-1β, but not to TNF was confirmed in an assay where mouse islets of Langerhans were incubated with TNF and IL-1β, and comparing the IL-6 for encapsulated and nonencapsulated islets.  相似文献   

14.
Islet encapsulation offers an immune system barrier for islet transplantation, and encapsulation within an alginate sheetlike structure offers the ability to be retrievable after transplanted. This study aims to show that human islets encapsulated into islet sheets remain functional and viable after 8 weeks in culture or when transplanted into the subcutaneous space of rats. Human islets were isolated from cadaveric organs. Dissociation and purification were done using enzymatic digestion and a continuous Ficoll-UWD gradient. Purified human islets were encapsulated in alginate sheets. Human Islet sheets were either kept in culture, at 37°C and 5% CO2, or transplanted subcutaneously into Lewis rats. After 1, 2, 4, and 8 weeks, the human islet sheets were retrieved from the rats and assessed. The viability of the sheets was measured using fluorescein diacetate (FDA)/propidium iodide (PI), and function was measured through glucose-stimulated insulin release, in which the sheets were incubated for an hour in low-glucose concentration (2.8 mmol/L) and then high (28 mmol/L), then high (28 mmol/L) plus 3-isobutyl-1-methylxanthine (50 μm). Human islet sheets remained both viable, above 70%, and functional, with a stimulation index (insulin secretion in high glucose divided by insulin secretion in low glucose) above 1.5, over 8 weeks of culture or subcutaneous transplantation. Islet transplantation continues to make advances in the treatment of type 1 diabetes. These preliminary results suggest that encapsulated islets sheets can survive and maintain islet viability and function in vivo, within the subcutaneous region.  相似文献   

15.
Severe hypoxia caused by a lack of vascular supply and an inability to retrieve encapsulated islets transplanted in the peritoneal cavity for biopsy and subsequent evaluation are obstacles to clinical application of encapsulation strategies for islet transplantation. We recently proposed an omentum pouch model as an alternative site of encapsulated islet transplantation and have also described a multi-layer microcapsule system suitable for coencapsulation of islets with angiogenic protein in which the latter could be encapsulated in an external layer to induce vascularization of the encapsulated islet graft. The purpose of the present study was to determine the angiogenic efficacy of fibroblast growth factor (FGF-1) released from the external layer of the new capsule system in the omentum pouch graft. We prepared 2 groups of alginate microspheres, each measuring ∼600 μm in diameter with a semipermeable poly-L-ornithine (PLO) membrane separating 2 alginate layers. While one group of microcapsules contained no protein (control), FGF-1 (1.794 μg/100 microcapsules) was encapsulated in the external layer of the other (test) group. From each of the 2 groups, 100 microcapsules were transplanted separately in an omentum pouch created in each normal Lewis rat and were retrieved after 14 days for analysis of vessel density using the technique of serial sample sections stained for CD31 with quantitative three-dimensional imaging. We found that FGF-1 released from the external layer of the test microcapsules induced a mean ± SD vessel density (mm2) of 198.8 ± 59.2 compared with a density of 128.9 ± 10.9 in pouches measured in control capsule implants (P = .03; n = 5 animals/group). We concluded that the external layer of our new alginate microcapsule system is an effective drug delivery device for enhancement of graft neovascularization in a retrievable omentum pouch.  相似文献   

16.
This study investigates whether capsular overgrowth on alginate-polylysine microencapsulated islets is influenced by (1) the presence of islet tissue, (2) MHC incompatibility between donor and recipient, or (3) the presence of autoimmune diabetes. Encapsulated Albino Oxford (AO, n=6, isografts) and Lewis (n=6, allografts) rat islets, and encapsulated human islets (n=5, xenografts) were implanted intraperitoneally into streptozotocin-diabetic AO rats. Also, encapsulated AO islets were implanted into autoimmune diabetic Bio Breeding/Organon (BB/O) rats (n=5, allografts). Five isografts, five allografts, and three xenografts in AO recipients and five allografts in BB/O recipients resulted in normoglycemia. Two weeks after implantation, islets containing capsules were retrieved by peritoneal lavage, after which all animals that had become normoglycemic after transplantation returned to a state of hyperglycemia. Recovery rates of the capsules of these successful grafts, expressed as percentages of the initially implanted graft volume, varied from 72%±7% to 80%±9%. The associated pericapsular infiltrates (PCI) were similar in all groups and varied from 3.2%±1.4% to 8.3%±2.6%. Similar recovery rates and PCI were also found with empty capsules. However, the recovery rates of recipients with graft failures were lower and showed more PCI. Immunohistological staining of PCI showed no differences in the types of cells in the PCI on capsules with or without islets. We conclude that this early PCI is a capsule-induced foreign body reaction that is not influenced by MHC incompatibility or by the presence of autoimmune diabetes, and it should be avoided by improving the biocompatibility of the capsules.  相似文献   

17.
We describe the results of the first study to show that adult rat and human islets can be protected against xenogenic rejection in immunocompetent diabetic mice by encapsulating them in a novel alginate-based microcapsule system with no additional permselective membrane. Nonencapsulated islets lost function within 4-8 days after being transplanted into diabetic Balb/c mice, whereas transplanted encapsulated adult rat or human islets resulted in normoglycemia for >7 months. When rat islet grafts were removed 10 and 36 weeks after transplantation, the mice became immediately hyperglycemic, thus demonstrating the efficacy of the encapsulated islets. The explanted capsules showed only a mild cellular reaction on their surface and a viability of >85%, and responded to a glucose stimulus with a 10-fold increase in insulin secretion. Furthermore, transplanted mice showed a slight decrease in the glucose clearance rate in response to intraperitoneal glucose tolerance tests 3-16 weeks after transplantation; after 16 weeks, the rate remained stable. Similar results were obtained for encapsulated human islets. Thus we provide the first evidence of successful transplantation of microencapsulated human islets. In conclusion, we have developed a novel microcapsule system that enables survival and function of adult rat and human islets in immunocompetent mice without immunosuppression for >7 months.  相似文献   

18.
Microencapsulation of pancreatic islets has been proposed as a means to prevent allograft rejection and to protect islets during cryopreservation. The aim of this study was to investigate: 1) the effects of the cryoprotectants (CPAs) dimethyl sulfoxide (DMSO) and ethylene glycol (EG) on the volume of Ca2+ alginate microcapsules, and 2) the effects of microencapsulation on the volumetric response of human and canine pancreatic islets during CPA equilibration. Stock sodium alginate with a high mannuronic acid content (HM) or a high guluronic acid content (HG) was used to generate empty capsules (mean diameter 200 microm) with an electrostatic generator. The capsules were held in place by a holding pipette system and videotaped during the addition of 2 or 3 M CPA at 22 degrees C. Islets (isolated from human cadaveric donors and mongrel dogs and then cultured overnight at 37 degrees C) were encapsulated in alginate (HM), loaded into a microperfusion chamber, and the change in islet volume was videotaped after exposure to the same CPAs and concentrations. These were compared to the volume responses of nonencapsulated islets. Images were analyzed using a computerized image analysis system and the data were analyzed using ANOVA. HG microcapsules showed a significant (p < 0.05) increase in volume following exposure to EG but not to DMSO. HM microcapsule volume did not change significantly following exposure to either EG or DMSO and was therefore chosen as the substrate for islet encapsulation. Free, nonencapsulated canine and human islets responded to the osmotic challenge of the 2 M DMSO by shrinking to 70.00 +/- 1.04% (mean +/- SEM) and 70.11 +/- 1.05%, and in 2 M EG to 72.89 +/- 1.93% and 69.33 +/- 1.38%, respectively, of the isotonic volume before returning to the original cell volume. Exposure to 3 M DMSO or EG resulted in a further dehydration to 65.89 +/- 0.91% and 67.67 +/- 1.91% for canine and 62.22 +/- 0.66.% or 65.89 +/- 1.30% for human islets. Minimum volumes were reached within 30-40 s after exposure to the cryoprotectant. Encapsulated human islets reached 86.88 +/- 1.47% of their original volume in 2 M and 80.33 +/- 0.89% in 3 M DMSO, and 87.33 +/- 1.86% in 2 M and 82.80 +/- 1.57% in 3 M EG. This volume change was significantly less (p < 0.01) than that observed in corresponding free islets. Encapsulated canine islets reached 83.67 +/- 2.13% of their original volume in 2 M and 78.22 +/- 0.95% in 3 M DMSO, and 85.44 +/- 1.92% in 2 M and 78.11 +/- 2.01% in 3 M EG. As with human islets, this was significantly different than free islets (p < 0.01). These minimal volumes were reached within 30-50 s. These results demonstrate that there are cryoprotectant and alginate-specific interactions and that microencapsulation modulates the degree of osmotically induced shrinkage of islets. The development or modification of existing cryopreservation protocols to improve postcryopreservation recovery or function must account for these factors.  相似文献   

19.
BACKGROUND: Microencapsulation of islets of Langherhans in alginate poly-L-lysine capsules provides an effective protection against cell-mediated immune destruction, and ideally should allow the transplantation of islets in the absence of immunosuppression. It has previously been suggested that alginate rich in mannuronic acid (high M) is more immunogenic than alginate rich in guluronic acid (high G). The ability of these alginates to induce an antibody response in the recipient or act as an adjuvant to antibody responses against antigens leaked from the capsule was investigated in the present study. METHODS: Empty capsules made from these different types of alginate were transplanted intraperitoneally to Wistar rats or Balb/c mice. In addition, some animals were also injected with bovine serum albumin to assess the ability of the alginates to act as an adjuvant to this antigen. Antibody responses to intraperitoneally transplanted free and microencapsulated fetal porcine islet like cell clusters (ICC) were also evaluated, in animals treated with or without cyclosporine. RESULTS: Antibodies against high M-alginate capsules were detected in the sera of mice transplanted with this capsule type. However, this response was not seen after the transplantation of high G capsules. When Wistar rats were used as recipients, no antibody responses were detected against any type of alginate capsules. Neither type of capsule acted as an adjuvant. Antibodies against ICC were present, in rats transplanted with both nonencapsulated and encapsulated ICCs. Administration of cyclosporine could abolish this production of antibodies against ICC. CONCLUSIONS: High G-alginate capsules are less immunogenic than high M capsules. Because encapsulation did not protect against the generation of antibodies against ICC, it can be assumed that antigen leakage from the capsules occurs, as no evidence was found for capsules breaking in vivo.  相似文献   

20.
BACKGROUND: The recurrence of autoimmunity and allograft rejection act as major barriers to the widespread use of islet transplantation as a cure for type 1 diabetes. The aim of this study was to evaluate the feasibility of immunoisolation by use of an agarose microcapsule to prevent autoimmune recurrence after islet transplantation. METHODS: Highly purified islets were isolated from 6- to 8-week-old prediabetic male nonobese diabetic (NOD) mice and microencapsulated in 5% agarose hydrogel as a semipermeable membrane. Islet function was evaluated by a syngeneic islet transplantation model, in which islets were transplanted into spontaneously diabetic NOD mice. RESULTS: The nonencapsulated islet grafts were destroyed and diabetes recurred within 2 weeks after transplantation in all 12 mice. In contrast, 13 of the 16 mice that underwent transplantation with microencapsulated islets maintained normoglycemia for more than 100 days after islet transplantation. Histologic examination of the nonencapsulated islet grafts showed massive mononuclear cellular infiltration with beta-cell destruction. In contrast, the microencapsulated islets showed well-granulated beta cells with no mononuclear cellular infiltration around the microcapsules or in the accompanying blood capillaries between the microcapsules. CONCLUSIONS: Agarose microcapsules were able to completely protect NOD islet isografts from autoimmune destruction in the syngeneic islet transplantation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号