首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BackgroundIn cystic fibrosis (CF), genotype-phenotype correlation is complicated by the large number of CFTR variants, the influence of modifier genes, environmental effects, and the existence of complex alleles. We document the importance of complex alleles, in particular the F508C variant present in cis with the S1251N disease-causing variant, by detailed analysis of a patient with CF, with the [S1251N;F508]/G542X genotype and a very mild phenotype, contrasting it to that of four subjects with the [S1251N;F508C]/F508del genotype and classical CF presentation.MethodsGenetic differences were identified by Sanger sequencing and CFTR function was quantified using rectal organoids in rectal organoid morphology analysis (ROMA) and forskolin-induced swelling (FIS) assays. CFTR variants were further characterised in CF bronchial epithelial (CFBE) cell lines. The impact of involved amino acid changes in the CFTR 3D protein structure was evaluated.ResultsOrganoids of the patient [S1251N;F508] with mild CF phenotype confirmed the CF diagnosis but showed higher residual CFTR function compared to the four others [S1251N;F508C]. CFBE cell lines showed a decrease in [S1251N;F508C]-CFTR function but not in processing when compared to [S1251N;F508]-CFTR. Analysis of the 3D CFTR structure suggested an additive deleterious effect of the combined presence of S1251N and F508C with respect to NBD1-2 dimerisation.ConclusionsIn vitro and in silico data show that the presence of F508C in cis with S1251N decreases CFTR function without affecting processing. Complex CFTR alleles play a role in clinical phenotype and their identification is relevant in the context of personalised medicine for each patient with CF.  相似文献   

2.
BackgroundIn recent years, patients with cystic fibrosis (CF) conductance regulator (CFTR) variant poly(T) sequences have been increasingly reported with a wide spectrum of clinical severity. We describe the long-term clinical outcomes and progression to a CF diagnosis over time in a large Italian cohort of patients carrying the CFTR F508del/5T;TG12 genotype.MethodsA retrospective analysis of subjects from 10 CF centres in Italy with the F508del/5T;TG12 genotype was performed. Demographic, clinical, microbiological, and biochemical data, as well as information about the follow-ups and complications of the enroled patients, were collected.ResultsA total of 129 subjects (54 females; median age: 15.0 years, range: 0–58 years; 59 older than 18 years) were included. In terms of initial diagnoses, 30 were CF (23.3%), 41 were CFTR-related disorder (CFTR-RD) (31.7%), and 58 were CF transmembrane conductance regulator-related metabolic syndrome/cystic fibrosis screen positive, inconclusive diagnosis (CRMS/CFSPID) (45.0%). After a median follow-up of 6.7 years (range 0.2–25 years), 15 patients progressed to CF, bringing the total number of CF diagnoses to 45/129 (34.9%). Most of these patients had mild lung diseases with pancreatic sufficiency and a low prevalence of CF-related complications.ConclusionsAt the end of the study, 34.9% of subjects with the CFTR F508del/5T;TG12 genotype were diagnosed with CF. We suggest including patients with the F508del/5T;TG12 genotype in long-term follow-ups.  相似文献   

3.
Circulating immunoreactive trypsinogen (IRT), a biomarker of exocrine pancreatic disease in cystic fibrosis (CF), is elevated in most CF newborns. In those with severe CF transmembrane conductance regulator (CFTR) genotypes, IRT declines rapidly in the first years of life, reflecting progressive pancreatic damage. Consistent with this progression, a less elevated newborn IRT measure would reflect more severe pancreatic disease, including compromised islet compartments, and potentially increased risk of CF-related diabetes (CFRD). We show in two independent CF populations that a lower newborn IRT estimate is associated with higher CFRD risk among individuals with severe CFTR genotypes, and we provide evidence to support a causal relationship. Increased loge(IRT) at birth was associated with decreased CFRD risk in Canadian and Colorado samples (hazard ratio 0.30 [95% CI 0.15–0.61] and 0.39 [0.18–0.81], respectively). Using Mendelian randomization with the SLC26A9 rs7512462 genotype as an instrumental variable since it is known to be associated with IRT birth levels in the CF population, we provide evidence to support a causal contribution of exocrine pancreatic status on CFRD risk. Our findings suggest CFRD risk could be predicted in early life and that maintained ductal fluid flow in the exocrine pancreas could delay the onset of CFRD.  相似文献   

4.
BackgroundMajor issues of newborn screening (NBS) for CF are the assessment of disease liability of variants and of the penetrance of clinical CF, notably in inconclusive diagnosis. The penetrance of CF is defined as the risk of a particular genotype to lead to a CF phenotype.MethodsWe aimed to get insight into the penetrance of CF for fifteen CFTR variants: 5 frequent CF-causing and 10 classified as of varying clinical consequence (VCC) or associated with a CFTR-related disorder (CFTR-RD) in CFTR2 or CFTR-France databases. The penetrance was approached by: (1) comparison of variant allelic frequencies in CF patients (CFTR2) and in the general population; (2) estimation of the likelihood of a positive NBS test for the 14 compound heterozygous with F508del and the F508del homozygous genotypes, defined as the ratio of detected/expected number of neonates with a given genotype in the 2002–2017 period.ResultsA full penetrance was observed for severe CF-causing variants. Five variants were more frequently found in the general population than in CF patients: TG11T5, TG12T5, TG13T5, L997F and R117H;T7. The likelihood of a positive NBS test was 0.03% for TG11T5, 0.3% for TG12T5, 1.9% for TG13T5, 0.6% for L997F, 11.7% for D1152H, and 17.8% for R117H;T7. Penetrance varied greatly for variants with discrepant classification between CFTR2 and CFTR-France: 5.1% for R117C, 12.3% for T338I, 43.5% for D110H and 52.6% for L206W.ConclusionThese results illustrate the contribution of genetics population data to assess the disease liability of variants for diagnosis and genetic counselling purposes.  相似文献   

5.
6.
BackgroundThe CFTR modulator ivacaftor has been variably effective in treating individuals with cystic fibrosis (CF) who harbor CFTR gating variants such as G551D, as well as other classes of CFTR variants when used with other modulators. Because CFTR genotype does not fully explain this variability, defining genetic modifiers of response to modulator therapy is of particular interest to the field of individualized CF drug therapy. Previous studies have proposed that a variant in SLC26A9 (rs7512462) is associated with lung disease severity and with response to treatment with ivacaftor in individuals with CF who carry G551D or gating variants.MethodsGiven the implications for CF treatment, we re-examined the reported associations in three cohorts; patients enrolled in the Twin and Siblings study at Johns Hopkins University, the CF modifier study at the University of North Carolina at Chapel Hill, and the prospective G551D Observational (GOAL) study. The GOAL study was specifically designed to measure lung function response to ivacaftor.ResultsWe find no association between SLC26A9 (rs7512462) genotype and lung disease severity (n = 272) or change in lung function at one-, three-, and six-month intervals following ivacaftor treatment(n = 141) in individuals with CF who carry at least one G551D variant.ConclusionsOur inability to replicate this association indicates that rs7512462 genotype should not be used in treatment decisions.  相似文献   

7.
The spectrum of disorders involving CFTR (cystic fibrosis transmembrane conductance regulator) dysfunction correlates with a continuous gradient of CFTR function defined by the combination of two allelic CFTR variants. CFTR-related disorders are clinical entities with features of cystic fibrosis (CF) and evidence for presence of CFTR dysfunction but not meeting criteria for diagnosis of CF. Individuals with CFTR-RDs demonstrate a wide range of CFTR activity and are still under-recognized or misclassified. The level of CFTR dysfunction may be measured in vivo (sweat testing, nasal potential difference measurements) and/or by ex vivo tests (intestinal current measurement), or indirectly indicated by CFTR variants, as alteration in sequence of the CFTR gene translates into CFTR dysfunction. CFTR bioassays can aid in the diagnosis of individuals with CF, but we lack parameters to differentiate CF from CFTR-RD. In the era of the CFTR modulators and their potential clinical benefit, it is of utmost importance to diagnose CFTR-RD as unambiguously as possible. We therefore propose the following to define compatible CFTR dysfunction in a person with a suspected diagnosis of CFTR-RD :(1) evidence of CFTR dysfunction in vivo or ex vivo in at least two different CFTR functional test types, or(2) One CFTR variant known to reduce CFTR function and evidence of CFTR dysfunction in vivo or ex vivo in at least two different CFTR functional test types, or(3) Two CFTR variants shown to reduce CFTR function, with at most one CF-causing variant.  相似文献   

8.
Cystic fibrosis (CF) is a rare autosomal-recessive disorder manifested as multisystem organ dysfunction. The cystic fibrosis transmembrane conductance regulator (CFTR) protein functions as an ion transporter on the epithelium of exocrine glands, regulating secretion viscosity. The CFTR gene, encoded on chromosome 7, is required for the production and trafficking of the intact and functional CFTR protein. Literally thousands of human CFTR allelic mutations have been identified, each with varying impact on protein quality and quantity. As a result, individuals harboring CFTR mutations present with a spectrum of symptoms ranging from CF to normal phenotypes. Those with loss of function but without full CF may present with CFTR-related disorders (CFTR-RDs) including male infertility, sinusitis, pancreatitis, atypical asthma and bronchitis. Studies have demonstrated associations between higher rates of CFTR mutations and oligospermia, epididymal obstruction, congenital bilateral absence of the vas deferens (CBAVD), and idiopathic ejaculatory duct obstruction (EDO). Genetic variants are detected in over three-quarters of men with CBAVD, the reproductive abnormality most classically associated with CFTR aberrations. Likewise, nearly all men with clinical CF will have CBAVD. Current guidelines from multiple groups recommend CFTR screening in all men with clinical CF or CBAVD though a consensus on the minimum number of variants for which to test is lacking. CFTR testing is not recommended as routine screening for men with other categories of infertility. While available CFTR panels include 30 to 96 of the most common variants, complete gene sequencing should be considered if there is a high index of suspicion in a high-risk couple (e.g., partner is CFTR mutation carrier). CF treatments to date have largely targeted end-organ complications. Novel CFTR-modulator treatments aim to directly target CFTR protein dysfunction, effectively circumventing downstream complications, and possibly preventing symptoms like vasal atresia at a young age. Future gene therapies may also hold promise in preventing or reversing genetic changes that lead to CF and CFTR-RD.  相似文献   

9.
BackgroundIvacaftor shows benefit in patients with cystic fibrosis (CF) and CFTR mutations associated with residual CF transmembrane conductance regulator (CFTR) function. Here we further assess the effect of ivacaftor in such patients using an N-of-1 study design.MethodsPatients aged ≥12 years with CF with clinical or molecular evidence of residual CFTR function were randomized to 1 of 4 treatment sequences for two 4-week, double-blind crossover cycles (each divided into 2 weeks of ivacaftor treatment and placebo) followed by 8 weeks of open-label ivacaftor treatment. The primary endpoint was absolute change from cycle baseline of percent predicted forced expiratory volume in 1 s (ppFEV1) after 2 weeks of treatment with ivacaftor relative to placebo.ResultsAbsolute change (SD) from study baseline in ppFEV1 favored ivacaftor by 2.3 (1.0) percentage points (95% credible interval, 0.4–4.1) after 2 weeks of treatment. Absolute mean change (SD) from open-label baseline (defined as day 1 of the open-label ivacaftor treatment period) in ppFEV1 after 8 weeks of treatment was 4.7 (4.2) percentage points (P<.0001). Safety of ivacaftor was consistent with that observed in prior studies.ConclusionsIvacaftor improved lung function during the double-blind and open-label treatment periods in patients with CF and CFTR mutations associated with residual CFTR function (ClinicalTrials.gov, NCT01685801).  相似文献   

10.
11.
12.
BackgroundThe hallmark of the cystic fibrosis (CF) lung disease is a neutrophil dominated lung environment that is associated to chronic lung tissue destruction and ultimately the patient's death. It is unclear whether the exacerbated neutrophil response is primary related to a defective CFTR or rather secondary to chronic bacterial colonization and inflammation. Here, we hypothesized that CF peripheral blood neutrophils present intrinsic alteration at birth before the start of an inflammatory process.MethodsPeripheral blood neutrophils were isolated from newborn CFTR+/+ and CFTR−/− piglets. Neutrophils immunophenotype was evaluated by flow cytometry. Lipidomic and proteomic profile were characterized by liquid chromatography/tandem mass spectrometry (LC-MS/MS), intact cell matrix-assisted laser desorption/ionization mass spectrometry (ICM-MS) followed by top-down high-resolution mass spectrometry (HRMS), respectively. The ability of CF neutrophils to kill pseudomonas aeruginosa was also evaluated.ResultsPolyunsaturated fatty acid metabolites analysis did not show any difference between CFTR+/+ and CFTR−/− neutrophils. On the other hand, a predictive mathematical model based on the ICM-MS proteomic profile was able to discriminate between both genotypes. Top-down proteomic analysis identified 19 m/z differentially abundant masses that corresponded mainly to proteins related to the antimicrobial response and the generation of reactive oxygen species (ROS). However, no alteration in the ability of CFTR−/− neutrophils to kill pseudomonas aeruginosa in vitro was observed.ConclusionsICM-MS demonstrated that CFTR−/− neutrophils present intrinsic alterations already at birth, before the presence of any infection or inflammation.  相似文献   

13.
14.
Background: Since the CFTR gene was cloned, more than 1000 mutations have been identified. To date, a clear relationship has not been established between genotype and the progression of lung damage. A study was undertaken of the relationship between genotype, progression of lung disease, and survival in adult patients with cystic fibrosis (CF). Methods: A prospective cohort of adult patients with CF and two CFTR mutations followed up in an adult cystic fibrosis unit was analysed. Patients were classified according to functional effects of classes of CFTR mutations and were grouped based on the CFTR molecular position on the epithelial cell surface (I–II/I–II, I–II/III–V). Spirometric values, progression of lung disease, probability of survival, and clinical characteristics were analysed between groups. Results: Seventy four patients were included in the study. Patients with genotype I–II/I–II had significantly lower current spirometric values (p<0.001), greater loss of pulmonary function (p<0.04), a higher proportion of end-stage lung disease (p<0.001), a higher risk of suffering from moderate to severe lung disease (odds ratio 7.12 (95% CI 1.3 to 40.5)) and a lower probability of survival than patients with genotype I–II/III, I–II/IV and I–II/V (p<0.001). Conclusions: The presence of class I or II mutations on both chromosomes is associated with worse respiratory disease and a lower probability of survival.  相似文献   

15.
BackgroundThe lack of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing to severe lung disease, reduced growth and osteopenia. Both reduced bone content and strength are increasingly recognized in infants with CF before the onset of significant lung disease, suggesting a developmental origin and a possible role in bone disease pathogenesis. The role of CFTR in bone metabolism is unclear and studies on humans are not feasible. Deletion of CFTR in pigs (CFTR −/− pigs) displays at birth severe malformations similar to humans in the intestine, respiratory tract, pancreas, liver, and male reproductive tract.MethodsWe compared bone parameters of CFTR −/− male and female pigs with those of their wild-type (WT) littermates at birth. Morphological and microstructural properties of femoral cortical and trabecular bone were evaluated using micro-computed tomography (μCT), and their chemical compositions were examined using Raman microspectroscopy.ResultsThe integrity of the CFTR −/− bone was altered due to changes in its microstructure and chemical composition in both sexes. Low cortical thickness and high cortical porosity were found in CFTR −/- pigs compared to sex-matched WT littermates. Moreover, an increased chemical composition heterogeneity associated with higher carbonate/phosphate ratio and higher mineral crystallinity was found in CFTR −/− trabecular bone, but not in CFTR −/− cortical bone.ConclusionsThe loss of CFTR directly alters the bone composition and metabolism of newborn pigs. Based on these findings, we speculate that bone defects in patients with CF could be a primary, rather than a secondary consequence of inflammation and infection.  相似文献   

16.
PurposeTo report two patients with associated conditions in addition to cystic fibrosis.MethodsWe reviewed our database and report two patients with cystic fibrosis who had associated conditions. These patients also had novel disease causing CFTR mutations on full gene sequence analysis.ResultsWe identified 2 patients with novel disease causing cystic fibrosis transmembrane conductance regulator mutations that we report here. A 12-year-old female with cystic fibrosis, diagnosed at 18 months, had normal pulmonary function tests and chest X-ray. Her main cystic fibrosis-related health issue was poor growth. Results of cystic fibrosis transmembrane conductance regulator DNA analysis showed deltaF508; L467P; and 7T/9T. She was later diagnosed with Crohn's disease. An 11-year-old male with Rubinstein–Taybi syndrome, diagnosed with cystic fibrosis at 2 years of age, had minimal findings on chest X-ray and pancreatic insufficiency. Results of his cystic fibrosis transmembrane conductance regulator DNA analysis showed deltaF508; 4329delCT; and 7T/9T.ConclusionWe report 2 patients with CF who had associated conditions and also had novel disease causing CFTR mutations. Associated conditions may worsen the clinical manifestations of CF and complicate medical management.  相似文献   

17.
BackgroundCystic fibrosis (CF) is a recessive condition caused by variants in each CF transmembrane conductance regulator (CFTR) allele. Clinically affected individuals without two identified causal variants typically have no further interrogation of CFTR beyond examination of coding regions, but the development of variant-specific CFTR-targeted treatments necessitates complete understanding of CFTR genotype.MethodsWhole genome sequences were analyzed on 5,058 individuals with CF. We focused on the full CFTR gene sequence and identified disease-causing variants in three phases: screening for known and structural variants; discovery of novel loss-of-function variants; and investigation of remaining variants.ResultsAll variants identified in the first two phases and coding region variants found in the third phase were interpreted according to CFTR2 or ACMG criteria (n = 371; 16 [4.3%] previously unreported). Full gene sequencing enabled delineation of 18 structural variants (large insertions or deletions), of which two were novel. Additional CFTR variants of uncertain effect were found in 76 F508del homozygotes and in 21 individuals with other combinations of CF-causing variants. Both causative variants were identified in 98.1% (n = 4,960) of subjects, an increase of 2.3 percentage points from the 95.8% (n = 4,847) who had a registry- or chart-reported disease-causing CFTR genotype. Of the remaining 98 individuals, 78 carried one variant that has been associated with CF (CF-causing [n = 70] or resulting in varying clinical consequences n = 8]).ConclusionsComplete CFTR gene sequencing in 5,058 individuals with CF identified at least one DNA variant in 99.6% of the cohort that is targetable by current molecular or emerging gene-based therapeutic technologies.  相似文献   

18.
BackgroundIvacaftor (KALYDECO™, VX-770) is a CFTR potentiator that increased CFTR channel activity and improved lung function in patients age 6 years and older with CF who have the G551D-CFTR gating mutation. The aim of this in vitro study was to evaluate the effect of ivacaftor on mutant CFTR protein forms with defects in protein processing and/or channel function.MethodsThe effect of ivacaftor on CFTR function was tested in electrophysiological studies using a panel of Fischer rat thyroid (FRT) cells expressing 54 missense CFTR mutations that cause defects in the amount or function of CFTR at the cell surface.ResultsIvacaftor potentiated multiple mutant CFTR protein forms that produce functional CFTR at the cell surface. These included mutant CFTR forms with mild defects in CFTR processing or mild defects in CFTR channel conductance.ConclusionsThese in vitro data indicated that ivacaftor is a broad acting CFTR potentiator and could be used to help stratify patients with CF who have different CFTR genotypes for studies investigating the potential clinical benefit of ivacaftor.  相似文献   

19.
BackgroundCystic Fibrosis (CF) has prominent gastrointestinal and pancreatic manifestations. The aim of this study was to determine the effect of Cystic fibrosis transmembrane conductance regulator (CFTR) modulation on, gastrointestinal inflammation, pancreatic function and gut microbiota composition in people with cystic fibrosis (CF) and the G551D-CFTR mutation.MethodsFourteen adult patients with the G551D-CFTR mutation were assessed clinically at baseline and for up to 1 year after treatment with ivacaftor. The change in gut inflammatory markers (calprotectin and lactoferrin), exocrine pancreatic status and gut microbiota composition and structure were assessed in stool samples.ResultsThere was no significant change in faecal calprotectin nor lactoferrin in patients with treatment while all patients remained severely pancreatic insufficient. There was no significant change in gut microbiota diversity and richness following treatment.ConclusionThere was no significant change in gut inflammation after partial restoration of CFTR function with ivacaftor, suggesting that excess gut inflammation in CF is multi-factorial in aetiology. In this adult cohort, exocrine pancreatic function was irreversibly lost. Longer term follow-up may reveal more dynamic changes in the gut microbiota and possible restoration of CFTR function.  相似文献   

20.
Cystic fibrosis is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to dysfunction of the CFTR protein. CFTR dysfunction leads to disease in the respiratory and gastrointestinal systems. Disorders of the cardiovascular system in individuals with CF are usually attributed to secondary effects from progressive lung disease. However, CFTR has been localized to vascular endothelium and smooth muscle, suggesting that CFTR dysfunction may directly impact cardiovascular function. As treatments for CF improve and life-expectancy increases, the risk of vascular disease may increase in prevalence related to primary and secondary CFTR dysfunction, chronic systemic inflammation, nutritional health and hyperglycemia in individuals with CF related diabetes. Here we review the available literature on CF and the cardiovascular system, examining the secondary effects and evidence for direct CFTR dysfunction in the heart, aorta, pulmonary vessels, and vasculature, as well as future directions and treatment options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号