首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sanchez RM  Ribak CE  Shapiro LA 《Epilepsia》2012,53(Z1):98-108
Numerous animal models of epileptogenesis demonstrate neuroplastic changes in the hippocampus. These changes occur not only for the mature neurons and glia, but also for the newly generated granule cells in the dentate gyrus. One of these changes, the sprouting of mossy fiber axons, is derived predominantly from newborn granule cells in adult rats with pilocarpine-induced temporal lobe epilepsy. Newborn granule cells also mainly contribute to another neuroplastic change, hilar basal dendrites (HBDs), which are synaptically targeted by mossy fibers in the hilus. Both sprouted mossy fibers and HBDs contribute to recurrent excitatory circuitry that is hypothesized to be involved in increased seizure susceptibility and the development of spontaneous recurrent seizures (SRS) that occur following the initial pilocarpine-induced status epilepticus. Considering the putative role of these neuroplastic changes in epileptogenesis, a critical question is whether similar anatomic phenomena occur after epileptogenic insults to the immature brain, where the proportion of recently born granule cells is higher due to ongoing maturation. The current study aimed to determine if such neuroplastic changes could be observed in a standardized model of neonatal seizure-inducing hypoxia that results in development of SRS. We used immunoelectron microscopy for the immature neuronal marker doublecortin to label newborn neurons and their HBDs following neonatal hypoxia. Our goal was to determine whether synapses form on HBDs from neurons born after neonatal hypoxia. Our results show a robust synapse formation on HBDs from animals that experienced neonatal hypoxia, regardless of whether the animals experienced tonic-clonic seizures during the hypoxic event. In both cases, the axon terminals that synapse onto HBDs were identified as mossy fiber terminals, based on the appearance of dense core vesicles. No such synapses were observed on HBDs from newborn granule cells obtained from sham animals analyzed at the same time points. This aberrant circuit formation may provide an anatomic substrate for increased seizure susceptibility and the development of epilepsy.  相似文献   

2.
Substantial reorganization of mossy fibers from granule cells of the dentate gyrus occurs in a high percentage of humans with medically intractable temporal lobe epilepsy. To identify these fibers and determine their ultrastructural features in human surgical specimens, we used preembedding immunoperoxidase labeling of dynorphin A, an opioid peptide that is abundant in normal mossy fibers. In electron microscopic preparations, dynorphin A immunoreactivity was highly associated with dense core vesicles and was localized predominantly in axon terminals in the inner molecular layer of the dentate gyrus, although some dynorphin-labeled dense core vesicles were also observed in dendritic shafts and spines. The labeled terminal profiles were numerous, and, whereas they varied greatly in size, many were relatively large (2.3 microm in mean major diameter). The terminals contained high concentrations of clear round vesicles and numerous mitochondrial profiles, formed distinct asymmetric synapses, often had irregular shapes, and, thus, exhibited many features of normal mossy fiber terminals. The dynorphin-labeled terminals formed synaptic contacts primarily with dendritic spines, and some of these spines were embedded in large labeled terminals, suggesting that they were complex spines. The labeled terminals frequently formed multiple synaptic contacts with their postsynaptic elements, and perforated postsynaptic densities, with and without spinules, were present at some synapses. These findings suggest that the reorganized mossy fiber terminals in humans with temporal lobe epilepsy form abundant functional synapses in the inner molecular layer of the dentate gyrus, and many of these contacts have ultrastructural features that could be associated with highly efficacious synapses.  相似文献   

3.
Electrophysiologically identified and intracellularly biocytin-labeled mossy cells in the dentate hilus of the rat were studied using electron microscopy and postembedding immunogold techniques. Ultrathin sections containing a labeled mossy cell or its axon collaterals were reacted with antisera against the excitatory neurotransmitter glutamate and against the inhibitory neurotransmitter γ-aminobutyric acid (GABA). From single- and double-immunolabeled preparations, we found that 1) mossy cell axon terminals made asymmetric contacts onto postsynaptic targets in the hilus and stratum moleculare of the dentate gyrus and showed immunoreactivity primarily for glutamate, but never for GABA; 2) in the hilus, glutamate-positive mossy cell axon terminals targeted GABA-positive dendritic shafts of hilar interneurons and GABA-negative dendritic spines; and 3) in the inner molecular layer, the mossy cell axon formed asymmetric synapses with dendritic spines associated with GABA-negative (presumably granule cell) dendrites. The results of this study support the view that excitatory (glutamatergic) mossy cell terminals contact GABAergic interneurons and non-GABAergic neurons in the hilar region and GABA-negative granule cells in the stratum moleculare. This pattern of connectivity is consistent with the hypothesis that mossy cells provide excitatory feedback to granule cells in a dentate gyrus associational network and also activate local hilar inhibitory elements. Hippocampus 1997;7:559–570. © 1997 Wiley-Liss, Inc.  相似文献   

4.
癫痫大鼠海马出芽苔藓纤维突触的超微结构特征   总被引:1,自引:0,他引:1  
目的:探讨匹罗卡品颞叶癫痫大鼠海马出芽苔藓纤维突触的超微结构特征及其在颞叶癫痫发病机制中的作用。方法:采用Timm组化染色标记出芽苔藓纤维突触末端,在电镜下观察新生突触的类型、比例、定位、以及突触后靶成分。结果:颞叶癫痫大鼠齿状回内分子层可见到银标记的突触末端,出芽苔藓纤维突触主要是轴棘型非对称性突触,其次是轴树型非对称性突触,偶可看到出芽轴突和颗粒细胞体形成突触联系。结论:轴棘型非对称性突触是颞叶癫痫大鼠海马出芽苔藓纤维突触的主要类型,出芽苔藓纤维突触的超微结构特性支持重组突触形成重复的兴奋性环路,而且形成的新的兴奋性环路可能在颞叶癫痫的发生与发展中起重要作用。  相似文献   

5.
Hippocampal mossy fibers, axons of dentate granule cells, converge in the dentate hilus and run through a narrow area called the stratum lucidum to synapse with hilar and CA3 neurons. In the hippocampal formation of temporal lobe epilepsy patients, however, this stereotyped pattern of projection is often collapsed; the mossy fibers branch out of the dentate hilus and abnormally innervate the dentate inner molecular layer, a phenomenon that is termed mossy fiber sprouting. Experimental studies have replicated this sprouting in animal models of temporal lobe epilepsy, including kindling and pharmacological treatment with convulsants. Because these axon collaterals form recurrent excitatory inputs into dendrites of granule cells, the circuit reorganization is assumed to cause epileptiform activity in the hippocampus, whereas some recent studies indicate that the sprouting is not necessarily associated with early-life seizures. Here we review the mechanisms of mossy fiber sprouting and consider its potential contribution to epileptogenesis. Based on recent findings, we propose that the sprouting can be regarded as a result of disruption of the molecular mechanisms underlying the axon guidance. We finally focus on the possibility that prevention of the abnormal sprouting might be a new strategy for medical treatment with temporal lobe epilepsy.  相似文献   

6.
Scharfman HE  Pierce JP 《Epilepsia》2012,53(Z1):109-115
The dentate gyrus is one of two main areas of the mammalian brain where neurons are born throughout adulthood, a phenomenon called postnatal neurogenesis. Most of the neurons that are generated are granule cells (GCs), the major principal cell type in the dentate gyrus. Some adult-born granule cells develop in ectopic locations, such as the dentate hilus. The generation of hilar ectopic granule cells (HEGCs) is greatly increased in several animal models of epilepsy and has also been demonstrated in surgical specimens from patients with intractable temporal lobe epilepsy (TLE). Herein we review the results of our quantitative neuroanatomic analysis of HEGCs that were filled with Neurobiotin following electrophysiologic characterization in hippocampal slices. The data suggest that two types of HEGCs exist, based on a proximal or distal location of the cell body relative to the granule cell layer, and based on the location of most of the dendrites, in the molecular layer or hilus. Three-dimensional reconstruction revealed that the dendrites of distal HEGCs can extend along the transverse and longitudinal axis of the hippocampus. Analysis of axons demonstrated that HEGCs have projections that contribute to the normal mossy fiber innervation of CA3 as well as the abnormal sprouted fibers in the inner molecular layer of epileptic rodents (mossy fiber sprouting). These data support the idea that HEGCs could function as a "hub" cell in the dentate gyrus and play a critical role in network excitability.  相似文献   

7.
This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. Thus, this animal model allowed us to address the effects of BDNF in the dentate gyrus after seizures, as well as the actions of BDNF on mossy fiber transmission after reorganization. In slices with sprouting, BDNF bath application enhanced responses recorded in the inner molecular layer to mossy fiber stimulation. Spontaneous bursts of granule cells occurred, and these were apparently generated at the site of the sprouted axon plexus. These effects were not accompanied by major changes in perforant path-evoked responses or paired-pulse inhibition, occurred only after prolonged (30-60 min) exposure to BDNF, and were blocked by K252a. The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.  相似文献   

8.
Five green monkeys were examined with light and electron microscopic preparations to explore the regional differences in the distribution of parvalbumin (PV)-positive neurons and axon terminals in the primate hippocampus. PV-positive neurons were mainly found in the hilus of the dentate gyrus and the strata oriens and pyramidale of Ammon's horn. In electron microscopic preparations, the PV-positive cells displayed nuclear infoldings, intranuclear rods, a large rim of perikaryal cytoplasm with numerous organelles and both asymmetric and symmetric axosomatic synapses. One prominent PV-positive cell type in CA1 was a large multipolar neuron that resembled the large basket cells of the neocortex. Although most PV-positive dendrites were aspiny and postsynaptic to numerous axon terminals, some PV-positive dendrites in the molecular layer of the dentate gyrus displayed filipodia-like appendages with no synapses or spines that were postsynaptic to multiple axon terminals. The PV-positive dendrites in the hilus and stratum oriens were apposed at specialized junctions that resembled gap junctions. PV-positive axons were concentrated in the principal cell layers, and formed axosomatic, axodendritic, and axon initial segment synapses. In cases where these axons were observed to appose the surface of granule cells for a long length, only one axosomatic symmetric synapse per cell was found. In the hilus, PV-positive axon terminals formed synapses onto thorny excrescences of spiny cells. Both semithin sections and electron microscopic preparations indicated that more PV-positive axon terminals formed symmetric axosomatic synapses with pyramidal cells in CA2 than in CA1 and CA3. Also, CA2 displayed a unique plexus of PV-positive axon terminals in stratum lacunosum moleculare. These results indicate that the PV-positive hippocampal cells form a subset of GABAergic local circuit neurons, including the basket and chandelier cells. The ubiquitous finding of PV-positive dendrites linked by gap junctions throughout the dentate gyrus and Ammon's horn adds further data to indicate that this subset of GABAergic neurons is linked electrotonically. The synaptic organization of PV-positive neurons in the hippocampus suggests their participation in both feedback and feedforward inhibition. The PV-positive neurons in the hippocampus are only a proportion of the basket and chandelier cells, whereas virtually all of these cells in neocortex are PV-positive. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The fusiform cells of the dentate gyrus are located in a portion of the hilus within 100 micron of the granule cell layer. They have ovoid somata and bipolar dendrites that generally run parallel to the granule cell layer. The dendrites of these cells are either spiny or sparsely spiny. The spiny fusiform cell has numerous spines along its dendrites, which are contacted by terminals with the features of granule cell axon collaterals. This cell type also displays somal spines that are contacted by similar terminals. In contrast, the sparsely spiny fusiform cell displays only a few spines, which are contacted by multiple small axon terminals that synapse with both the stalk and end bulb of the spine. Most synaptic input for this cell type is made with the smooth surfaces of the soma and dendrites. A variety of terminals form synapses with the sparsely spiny fusiform cell, including terminals that resemble the fine axon collaterals of mossy fibers. The somata of these two cell types also display differences in the amount of Nissl bodies and the degree of nuclear infolding. The results indicate that spiny fusiform cells are similar to mossy cells, another hilar cell type that receives its major synaptic input from axon collaterals of mossy fibers from granule cells. The distribution of the dendrites of spiny fusiform cells and the pattern of granule cell axon collaterals suggest a high degree of convergence from granule cells. In contrast, the variety of axodendritic synapses for sparsely spiny fusiform cells suggests that more diverse inputs affect this cell's activity. Therefore, the structure and circuitry of these two hilar cell types are probably different. This study adds further evidence to indicate that the hilus contains a large variety of cell types with different neuronal connections.  相似文献   

10.
Previous immunocytochemical investigations performed in our laboratory on the human hippocampus surgically resected for the treatment of mesial temporal lobe epilepsy (MTLE) have demonstrated an increased expression of the AMPA-receptor subunit GluR1 on neurons in the hilus and area CA3. Light microscopically, many of these neurons exhibited peculiar filamentous extensions and grape-like excrescences that protruded from their somata and proximal dendrites, suggesting that these neurons may be mossy cells and CA3 pyramidal neurons, respectively. The present electron microscopic study was carried out to further characterize these cells. The filamentous extensions were identified as dendrites from which spines often protruded, and the grape-like excrescences represented clusters of closely associated dendrites and spines. A variety of synapses were formed by the GluR1-positive profiles. These arrangements ranged from simple contacts between a single unlabelled axon terminal and a single labelled postsynaptic element, to complex contacts involving multiple unlabelled axon terminals and labelled postsynaptic elements. Many of the axon terminals involved in these arrangements were mossy fibre boutons. Thus, a large proportion of the GluR1-positive neurons were identified as hilar mossy cells and CA3 pyramidal neurons, cells hitherto thought to be absent or greatly reduced in the MTLE hippocampus. Taken together, these data suggest the presence of a highly efficient excitatory circuit involving AMPA receptors, mossy cells and CA3 pyramidal neurons in the sclerotic hippocampus. Such a circuit could be critically involved in the genesis and maintenance of temporal lobe epilepsy.  相似文献   

11.
Morphological data from humans with temporal lobe epilepsy and from animal models of epilepsy suggest that seizure-induced damage to dentate hilar neurons causes granule cells to sprout new axon collaterals that innervate other granule cells. This aberrant projection has been suggested to be an anatomical substrate for epileptogenesis. This hypothesis was tested in the present study with intra- and extracellular recordings from granule cells in hippocampal slices removed from rats 1-4 months after kainate treatment. In this animal model, hippocampal cell loss leads to sprouting of mossy fiber axons from the granule cells into the inner molecular layer of the dentate gyrus. Unexpectedly, when slices with mossy fiber sprouting were examined in normal medium, extracellular stimulation of the hilus or perforant path evoked relatively normal responses. However, in the presence of the GABAA-receptor antagonist, bicuculline, low-intensity hilar stimulation evoked delayed bursts of action potentials in about one-quarter of the slices. In one-third of the bicuculline-treated slices with mossy fiber sprouting, spontaneous bursts of synchronous spikes were superimposed on slow negative field potentials. Slices from normal rats or kainate-treated rats without mossy fiber sprouting never showed delayed bursts to weak hilar stimulation or spontaneous bursts in bicuculline. These data suggest that new local excitatory circuits may be suppressed normally, and then emerge functionally when synaptic inhibition is blocked. Therefore, after repeated seizures and excitotoxic damage in the hippocampus, synaptic reorganization of the mossy fibers is consistently associated with normal responses; however, in some preparations, the mossy fibers may form functional recurrent excitatory connections, but synaptic inhibition appears to mask these potentially epileptogenic alterations.  相似文献   

12.
Opioid modulation of recurrent excitation in the hippocampal dentate gyrus.   总被引:4,自引:0,他引:4  
kappa opioid receptor activation inhibits granule cell-mediated excitatory neurotransmission in the hippocampal formation via a decrease in glutamate release from both perforant path and mossy fiber terminals. We now report a third, anatomically and pharmacologically distinct site of such kappa opioid inhibition within the hippocampus. Granule cell population responses to selective stimulation of an excitatory hilar pathway were decreased by the kappa(1) opioid receptor agonist U69,593, an effect blocked by the kappa(1) antagonist norbinaltorphimine. U69,593 also inhibited hilar path induced long-term potentiation (LTP) of granule cell responses. LTP in this pathway was also blocked by the NMDA receptor antagonist d-2-amino-5-phosphonovalerate, unlike granule cell mossy fiber LTP in CA3. The kappa opioid peptide dynorphin is present in hilar mossy fiber collaterals. Ultrastructural analysis of these collaterals demonstrated dynorphin-containing vesicles in asymmetric synapses formed between axon terminals and granule cell dendrites, suggesting direct granule cell-granule cell connections. Evoked release of endogenous dynorphin within the hilus was effective in reducing hilar excitation of granule cells, although this release, in contrast to the release of dynorphin in the dentate molecular layer, was not dependent on L-type calcium channels. No hilar path excitation was observed in the absence of bicuculline, suggesting a strong GABA(A)-mediated inhibition of this pathway. However, hilar path activity could be seen after LTP, with or without bicuculline. Thus, kappa opioids can inhibit granule cell recurrent excitation, likely via effects on excitatory mossy fiber collaterals. Such collaterals are thought to be important in mediating temporal lobe epilepsy.  相似文献   

13.
Mossy cells of the hippocampal dentate gyrus were analyzed through postnatal development. At birth, a few thorny excrescences were found on the proximal dendrites of mossy cells, whereas distal dendrites displayed pedunculate spines. Thorny excrescences increased in number and complexity until the third month. After that age, the complexity of thorny excrescences is so great that an increase in spine density can be seen only in electron microscopic preparations. An increase in the number of pedunculate spines per unit length of distal dendrite was detected via light microscopy during the first 9 postnatal months. The somata and dendrites of mossy cells displayed adult-like characteristics after the ninth postnatal month. Mossy fiber terminals at birth frequently displayed immature ultrastructural characteristies and formed synapses with dendritic shafts and spines. At later postnatal ages and in adults, axospinous synapses were found almost exclusively. This is consistent with the postnatal development of the complex spines of the mossy cells. Axons of mossy cells were generally confined to the hilus in our 150 -μm-thick sections, where they gave rise to several collaterals. The axon terminals from these collaterals formed asymmetric synapses with dendrites and dendritic spines in the hilar region of the dentate gyrus. These data provide the first anatomical evidence that hilar mossy cells of the primate dentate gyrus have excitatory projections similar to their equivalent cell type in subprimates. The present study indicates that mossy cells of the dentate gyrus are in a more advanced stage of development at birth and mature faster than similar neurons of the human hippocampus. This may represent a faster maturation of hippocampal circuitry in nonhuman primates compared to that in the human.  相似文献   

14.
Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31–61 days earlier were video‐monitored for spontaneous, convulsive seizures 9 hr/day every day for 24–36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1‐immunocytochemistry, GluR2‐immunocytochemistry, Timm stain, glial fibrillary acidic protein‐immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin‐immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin‐positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy.  相似文献   

15.
Hippocampal slices were obtained from hippocampi of patients with temporal lobe epilepsy or from patients with mass lesions located in the temporal lobe. Hippocampal slices were kept alive in a slice chamber and the anterograde tracer neurobiotin was iontophoretically injected into the granule cell layer of the dentate gyrus. Single injections resulted in the labeling of small groups of granule cells. The axonal arbor of these cells could be partially reconstructed and single mossy fibers could be followed from the soma to the inner molecular layer of the sclerotic dentate gyrus. Electron microscopy revealed asymmetric mossy fiber synapses on spiny neurons in the inner molecular layer, presumably granule cells. These data demonstrate that in vitro anterograde tracing can be employed to study the local connectivity of the human brain at the light and electron microscopic level.  相似文献   

16.
Seizures evoked by kainic acid and a variety of experimental methods induce sprouting of the mossy fiber pathway in the dentate gyrus. In this study, the morphological features and spatial distribution of sprouted mossy fiber axons in the dorsal dentate gyrus of kainate-treated rats were directly shown in granule cells filled in vitro with biocytin and in vivo with the anterograde lectin tracer Phaseolus vulgaris leucoagglutinin (PHAL). Sprouted axon collaterals of biocytin-filled granule cells projected from the hilus of the dentate gyrus into the supragranular layer in both transverse and longitudinal directions in kainate-treated rats but were not observed in normal rats. The sprouted axon collaterals projected into the supragranular region for 600–700 μm along the septotemporal axis. Collaterals from granule cells in the infrapyramidal blade crossed the hilus and sprouted into the supragranular layer of the suprapyramidal blade. Sprouted axon segments in the supragranular layer had more terminal boutons per unit length than the axon segments in the hilus of both normal and kainate-treated rats but did not form giant boutons, which are characteristic of mossy fiber axons in the hilus and CA3. Mossy fiber axons in the hilus of kainate-treated rats had more small terminal boutons, fewer giant boutons, and there was a trend toward greater axon length compared with mossy fibers in the hilus of normal rats. With the additional length of supragranular sprouted collaterals, there was an overall increase in the length of mossy fiber axons in kainate-treated rats. The synaptic and axonal remodeling of the mossy fiber pathway could alter the functional properties of hippocampal circuitry by altering synaptic connectivity in local circuits within the hilus of the dentate gyrus and by increasing the divergence of the mossy fiber terminal field along the septotemporal axis. J. Comp. Neurol. 390:578–594, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The mossy fiber pathway in the dentate gyrus undergoes sprouting and synaptic reorganization in response to seizures. The types of new synapses, their location and number, and the identity of their postsynaptic targets determine the functional properties of the reorganized circuitry. The goal of this study was to characterize the types and proportions of sprouted mossy fiber synapses in kindled and kainic acid-treated rats. In normal rats, synapses labeled by Timm histochemistry or dynorphin immunohistochemistry were rarely observed in the supragranular region of the inner molecular layer when examined by electron microscopy. In epileptic rats, sprouted mossy fiber synaptic terminals were frequently observed. The ultrastructural analysis of the types of sprouted synapses revealed that 1) in the supragranular region, labeled synaptic profiles were more frequently axospinous than axodendritic, and many axospinous synapses were perforated; 2) sprouted mossy fiber synaptic terminals formed exclusively asymmetric, putatively excitatory synapses with dendritic spines and shafts in the supragranular region and with the soma of granule cells in the granule cell layer; 3) in contrast to the large sprouted mossy fiber synapses in resected human epileptic hippocampus, the synapses formed by sprouted mossy fibers in rats were smaller; and 4) in several cases, the postsynaptic targets of sprouted synapses were identified as granule cells, but, in one case, a sprouted synaptic terminal formed a synapse with an inhibitory interneuron. The results demonstrate that axospinous asymmetric synapses are the most common type of synapse formed by sprouted mossy fiber terminals, supporting the viewpoint that most sprouted mossy fibers contribute to recurrent excitation in epilepsy.  相似文献   

18.
We used the pilocarpine model of chronic spontaneous recurrent seizures to evaluate the time course of supragranular dentate sprouting and to assess the relation between several changes that occur in epilep tic tissue with different behavioral manifestations of this experimental model of temporal lobe epilepsy. Pilo carpine-induced status epilepticus (SE) invariably led to cell loss in the hilus of the dentate gyrus (DG) and to spontaneous recurrent seizures. Cell loss was often also noted in the DG and in hippocampal subfields CA1 and CA3. The seizures began to appear at a mean of 15 days after SE induction (silent period), recurred at variable frequencies for each animal, and lasted for as long as the animals were allowed to survive (325 days). The granule cell layer of the DG was dispersed in epileptic animals, and neo-Timm stains showed supra-and intragranular mossy fiber sprouting. Supragranular mossy fiber sprout ing and dentate granule cell dispersion began to appear early after SE (as early as 4 and 9 days, respectively) and reached a plateau by 100 days. Animals with a greater degree of cell loss in hippocampal field CAS showed later onset of chronic epilepsy (r= 0.83, p < 0.0005), suggest ing that CA3 represents one of the routes for seizure spread. These results demonstrate that the pilocarpine model of chronic seizures replicates several of the fea tures of human temporal lobe epilepsy (hippocampal cell loss, suprar and intragranular mossy fiber sprouting, den tate granule cell dispersion, spontaneous recurrent sei zures) and that it may be a useful model for studying this human condition. The results also suggest that even though a certain amount of cell loss in specific areas may be essential for chronic seizures to occur, excessive cell loss may hinder epileptogenesis.  相似文献   

19.
Purpose: Aberrant plastic changes among adult‐generated hippocampal dentate granule cells are hypothesized to contribute to the development of temporal lobe epilepsy. Changes include formation of basal dendrites projecting into the dentate hilus. Innervation of these processes by granule cell mossy fiber axons leads to the creation of recurrent excitatory circuits within the dentate. The destabilizing effect of these recurrent circuits may contribute to hyperexcitability and seizures. Although basal dendrites have been identified in status epilepticus models of epilepsy associated with increased neurogenesis, we do not know whether similar changes are present in the intrahippocampal kainic acid model of epilepsy, which is associated with reduced neurogenesis. Methods: In the present study, we used Thy1‐YFP–expressing transgenic mice to determine whether hippocampal dentate granule cells develop hilar‐projecting basal dendrites in the intrahippocampal kainic acid model. Brain sections were examined 2 weeks after treatment. Tissue was also examined using ZnT‐3 immunostaining for granule cell mossy fiber terminals to assess recurrent connectivity. Adult neurogenesis was assessed using the proliferative marker Ki‐67 and the immature granule cell marker calretinin. Key Findings: Significant numbers of cells with basal dendrites were found in this model, but their structure was distinct from basal dendrites seen in other epilepsy models, often ending in complex tufts of short branches and spines. Even more unusual, a subset of cells with basal dendrites had an inverted appearance; they completely lacked apical dendrites. Spines on basal dendrites were found to be apposed to ZnT‐3 immunoreactive puncta, suggestive of recurrent mossy fiber input. Finally, YFP‐expressing abnormal granule cells did not colocalize Ki‐67 or calretinin, indicating that these cells were more than a few weeks old, but were found almost exclusively in proximity to the neurogenic subgranular zone, where the youngest granule cells are located. Significance: Recent studies have demonstrated in other models of epilepsy that dentate pathology develops following the aberrant integration of immature, adult‐generated granule cells. Given these findings, one might predict that the intrahippocampal kainic acid model of epilepsy, which is associated with a dramatic reduction in adult neurogenesis, would not exhibit these changes. Herein we demonstrate that hilar basal dendrites are a common feature of this model, with the abnormal cells likely resulting from the disruption of juvenile granule cell born in the weeks before the insult. These studies demonstrate that postinjury neurogenesis is not required for the accumulation of large numbers of abnormal granule cells.  相似文献   

20.
Mossy fiber synaptic reorganization in the epileptic human temporal lobe   总被引:26,自引:0,他引:26  
The distribution of the mossy fiber synaptic terminals was examined using the Timm histochemical method in surgically excised hippocampus and dentate gyrus from patients who underwent lobectomy of the anterior part of the temporal lobe for refractory partial complex epilepsy. The dentate gyrus of epileptic patients demonstrated intense Timm granules and abundant mossy fiber synaptic terminals in the supragranular region and the inner molecular layer. In contrast, the dentate gyrus of presenescent nonepileptic primates demonstrated no Timm granules in the supragranular region. In nonepileptic senescent primates, occasional very sparse supragranular Timm granules were results are morphological evidence of mossy fiber synaptic reorganization in the temporal lobe of epileptic humans, and suggest the intriguing possibility that mossy fiber sprouting and synaptic reorganization induced by repeated partial complex seizures may play a role in human epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号