首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The luxS gene product is an integral component of LuxS/autoinducer-2 (AI-2) quorum-sensing systems in bacteria. A putative luxS gene was expressed at comparable levels by Borrelia burgdorferi strain 297 cultivated either in vitro or in dialysis membrane chambers implanted in rat peritoneal cavities. Although the borrelial luxS gene functionally complemented a LuxS deficiency in Escherichia coli DH5 alpha, AI-2-like activity could not be detected within B. burgdorferi culture supernatants or concentrated cell lysates. Finally, a luxS-deficient mutant of B. burgdorferi was infectious at wild-type levels when it was intradermally needle inoculated into mice, indicating that expression of luxS probably is not required for infectivity but, at the very least, is not essential for mammalian host adaptation. Our findings also challenge the notion that a LuxS/AI-2 quorum-sensing system is operative in B. burgdorferi.  相似文献   

2.
The Lyme disease spirochete, Borrelia burgdorferi, is an extracellular microbe that causes persistent infection despite the development of strong immune responses against the bacterium. B. burgdorferi expresses several ligand-binding lipoproteins, including the decorin-binding proteins (Dbps) A and B, which may mediate attachment to decorin, a major component of the host extracellular matrix during murine infection. We show that B. burgdorferi was better protected in the joints and skin, two tissues with a higher decorin expression, than in the urinary bladder and heart, two tissues with a lower decorin expression, during chronic infection of wild-type mice. Targeted disruption of decorin alone completely abolished the protective niche in chronically infected decorin-deficient mice but did not affect the spirochete burden during early infection. The nature of protection appeared to be specific because the spirochetes with higher outer surface protein C expression were not protected while the protective niche seemed to favor the spirochetes with a higher dbpA expression during chronic infection. These data suggest that spirochetal DbpA may interact with host decorin during infection and such interactions could be a mechanism that B. burgdorferi uses to evade humoral immunity and establish chronic infection.  相似文献   

3.
Quorum-sensing regulation of density-dependent genes has been described for numerous bacterial species. The partially annotated genome sequence of Bacillus anthracis contains an open reading frame (BA5047) predicted to encode an ortholog of luxS, required for synthesis of the quorum-sensing signaling molecule autoinducer-2 (AI-2). To determine whether B. anthracis produces AI-2, the Vibrio harveyi luminescence bioassay was used. Cell-free conditioned media from vaccine (Sterne) strain 34F(2) induced luminescence in V. harveyi reporter strain BB170, indicating its production of AI-2. Cloned BA5047, expressed in Escherichia coli DH5 alpha cells, restored AI-2 activity to these cells. To evaluate whether BA5047 is essential for AI-2 synthesis, it was deleted through allelic exchange with marker rescue; the resulting mutant had no functional luxS activity and had reduced growth in vitro. In the wild-type strain, AI-2 activity was greatest during the exponential phase of growth. In total, these data indicate that BA5047 is a functional luxS ortholog in B. anthracis necessary for growth-phase-specific AI-2 expression. Thus, B. anthracis may utilize extracellular signaling molecules to regulate density-dependent gene expression.  相似文献   

4.
5.
To study interactions between Ixodes scapularis (Say) and Borrelia burgdorferi, an artificial feeding system was refined to allow controlled manipulation of single variables. The feeding system uses a mouse skin mounted on a water-jacketed glass membrane feeder. I. scapularis were infected using either BSK-H-cultured B. burgdorferi spirochetes or a B. burgdorferi-infected mouse skin as the source of spirochetes. Sixty-six percent of nymphs successfully fed to repletion using the artificial feeding systems with at least 75% of nymphs becoming infected with B. burgdorferi. Strain B31 B. burgdorferi spirochetes from passages 2-17 were equally infectious to nymphal ticks. At concentrations of one spirochete per microliter, 12% of nymphs acquired infection and 14 and 100 spirochetes per microliter resulted in 50 and 100% infection rates, respectively. Eighty-nine percent of nymphs fed by artificial feeding molted to the adult stage. When subsequently fed as adults, these I. scapularis successfully transmitted infectious B. burgdorferi spirochetes to mice.  相似文献   

6.
7.
Lyme borreliosis is caused by infection with the spirochete Borrelia burgdorferi. Nonhuman primates inoculated with the N40 strain of B. burgdorferi develop infection of multiple tissues, including the central (CNS) and peripheral nervous system. In immunocompetent nonhuman primates, spirochetes are present in low numbers in tissues. For this reason, it has been difficult to study their localization and changes in expression of surface proteins. To further investigate this, we inoculated four immunosuppressed adult Macaca mulatta with 1 million spirochetes of the N40 strain of B. burgdorferi, and compared them with three infected immunocompetent animals and two uninfected controls. The brain, spinal cord, peripheral nerves, skeletal muscle, heart, and bladder were obtained at necropsy 4 months later. The spirochetal tissue load was first studied by polymerase chain reaction (PCR)-ELISA of the outer surface protein A (ospA) gene. Immunohistochemistry was used to study the localization and numbers of spirochetes in tissues and the expression of spirochetal proteins and to characterize the inflammatory response. Hematoxylin and eosin and trichrome stains were used to study inflammation and tissue injury. The results showed that the number of spirochetes was significantly higher in immunosuppressed animals. B. burgdorferi in the CNS localized to the leptomeninges, nerve roots, and dorsal root ganglia, but not to the parenchyma. Outside of the CNS, B. burgdorferi localized to endoneurium and to connective tissues of peripheral nerves, skeletal muscle, heart, aorta, and bladder. Although ospA, ospB, ospC, and flagellin were present at the time of inoculation, only flagellin was expressed by spirochetes in tissues 4 months later. Significant inflammation occurred only in the heart, and only immunosuppressed animals had cardiac fiber degeneration and necrosis. Plasma cells were abundant in inflammatory foci of steroid-treated animals. We concluded that B. burgdorferi has a tropism for the meninges in the CNS and for connective tissues elsewhere in the body.  相似文献   

8.
9.
Mutation of luxS affects biofilm formation in Streptococcus mutans   总被引:12,自引:0,他引:12       下载免费PDF全文
Quorum sensing is a bacterial mechanism for regulating gene expression in response to changes in population density. Many bacteria are capable of acyl-homoserine lactone-based or peptide-based intraspecies quorum sensing and luxS-dependent interspecies quorum sensing. While there is good evidence about the involvement of intraspecies quorum sensing in bacterial biofilm, little is known about the role of luxS in biofilm formation. In this study, we report for the first time that luxS-dependent quorum sensing is involved in biofilm formation of Streptococcus mutans. S. mutans is a major cariogenic bacterium in the multispecies bacterial biofilm commonly known as dental plaque. An ortholog of luxS for S. mutans was identified using the data available in the S. mutans genome project (http://www.genome.ou.edu/smutans.html). Using an assay developed for the detection of the LuxS-associated quorum sensing signal autoinducer 2 (AI-2), it was demonstrated that this ortholog was able to complement the luxS negative phenotype of Escherichia coli DH5alpha. It was also shown that AI-2 is indeed produced by S. mutans. AI-2 production is maximal during mid- to late-log growth in batch culture. Mutant strains devoid of the luxS gene were constructed and found to be defective in producing the AI-2 signal. There are also marked phenotypic differences between the wild type and the luxS mutants. Microscopic analysis of in vitro-grown biofilm structure revealed that the luxS mutant biofilms adopted a much more granular appearance, rather than the relatively smooth, confluent layer normally seen in the wild type. These results suggest that LuxS-dependent signal may play an important role in biofilm formation of S. mutans.  相似文献   

10.
Borrelia burgdorferi differentially expresses many of the OspE/F/Elp paralogs during tick feeding. These findings, combined with the recent report that stable B. burgdorferi infection of mammals occurs only after 53 h of tick attachment, prompted us to further analyze the expression of the OspE/F/Elp paralogs during this critical period of transmission. Indirect immunofluorescence analysis revealed that OspE, p21, ElpB1, ElpB2, and OspF/BbK2.11 are expressed in the salivary glands of ticks allowed to feed on mice for 53 to 58 h. Interestingly, many of the spirochetes in the salivary glands that expressed abundant amounts of these antigens were negative for OspA and OspC. Although prior reports have indicated that OspE/F/Elp orthologs are surface exposed, none of the individual lipoproteins or combinations of the lipoproteins protected mice from challenge infections. To examine why these apparently surface-exposed lipoproteins were not protective, we analyzed their genetic stability during infection and their cellular locations after cultivation in vitro and within dialysis membrane chambers, mimicking a mammalian host-adapted state. Combined restriction fragment length polymorphism and nucleotide sequence analyses revealed that the genes encoding these lipoproteins are stable for at least 8 months postinfection. Interestingly, cellular localization experiments revealed that while all of these proteins can be surface localized, there were significant populations of spirochetes that expressed these lipoproteins only in the periplasm. Furthermore, host-specific signals were found to alter the expression patterns and final cellular location of these lipoproteins. The combined data revealed a remarkable heterogeneity in populations of B. burgdorferi during tick transmission and mammalian infection. The diversity is generated not only by temporal changes in antigen expression but also by modulation of the surface lipoproteins during infection. The ability to regulate the temporal and spatial expression patterns of lipoproteins throughout infection likely contributes to persistent infection of mammals by B. burgdorferi.  相似文献   

11.
The LuxS protein is required for the biosynthesis of the type 2 autoinducer (AI-2), which is involved in quorum sensing in a wide range of bacterial species. We have determined the effects of a defined luxS mutation on the virulence of Streptococcus pneumoniae. Although the luxS mutant displayed reduced virulence relative to its wild-type parent, the type 2 strain D39, it was by no means avirulent in a mouse model. After intranasal administration, the luxS mutant was able to colonize the nasopharynx of the mouse as efficiently as the wild type. However, it was less able to spread from the nasopharynx to the lungs or the blood. Intraperitoneal coadministration studies indicated that the luxS mutant was less fit and was readily outcompeted by wild-type D39. However, when administered on its own by this route, the mutant was able to proliferate and cause fatal systemic disease, albeit at a lower rate than the wild type. Western blot analysis of whole-cell lysates of the mutant and its parent did not reveal any differences in the levels of several well-characterized virulence proteins. However, analysis of Coomassie blue-stained protein profiles after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that mutation of luxS had pleiotropic effects on protein expression in all cellular compartments. This is consistent with the product of luxS having a regulatory role in S. pneumoniae. This is the first report of a direct role for luxS (and by inference, AI-2) in the virulence of a gram-positive pathogen. However, the fact that mutagenesis of luxS does not completely attenuate S. pneumoniae has implications for the possible use of AI-2 antagonists for treatment of pneumococcal infections.  相似文献   

12.
Borrelia hermsii, an agent of tick-borne relapsing fever, was found to contain multiple circular plasmids approximately 30 kb in size. Sequencing of a DNA library constructed from circular plasmid fragments enabled assembly of a composite DNA sequence that is homologous to the cp32 plasmid family of the Lyme disease spirochete, B. burgdorferi. Analysis of another relapsing fever bacterium, B. parkeri, indicated that it contains linear homologs of the B. hermsii and B. burgdorferi cp32 plasmids. The B. hermsii cp32 plasmids encode homologs of the B. burgdorferi Mlp and Bdr antigenic proteins and BlyA/BlyB putative hemolysins, but homologs of B. burgdorferi erp genes were absent. Immunoblot analyses demonstrated that relapsing fever patients produced antibodies to Mlp proteins, indicating that those proteins are synthesized by the spirochetes during human infection. Conservation of cp32-encoded genes in different Borrelia species suggests that their protein products serve functions essential to both relapsing fever and Lyme disease spirochetes. Relapsing fever borreliae replicate to high levels in the blood of infected animals, permitting direct detection and possible functional studies of Mlp, Bdr, BlyA/BlyB, and other cp32-encoded proteins in vivo.  相似文献   

13.
14.
Vaccination with recombinant outer surface protein A (OspA) has been shown to protect mice from infection with Borrelia burgdorferi, the Lyme disease agent. To determine whether antibodies to B. burgdorferi proteins other than OspA are involved in protective immunity, antibodies to OspA were removed from protective anti-B. burgdorferi serum; the residual serum was still protective. Absorption of OspA and OspB antibodies from anti-B. burgdorferi serum eliminated the protective effect. Therefore, active immunization experiments were performed to determine the roles of OspB and flagellin in protective immunity and to determine whether protective immunity induced by OspA is dose dependent. Active immunization with recombinant OspA protected mice from infection with an inoculum of 10(4) spirochetes, but this protection could be overcome with a challenge of 10(7) spirochetes; OspB protected mice from infection with an inoculum of 10(3) spirochetes but was insufficient to fully protect against 10(4) organisms; and immunization with flagellin had no protective effect. These studies suggest that OspA and OspB, but not flagellin, play roles in protective immunity to spirochete infection.  相似文献   

15.
16.
Surface-exposed lipoproteins of relapsing fever (RF) and Lyme borreliosis Borrelia spirochetes mediate certain interactions of the bacteria with their arthropod and vertebrate hosts. RF spirochetes such as Borrelia hermsii serially evade the host's antibody response by multiphasic antigenic variation of Vsp and Vlp proteins. Furthermore, the expression of Vsp1 and Vsp2 by Borrelia turicatae is associated with neurotropism and higher blood densities, respectively. In contrast to RF Borrelia species, the Lyme borreliosis spirochete Borrelia burgdorferi is amenable to genetic manipulation. To facilitate structure-function analyses of RF surface lipoproteins, we used recombinant plasmids to introduce full-length vsp1 and vsp2 as well as two representative vlp genes into B. burgdorferi cells. Recombinant B. burgdorferi cells constitutively expressed the proteins under the control of the B. burgdorferi flaB promoter. Antibody and protease accessibility assays indicated proper surface exposure and folding. Expression of Vsp1 and Vsp2 conferred glycosaminoglycan binding to recombinant B. burgdorferi cells that was similar to that observed with purified recombinant proteins and B. turicatae expressing native Vsp. These data demonstrate that the lipoprotein modification and export mechanisms in the genus Borrelia are conserved. They also validate the use of recombinant B. burgdorferi in studies of surface lipoprotein structure-function and the biogenesis of spirochete membranes.  相似文献   

17.
Tumor necrosis factor alpha (TNF-alpha) is an immunoregulatory cytokine with many biological activities including the mediation of inflammation. We examined sera and synovial fluids from patients seropositive for infection with Borrelia burgdorferi using a radioimmunoassay specific for TNF-alpha. Significant elevation of TNF-alpha was found in the sera and synovial fluids of patients examined, while controls showed no elevation. Sera of mice infected with B. burgdorferi contained elevated levels of TNF-alpha which varied during the course of a 24-day infection. To determine whether B. burgdorferi is capable of inducing TNF-alpha production, spirochetes were added to adherent human peripheral blood mononuclear cells or mouse peritoneal exudate cells and 24 h later supernatants were assayed. TNF-alpha induction occurred in a dose-dependent manner. The maximum stimulation occurred when a ratio of 1 to 10 spirochetes per mononuclear cell was used. At optimal concentrations, induction was not diminished by inactivation of spirochetes or pretreatment with polymyxin B. These results suggest that an increase in TNF-alpha production may occur as a result of infection with B. burgdorferi.  相似文献   

18.
Borrelia burgdorferi, a tick-borne bacterial pathogen, causes a disseminated infection involving multiple organs known as Lyme disease. Surface proteins can directly participate in microbial virulence by facilitating pathogen dissemination via interaction with host factors. We show here that a fraction of the B. burgdorferi chromosomal gene product BB0337, annotated as enolase or phosphopyruvate dehydratase, is associated with spirochete outer membrane and is surface exposed. B. burgdorferi enolase, either in a recombinant form or as a membrane-bound native antigen, displays enzymatic activities intrinsic to the glycolytic pathway. However, the protein also interacts with host plasminogen, potentially leading to its activation and resulting in B. burgdorferi-induced fibrinolysis. As expected, enolase displayed consistent expression in vivo, however, with a variable temporal and spatial expression during spirochete infection in mice and ticks. Despite an extracellular exposure of the antigen and a potential role in host-pathogen interaction, active immunization of mice with recombinant enolase failed to evoke protective immunity against subsequent B. burgdorferi infection. In contrast, enolase immunization of murine hosts significantly reduced the acquisition of spirochetes by feeding ticks, suggesting that the protein could have a stage-specific role in B. burgdorferi survival in the feeding vector. Strategies to interfere with the function of surface enolase could contribute to the development of novel preventive measures to interrupt the spirochete infection cycle and reduce the incidences of Lyme disease.  相似文献   

19.
Antibodies to the outer surface proteins (Osps) A, B, and C of the spirochete Borrelia burgdorferi can prevent infection in animal models of Lyme borreliosis. We have previously demonstrated that immune serum from mice infected with B. burgdorferi N40 can also prevent challenge infection and induce disease regression in infected mice. The antigens targeted by protective and disease-modulating antibodies are presently unknown, but they do not include Osp A or Osp B. Because Osp C antibodies are present in immune mouse serum, we investigated the ability of hyperimmune serum to recombinant Osp C (N40) to protect mice against challenge infection with N40 spirochetes. In both active and passive immunization studies, Osp C (N40) antiserum failed to protect mice from challenge infection with cultured organisms. Mice actively immunized with recombinant Osp C (N40) were susceptible to tick-borne challenge infection, and nymphal ticks remained infected after feeding on Osp C-hyperimmunized mice. In contrast, similar immunization studies performed with Osp C (PKo) antiserum prevented challenge infection of mice with a clone of PKo spirochetes pathogenic for mice. Both Osp C (N40) and Osp C (PKo) antisera showed minimal in vitro borreliacidal activity, and immunofluorescence studies localized Osp C beneath the outer membrane of both N40 and PKo spirochetes. We conclude that Osp C antibody-mediated immunity is strain specific and propose that differences in Osp C surface expression by spirochetes in vivo may account for strain-specific immunity.  相似文献   

20.
The ability of vaccination with recombinant OspA from six seroprotective groups of Borrelia burgdorferi sensu lato to induce protection against infection with homologous and other Lyme spirochetes was examined in hamsters. Antisera generated against the OspA proteins of B. burgdorferi sensu stricto S-1-10 and C-1-11 (seroprotective groups 1 and 2, respectively), Borrelia afzelii BV1 (seroprotective group 4), and Borrelia garinii LV4 (seroprotective group 5) were able to kill the homologous spirochete in vitro but not other isolates. Surprisingly, antisera against B. afzelii PKo (seroprotective group 6) and B. burgdorferi sensu lato LV5 (seroprotective group 3) OspA proteins were unable to kill the homologous organism, although LV5 OspA antisera killed the heterologous isolates S-1-10 and LV4. In vivo vaccination studies supported the in vitro findings, confirming that vaccination with a single OspA protein does not provide complete protection against challenge with all Lyme disease spirochetes. In addition, OspA antibodies from some isolates may not protect against the homologous isolate. The induction of protective antibodies against other B. burgdorferi proteins may be necessary to insure a comprehensive Lyme disease vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号