共查询到20条相似文献,搜索用时 15 毫秒
1.
A mechanism of resistance to TRAIL/Apo2L-induced apoptosis of newly established glioma cell line and sensitisation to TRAIL by genotoxic agents 总被引:10,自引:0,他引:10
Arizono Y Yoshikawa H Naganuma H Hamada Y Nakajima Y Tasaka K 《British journal of cancer》2003,88(2):298-306
Most tumour cells are sensitive to TRAIL-induced apoptosis, but not normal cells; thus, cancer therapy using TRAIL is expected clinically. Several tumour cells are resistant to TRAIL-induced apoptosis, and various mechanisms of such resistance were reported in individual cases. In this study, we established a TRAIL-resistant glioma cell line, which completely lacked TRAIL receptors. In addition, this tumour cell line had wild-type p53 tumour-suppressive gene, suggesting new mechanisms for tumour cells to expand and escape from immune surveillance. The present study further explored the mechanisms that determine the sensitivity to TRAIL. We show that genotoxic agents such as cisplatin, doxorubicin and camptothecin, in addition to UV radiation, can induce TRAIL-R2 on the cell surface of TRAIL receptor-negative tumour cells. Newly synthesised TRAIL-R2 is functional, so apoptosis is effectively induced by TRAIL, but it is significantly inhibited by constitutive expression of dominant-negative p53. In addition, apoptosis induced by pretreatment of genotoxic agents and additional stimulation of TRAIL is efficiently inhibited by either antagonistic anti-TRAIL-R2 antibody or pan-caspase inhibitor z-VAD-FMK. Taken together, these findings suggest that resistance to TRAIL by lack of TRAIL receptors on glioma is restored by genotoxic agents, which support the new strategies for tumour killing by TRAIL-bearing cytotoxic cells in combination with genotoxic treatment. 相似文献
2.
Apo2 Ligand or Tumour Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (Apo2L/TRAIL) is a member of the TNF gene superfamily that selectively induces apoptosis in tumor cells of diverse origins through engagement of death receptors. We have recently demonstrated that Type I interferons (IFN-alpha and beta) induce apoptosis in multiple myeloma (MM) cell lines and in plasma cells from MM patients. Moreover, Apo2L selectively induces apoptosis of patient MM tumor cells while sparing non-malignant cells. Apo2L induction is one of the earliest events following IFN administration in these cells. IFNs activate Caspases and the mitochondrial-dependent apoptotic pathway mediated by Apo2L production. Cell death induced by IFNs and Apo2L can be blocked by a dominant-negative Apo2L receptor, DRS, and is regulated by members of the Bcl-2 family of proteins. This review is focused on the apoptotic signaling pathways regulated by Apo2L and Bcl-2-family proteins and summarizes what is known about their clinical role. 相似文献
3.
Background
Prostate cancer is a significant health problem among American men. Treatment strategies for androgen-independent cancer are currently not available. Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a death receptor ligand that can induce apoptosis in a variety of cancer cell lines, including androgen-independent PC3 prostate carcinoma cells. In vitro, TRAIL-mediated apoptosis of prostate cancer cell lines can be enhanced by doxorubicin and correlates with the downregulation of the anti-apoptotic protein c-FLIP. This study evaluated the effects of doxorubicin on c-FLIP expression and tumor growth in combination with Apo2L/TRAIL in a xenograft model. 相似文献4.
On the basis of in vitro inhibition of tumor cell growth, IFNs have been generally considered to be antiproliferative proteins. To probe further the potential mechanisms of the antitumor effects of IFNs, we have assessed apoptosis in response to IFN-alpha2 and IFN-beta in cell lines of varied histologies, with a focus on melanomas. Many of the cell lines tested underwent apoptosis in response to IFN-beta, as assessed both by Annexin V and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. In general, IFN-beta had greater growth inhibitory and proapoptotic effects than IFN-alpha2 on all cell lines. The melanoma cell line WM9, sensitive to growth inhibition by IFNs, had a greater degree of apoptosis than A375 melanoma cells, which were largely resistant to antigrowth effects of IFNs. IFN-beta-induced apoptosis was dependent on activation of the caspase cascade with cleavage of caspases 3, 8, and 9 and of the caspase 3 substrate, poly(ADP-ribose) polymerase. Caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl keton or benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl keton, inhibited IFN-beta-induced apoptosis. Other changes associated with apoptosis, including the movement of cytochrome c from mitochondria to cytoplasm and DNA fragmentation, were also identified in response to IFN-beta. Apo2L ligand [tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)] was one of the early genes induced by IFN-beta in apoptosis-sensitive WM9 cells. Other sensitive melanoma cell lines had a similar IFN-beta-specific induction of TRAIL. Neutralizing antibody to TRAIL inhibited IFN-beta-induced apoptosis in WM9 cells. In resistant A375 cells, IFN-beta did not induce TRAIL/Apo2L expression. Thus, induction of TRAIL by IFNs in some tumor types may initiate the apoptotic cascade. This study offers another mechanism for the antitumor effects of IFNs. 相似文献
5.
Arishya Sharma 《Cancer biology & therapy》2018,19(9):755-762
Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is unique to selectively induce apoptosis in tumor cells while sparing normal cells. Thus there is tremendous interest in Apo2L/TRAIL therapy; however, drug resistance is a serious limitation. Autophagy is a cellular housekeeping process that controls protein and organelle turnover, and is almost consistently activated in response to apoptosis-inducing stimuli, including Apo2L/TRAIL. Unlike apoptosis, autophagy leads to cell death or survival depending on the context. Various molecular mechanisms by which autophagy regulates Apo2L/TRAIL-induced apoptosis have been identified. Further, whether autophagy is completed (intact autophagic flux) or not could determine the fate of cancer cells, either cell survival or death. Thus, targeting autophagy is an attractive strategy to overcome Apo2L/TRAIL resistance. We present the current view of how these regulatory mechanisms of this interplay between autophagy and apoptosis may dictate cancer cell response to Apo2L/TRAIL therapy. 相似文献
6.
Human melanoma cell lines, SK-MEL-3 and SK-MEL-28, despite induction of the proapoptotic cytokine, Apo2L/TRAIL, did not undergo apoptosis in response to interferons (IFN-alpha2b or IFN-beta). Postulating that genes important for apoptosis induction by IFNs might be silenced by methylation, the DNA demethylating agent 5-aza-2'-deoxycytidine (5-AZAdC) was assessed. DR4 (TRAIL-R1) was identified as one of the genes reactivated by 5-AZAdC with a >3-fold increase in 8 of 10 melanoma cell lines. Pretreatment with 5-AZAdC sensitized SK-MEL-3 and SK-MEL-28 cells to apoptosis induced by IFN-alpha2b and IFN-beta; methylation-specific PCR and bisulfite sequencing confirmed demethylation of 5'CpG islands of DR4 and flow cytometry showed an increase in DR4 protein on the cell surface. In cells with reactivated DR4, neutralizing mAB to TRAIL reduced apoptosis in response to IFN-beta or Apo2L/TRAIL. To further confirm the role of DR4, it was expressed by retroviral vector in SK-MEL-3 and SK-MEL-28 cells with reversal of resistance to IFN-beta and Apo2L/TRAIL. Thus, reexpressing DR4 by 5-AZAdC or retroviral transfection in melanoma cell in which promoter methylation had suppressed its expression, potentiated apoptosis by IFN-alpha2b, IFN-beta and Apo2L/TRAIL. Reactivation of silenced proapoptotic genes by inhibitors of DNA methylation may enhance clinical response to IFNs or Apo2L/TRAIL. 相似文献
7.
CCNU-dependent potentiation of TRAIL/Apo2L-induced apoptosis in human glioma cells is p53-independent but may involve enhanced cytochrome c release. 总被引:11,自引:0,他引:11
T A R?hn B Wagenknecht W Roth U Naumann E Gulbins P H Krammer H Walczak M Weller 《Oncogene》2001,20(31):4128-4137
Death ligands such as CD95 ligand (CD95L) or tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) induce apoptosis in radiochemotherapy-resistant human malignant glioma cell lines. The death-signaling TRAIL receptors 2 (TRAIL-R2/death receptor (DR) 5) and TRAIL-R1/DR4 were expressed more abundantly than the non-death-inducing (decoy) receptors TRAIL-R3/DcR1 and TRAIL-R4/DcR2 in 12 human glioma cell lines. Four of the 12 cell lines were TRAIL/Apo2L-sensitive in the absence of a protein synthesis inhibitor, cycloheximide (CHX). Three of the 12 cell lines were still TRAIL/Apo2L-resistant in the presence of CHX. TRAIL-R2 expression predicted sensitivity to apoptosis. Coexposure to TRAIL/Apo2L and cytotoxic drugs such as topotecan, lomustine (1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, CCNU) or temozolomide resulted in synergistic killing. Synergistic killing was more often observed in cell lines retaining wild-type p53 activity (U87MG, LN-229) than in p53 mutant cell lines (LN-18, T98G, U373MG). Drug exposure resulted in enhanced TRAIL-R2 expression, but decreased TRAIL-R4 expression in U87MG cells. Ectopic expression of dominant-negative p53(V135A) abrogated the drug-induced changes in TRAIL-R2 and TRAIL-R4 expression, but had no effect on synergy. Thus, neither wild-type p53 function nor changes in TRAIL receptor expression were required for synergy. In contrast, synergy resulted possibly from drug-induced cytochrome c release from mitochondria, serving as an amplifier of the TRAIL/Apo2L-mediated cascade of caspase activation. These data provide novel insights into the role of the TRAIL/Apo2L system in malignant gliomas and illustrate that TRAIL/Apo2L-based immunochemotherapy may be an effective therapeutic strategy for these lethal neoplasms. 相似文献
8.
Death ligand-mediated apoptosis is a promising strategy of gene therapy for human malignant glioma. We here report that the infection of human malignant glioma cell lines with an adenoviral vector encoding full length human Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Ad-Apo2L/TRAIL) results in strong Apo2L/TRAIL transgene expression and the release of full-length Apo2L/TRAIL into the cell culture medium. However, Ad-Apo2L/TRAIL is a poor inducer of cell death, even in the presence of inhibitors of protein synthesis, in human glioma cell lines which are sensitive to soluble recombinant human His-tagged Apo2L/TRAIL (amino acids 114–281). Moreover, Ad-Apo2L/TRAIL gene transfer inhibits soluble His-tagged Apo2L/TRAIL-induced apoptosis, strongly suggesting that the adenovirally encoded full-length Apo2L/TRAIL is not a suitable molecule for glioma cancer gene therapy. This study has important implications for the future development of therapeutic strategies aiming at death receptor activation in refractory cancers such as malignant glioma. 相似文献
9.
Enhanced tumor killing by Apo2L/TRAIL and CPT-11 co-treatment is associated with p21 cleavage and differential regulation of Apo2L/TRAIL ligand and its receptors 总被引:10,自引:0,他引:10
Xiang H Fox JA Totpal K Aikawa M Dupree K Sinicropi D Lowe J Escandón E 《Oncogene》2002,21(22):3611-3619
Apo2L/TRAIL exhibits enhanced apoptotic activity in tumor xenograft models when used in combination with the topoisomerase 1 inhibitor CPT-11. To investigate the cellular mechanisms involved in this increased tumor-killing activity, a series of in vitro experiments were conducted using the human colon carcinoma cell line (HCT116). Apo2L/TRAIL induced a transient upregulation of DR5 mRNA, while CPT-11 increased both death and decoy receptor expression. Upregulation of decoy receptors by CPT-11 was partially inhibited by co-administration of Apo2L/TRAIL. CPT-11 treatment resulted in accumulation of cells at G(2)M-phase and correlated with a substantial increase in the protein levels of the cyclin-dependent kinase inhibitor p21. However, cells co-treated with CPT-11 and Apo2L/TRAIL, or pretreated with CPT-11 for up to 24 h followed by 2 h Apo2L/TRAIL, resulted in a caspase-dependent degradation of p21, reversal of G(2)-M phase arrest with a concomitant increase in apoptosis. The sequential treatment produced the greatest induction of DR5 and DR4, caspase-3-like cleavage/activation and p21 degradation, as well as increased apoptosis. These data indicate that the up-regulation of Apo2L/TRAIL ligand and its death receptors as well as cleavage of p21 protein in the Apo2L/TRAIL plus CPT-11 treatment contributes to the positive cooperation between these agents in enhancing tumor cell apoptosis. 相似文献
10.
TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. 总被引:13,自引:0,他引:13
M Plasilova J Zivny J Jelinek R Neuwirtova J Cermak E Necas L Andera T Stopka 《Leukemia》2002,16(1):67-73
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, APO2L) has been shown to induce apoptosis in a number of tumor cell lines as well as in some primary tumors whereas cells from most normal tissues are highly resistant to TRAIL-induced apoptosis. We have studied the susceptibility of primary malignant and normal bone marrow hematopoietic progenitors to TRAIL-induced apoptosis. Extracellular domain of human TRAIL with N-terminal His(6) tag (His-TRAIL, amino acids 95-281) was produced in E. coli and its apoptosis-inducing ability was compared with the leucine-zipper containing TRAIL, LZ-TRAIL. Both variants of TRAIL had the same apoptosis-inducing ability. Clonogenic progenitor assays showed that His-TRAIL significantly reduced the number of myeloid colonies (CFU-GM) and clusters from patients with acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and myelodysplastic syndromes (MDS). His-TRAIL had no negative effect on the number of CFU-GM colonies and clusters derived from bone marrow cells of AML patients in complete remission, and lymphoma patients without bone marrow involvement, as well as those derived from normal cord blood cells. Moreover, we found that normal human stem cells treated with high doses of His-TRAIL maintain a repopulating potential when transplanted into NOD/SCID mice. To conclude, our data document that TRAIL does not affect normal human hematopoiesis but suppresses the growth of early primary leukemia and myelodysplasia progenitors. 相似文献
11.
The newly discovered member of the tumor necrosis factor superfamily, Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), has been identified as an apoptosis-inducing agent in sensitive tumor cells but not in the majority of normal cells, and hence it is of potential therapeutic application. However, many tumor cells are resistant to Apo2L/TRAIL-mediated apoptosis. Various chemotherapeutic drugs have been shown to sensitize tumor cells to members of the tumor necrosis factor family. However, it is not clear whether sensitization by drugs and sensitivity to drugs are related or distinct events. This study examined whether an Adriamycin-resistant multiple myeloma (MM) cell line (8226/Dox40) can be sensitized by Adriamycin (ADR) to Apo2L/TRAIL-mediated apoptosis. Treatment with the combination of Apo2L/TRAIL and subtoxic concentrations of ADR resulted in synergistic cytotoxicity and apoptosis for both the parental 8226/S and the 8226/Dox40 tumor cells. Adriamycin treatment modestly up-regulated Apo2L/TRAIL-R2 (DR5) and had no effect on the expression of Fas-associated death domain, c-FLIP, Bcl-2, Bcl(xL), Bax, and IAP family members (cIAP-1, cIAP-2, XIAP, and survivin). The protein levels of pro-caspase-8 and pro-caspase-3 were not affected by ADR, whereas pro-caspase-9 and Apaf-1 were up-regulated. Combination treatment with Apo2L/TRAIL and ADR resulted in significant mitochondrial membrane depolarization and activation of caspase-9 and caspase-3 and apoptosis. Because ADR is shown to sensitize ADR-resistant tumor cells to Apo2L/TRAIL, these findings reveal that ADR can still signal ADR-resistant tumor cells, resulting in the modification of the Apo2L/TRAIL-mediated signaling pathway and apoptosis. These in vitro findings suggest the potential application of combination therapy of Apo2L/TRAIL and subtoxic concentrations of sensitizing chemotherapeutic drugs in the clinical treatment of drug-resistant/Apo2L/TRAIL-resistant multiple myeloma. 相似文献
12.
Proteasome inhibitor MG132 upregulates death receptor 5 and cooperates with Apo2L/TRAIL to induce apoptosis in Bax-proficient and -deficient cells 总被引:12,自引:0,他引:12
Apo2L/TRAIL (tumor necrosis factor-related apoptosis inducing ligand (TRAIL), also known as Apo2L) is a potentially important anticancer agent awaiting clinical trials. Unfortunately, however, some cancer cells exhibit resistance to Apo2L/TRAIL, which could limit the use of this potentially promising anticancer agent. Although the molecular basis of the inherent or acquired resistance to Apo2L/TRAIL remains unclear, previous studies indicate that Bax deficiency can confer resistance to Apo2L/TRAIL. Proteasome inhibition is also emerging as a promising therapeutic strategy to manage human malignancies. Here, we report that proteasome inhibitor MG132 upregulates Apo2L/TRAIL death receptor 5 expression in both Bax-proficient and -deficient HCT116 cells. MG132 effectively cooperated with Apo2L/TRAIL to induce apoptosis in both Bax-proficient and -deficient cells that was coupled with caspases-8 and -3 activation and Bid cleavage. Although both agents in combination also induced cytochrome c and Smac release from mitochondria into cytosol and activated caspase-9 in Bax-proficient cells, their effects on these events were significantly diminished in Bax-deficient cells. These results suggest that Bax is not absolutely required for death receptor 5-dependent apoptotic signals and MG132 by upregulating DR5 effectively cooperates with Apo2L/TRAIL to overcome Bax deficiency-induced resistance to Apo2L/TRAIL. Our results have important clinical implications in that the use of Apo2L/TRAIL and proteasome inhibitors in combination could prove to be a novel therapeutic strategy to manage the Apo2L/TRAIL-resistant tumors. 相似文献
13.
The topoisomerase I inhibitor topotecan increases the sensitivity of prostate tumor cells to TRAIL/Apo-2L-induced apoptosis 总被引:7,自引:0,他引:7
PURPOSE.:TRAIL/Apo-2L is cytotoxic against numerous prostate tumor cell lines; however, some lines are more resistant than others. Identification of an agent that increases prostate tumor cell sensitivity to TRAIL/Apo-2L would prove valuable for TRAIL/Apo-2L-mediated tumor therapy. Thus, we examined the effect of combining five clinically approved chemotherapeutic agents with TRAIL/Apo-2L for treating prostate tumor cells. METHODS: Four human prostate tumor cell lines were initially tested for TRAIL/Apo-2L sensitivity. Subsequent studies examined whether the TRAIL/Apo-2L-induced killing of DU-145 cells was augmented in the presence of the chemotherapeutic molecules, as measured by annexin V-FITC/propidium iodide staining. Furthermore, caspase 8 activation and BID cleavage were examined by immunoblotting. RT-PCR and flow cytometry were performed to monitor TRAIL-R1 and TRAIL-R2 levels after chemotherapeutic treatment. RESULTS: DU-145 cells were the least responsive of the prostate tumor cell lines tested to TRAIL/Apo-2L-induced death. Surprisingly, only topotecan, a topoisomerase I inhibitor, when used in combination with rTRAIL/Apo-2L led to significant apoptosis of DU-145 cells, as measured by caspase 8 activation, BID cleavage, and annexin V-FITC/PI staining. Topotecan alone had little to no toxicity on the DU-145 cells. Furthermore, the increase in TRAIL/Apo-2L sensitivity following topotecan treatment correlated with increased expression of TRAIL-R1 and TRAIL-R2 and decreased intracellular levels of the antiapoptotic protein survivin. CONCLUSIONS: Our results define a promising direction for alternative therapies against androgen-independent prostate cancers. The sensitivity of DU-145 cells to TRAIL/Apo-2L was dramatically increased when combined with topotecan, suggesting that low-dose topotecan treatment to upregulate TRAIL-R1 and TRAIL-R2 and downregulate survivin, followed by TRAIL/Apo-2L administration, may be a viable therapy for treating cancer of the prostate. 相似文献
14.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to induce apoptosis in malignant cells without harming normal cells. To determine the antitumor potential of TRAIL against prostate cells, we undertook a comprehensive study that included eight prostate cancer cells lines (CWR22Rv1, Du145, DuPro, JCA-1, LNCaP, PC-3, PPC-1, and TsuPr1) and primary cultures of normal prostate epithelial cells (PrEC). Cells were tested for susceptibility to soluble TRAIL in the presence or absence of the chemotherapeutic agent doxorubicin. TRAIL was also delivered by an adenoviral vector. Our results reveal that Du145, DuPro, LNCap, TsuPr1, and PrEC were resistant to 100 ng/mL TRAIL. JCA-1 and PPC-1 were slightly sensitive (20% killing) and PC-3 and CWR22Rv1 exhibited the highest sensitivity to TRAIL (30% and 50% killing, respectively). The combination of 10 ng/mL TRAIL with doxorubicin resulted in 60-80% cytotoxicity in seven of eight prostate cancer cells. TRAIL-mediated apoptosis involved cleavage of Bid, caspase-3, and PARP, and required caspase-8 and -9 activity. Full-length TRAIL delivered by an adenoviral vector (AdTRAIL-IRES-GFP) killed prostate cancer cell lines and PrEC without requisite doxorubicin cotreatment. Therefore, expression of the transgene from a tissue-specific promotor would make gene therapy with AdTRAIL-IRES-GFP a possibility. 相似文献
15.
Physiological and molecular effects of Apo2L/TRAIL and cisplatin in ovarian carcinoma cell lines 总被引:27,自引:0,他引:27
Siervo-Sassi RR Marrangoni AM Feng X Naoumova N Winans M Edwards RP Lokshin A 《Cancer letters》2003,190(1):61-72
Combining of tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) with a chemotherapeutic drug, cisplatin, in ovarian carcinoma cell lines exerted potent anti-tumor effects that exceeded the effects of each drug alone. In order to investigate mechanisms of anti-tumor activity of cisplatin/Apo2L/TRAIL combination, we assessed in detail the molecular effects of cisplatin and Apo2L/TRAIL-activated cell death in two ovarian carcinoma cell lines, OVCAR3 and SKOV3, using cDNA array hybridization, Western blot and flow cytometry. We observed differential induction of apoptosis-related molecules by cisplatin and Apo2L/TRAIL. Cisplatin upregulated the expression of both death and decoy TRAIL receptors, as well as of TRAF5 and -6, downregulated the anti-apoptotic proteins, Bcl-2, and induced activation of caspases-3, -8 and -9. Apo2L/TRAIL induced the expression of pro-apoptotic proteins, Bad and Bax; downregulated the anti-apoptotic proteins, Bcl-2 and Bcl-xL; and activated caspases-3, -7, -8, -9 and -10. Cisplatin/Apo2L/TRAIL combination resulted in further downregulation of expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, as well as an increase in mitochondrial permeability transition and activation of caspases-3, -8, and -10. These data demonstrate positive cooperation of cisplatin and Apo2L/TRAIL and emphasize the potential clinical usefulness of cisplatin/Apo2L/TRAIL combination therapy. 相似文献
16.
Previously we have reported a differential expression of CD95/CD95L and Bcl-2 family of genes in multidrug resistant tumor cells. TRAIL, a member of the TNF receptor family, induces apoptosis in many tumor cells by binding to DR4 (TRAIL receptor 1) and DR5 (TRAIL receptor 2). In contrast, TRAIL-induced apoptosis is prevented by a decoy receptor (DcR1, TRID or TRAIL receptor 3). In the present study, we compared the expression of TRAIL, DR4, DR5, and TRID between a drug sensitive HL60, a myeloid leukemia cell line, and its multidrug resistant (MDR) sublines that either overexpressed MDR 1 gene (HL60/Tax) or MRP gene (HL60/AR), using RT-PCR. TRAIL mRNA was expressed in HL60 cells but was present in low levels in HL60/AR cells and was completely lacking in HL60/Tax cells. Both DR4 and DR5 were undetectable in HL60/Tax but were present at comparable levels in HL60/AR and drug sensitive HL60 cells. TRID were absent in HL60 and HL60/Tax cells, but was present in low but comparable levels in peripheral blood mononuclear cells and HL60/AR cells. These data suggest that the multidrug resistance in MDR HL60 cell lines, regardless of overexpression of MDR 1 or MRP, may be due to different mechanisms. In HL60/AR cells it appears that MDR may be due to decreased expression of TRAIL and constitutive expression of TRID, whereas in HL60/Tax cells, MDR could be due to the absence of TRAIL and/or DR4 and DR5. 相似文献
17.
18.
19.
Noninvasive molecular imaging sheds light on the synergy between 5-fluorouracil and TRAIL/Apo2L for cancer therapy. 总被引:2,自引:0,他引:2
Kuei C Lee Daniel A Hamstra Mahaveer S Bhojani Amjad P Khan Brian D Ross Alnawaz Rehemtulla 《Clinical cancer research》2007,13(6):1839-1846
PURPOSE: In a previous report, a recombinant luciferase reporter, activated during apoptosis via caspase-3 cleavage, was developed for imaging of apoptosis using bioluminescence. The ability to noninvasively image apoptosis in vivo could dramatically benefit the preclinical development of therapeutics targeting the apoptotic pathway. In this study, we examined the use of 5-fluorouracil (5-FU) for sensitizing D54 tumors to tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL) therapy by monitoring apoptotic activity in vivo using bioluminescence imaging. EXPERIMENTAL DESIGN: Using our apoptosis imaging platform and diffusion magnetic resonance imaging (MRI), we monitored the antitumor effects of 5-FU, TRAIL, and 5-FU + TRAIL using D54 xenografts. Additionally, volumetric and histologic analyses were done for correlation with findings from bioluminescence imaging and diffusion MRI. RESULTS: Bioluminescence imaging showed that therapy with TRAIL alone produced an initial 400% increase in apoptotic activity that rapidly diminished during the 10-day treatment period despite continued therapy. In contrast, concomitant 5-FU and TRAIL therapy elicited an apoptotic response that was sustained throughout the entire therapeutic course. Using diffusion MRI, an enhanced tumor response was detected when concomitant therapy was given versus TRAIL-alone therapy. Last, concomitant therapy resulted in a prolonged growth delay ( approximately 9 days) compared with TRAIL alone ( approximately 4 days). CONCLUSION: We showed that concomitant 5-FU and TRAIL therapy indeed enhanced apoptotic activity in vivo, which translated into greater tumor control. Moreover, this technique sheds light on the synergy of 5-FU and TRAIL as evidenced by differences in the temporal activation of caspase-3 resulting from the different therapeutic regimens. 相似文献