首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to identify which catecholamine-containing neurons (norepinephrine (NE) or dopamine (DA)) and which central nervous system (CNS) region(s) innervated by them might participate in the pressor and drinking responses produced by central drug stimulation. Forebrain NE was reduced in rats by injecting 4 micrograms of 6-hydroxydopamine (6-OHDA) into the ascending noradrenergic bundles. Spinal cord NE was depleted by intracisternal injection of 50 micrograms 6-OHDA. Depletion of forebrain DA was produced by bilateral injection of 4 micrograms 6-OHDA into the substantia nigra of desipramine-pretreated rats. Pressor responses to various doses of angiotensin II (AII), carbachol or hyperosmolar NaCl injected into the lateral ventricles (LVT); and drinking responses to LVT AII and carbachol were examined. Injection of 6-OHDA into the noradrenergic bundles reduced telencephalic and hypothalamic NE by more than 80% without significantly affecting brain DA or spinal cord NE. Intracisternal 6-OHDA depleted spinal cord NE by 80% and forebrain NE by 20-25% without reducing brain DA. Injection of 6-OHDA into the substantia nigra reduced telencephalic DA by 86% and NE by 29% without significantly affecting NE in other CNS regions. Substantia nigra 6-OHDA injected animals evidenced attenuated drinking to both LVT AII and carbachol. Pressor responses to LVT AII, carbachol and hypertonic saline were largely unaffected. Almost complete depletion of brain and/or spinal cord NE failed to alter centrally mediated drinking or pressor responses. These data indicate that the integrity of brain DA neurons is required for the behavioral but not hypertensive responses produced by central drug stimulation.  相似文献   

2.
F Javoy  C Sotelo  A Herbet  Y Agid 《Brain research》1976,102(2):201-215
The neurotoxic specificity of injections of 6-hydroxydopamine (6-OHDA) into areas containing either dopamine (DA) cell bodies (substantia nigra) or DA axon terminals (striatum) was studied. This selective effect was compared to the unspecific effects of copper sulfate (CuSO4) injection and electrocoagulation. One to two days after unilateral nigral injection of 2 mug of either 6-OHDA or CuSO4 into the nigra the volume of the unspecific lesions around the tip of the cannula was very similar. Only the 6-OHDA-induced lesions were associated with elective degeneration of the nigral DA neurons. Ten days after the administration of the same compounds the gliosis in the substantia nigra was much more extensive in CuSO4-than in 6-OHDA-treated rats; however, the reduction of DA concentrations in the ipsilateral striatum was only noticeable after 6-OHDA (-62%). A somewhat similar decrease of striatal DA levels (-52%) was observed after large electrocoagulation of the substantia nigra. Ten days after 6-OHDA (8mug) or electrolytic lesion of the striatum the Km for DA, serotonin and choline uptakes were similar in the striata of both sides, suggesting that the uptake process in the non-damaged neurons of the lesioned side was functionally normal. Following electrolytic lesion of the striatum, serotonin and choline Vmax values were decreased to about the same extent as the striatal reduction in weight and DA levels. When directly administered into the striatum 6-OHDA also produced a decline in DA concentration and Vmax but in contrast did not affect serotonin and choline uptake (Vmax), suggesting that the drug specifically destroyed dopaminergic neurons. The present data confirm that selective DA denervation can be achieved when appropriate amounts of the drug are injected into brain tissue in order to limit the unspecific lesion.  相似文献   

3.
S.P. Sivam   《Brain research》1989,500(1-2):119-130
The present study examined the influences of dopamine (DA) receptor stimulation on enkephalin (Met5-enkephalin; ME) and tachykinin (substance P; SP) systems of basal ganglia of Sprague-Dawley rats, lesioned as neonates with 6-hydroxydopamine (6-OHDA). It has been proposed that the neonatal 6-OHDA-lesioned rat could serve as a model for the DA deficiency and self-injurious behavior (SIB) observed in the childhood neurological disorder. Lesch-Nyhan syndrome. In agreement with earlier work, the present study found that the neonatal 6-OHDA treatment at 3 days of age, reduced DA and caused an increase in ME and a decrease in SP content in the striatum and substantia nigra, when tested as adults. Administration of the DA precursor, L-dihydroxyphenylalanine (L-DOPA), to lesioned animals, induced SIB; increased DA and DOPAC levels; produced a greater decrease (-64%) in SP levels in the striatum and substantia nigra than was observed with lesion alone (-28%). The L-DOPA-induced decrease in SP levels and the SIB observed in the lesioned animals were blocked by pretreatment with the D1 receptor antagonist, SCH-23390. Moreover, administration of the D1 receptor agonist, SKF-38393, but not the D2 agonist, LY-171555, to lesioned animals mimicked the L-DOPA responses in all respects, except that the agonists did not alter DA or DOPAC levels. None of the DA agonists or antagonists treatments affected lesion-induced increase in ME levels in the striatum. These results indicate for the first time, that SIB precipitated by DA agonists in neonatal dopaminergic denervated animals, is associated with a marked and selective decrease in SP in the striatonigral SP neurons. This process has two components: (a) a retarded development of the SP system due to neonatal dopaminergic denervation: and (b) a depletion of the remaining SP, presumably by enhanced release due to D1 DA receptor-mediated activation of striatonigral SP neurons.  相似文献   

4.
6-Hydroxydopamine (6-OHDA), a neurotoxin that causes the death of dopamine (DA) neurons, is commonly used to produce experimental models of Parkinson's disease (PD) in rodents. In the rat model of PD first described by Sauer and Oertel, DA neurons progressively die over several weeks following a striatal injection of 6-OHDA. It is generally assumed that DA neurons die through apoptosis after exposure to 6-OHDA, but data supporting activation of a caspase enzymatic cascade are lacking. In this study, we sought to determine if caspases involved in the intrinsic apoptotic cascade play a role in the initial stages of 6-OHDA-induced death of DA neurons in the progressively lesioned rat model of PD. We found that injection of 6-OHDA into adult rat striatum did not activate caspase-9 or caspase-3 or increase levels of caspase-dependent cleavage products in the substantia nigra at various survival times up to 7 days after the lesion, even though this paradigm produced DA neuronal loss. These data suggest that in the adult rat brain DA neurons whose terminals are challenged with 6-OHDA do not die through a classical caspase-dependent apoptotic mechanism.  相似文献   

5.
We tested the effect of intrastriatal quinolinic acid (QA) injections 2 weeks before subsequent intrastriatal injections of 6-hydroxydopamine (6-OHDA). Levels of DA and its metabolites were measured 2 days and 21 days after lesioning the dopaminergic nigrostriatal system with 6-OHDA. Intrastriatal 6-OHDA injections in the absence of prior treatment of QA significantly decreased dopamine (DA) and its metabolite levels in striatum but not in substantia nigra at day 2, and in striatum and substantia nigra at day 21, a clear indication of a time-dependent retrograde axonal degeneration of substantia nigra cell bodies. Intrastriatal QA injections 2 weeks before subsequent intrastriatal injection of 6-OHDA partially prevented the 6-OHDA-depleting effect on DA and its metabolite levels in both striatum and substantia nigra 21 days after 6-OHDA injection. However, no statistically significant differences were found between QA + 6-OHDA- and 6-OHDA-treated animals at day 2. Our results suggest that intrastriatal QA injections partially prevent the naturally-occurring retrograde axonal degeneration of substantia nigra cell bodies caused by 6-OHDA, and illustrate a target-derived interaction between dopaminergic nerve endings and cell bodies. We suggest that the protective effect found in the QA-injected animals against the neurotoxic action of 6-OHDA is mediated by neurotrophic agents released by activated astroglia.  相似文献   

6.
We have previously extracted a serotonin (5-HT) neurotrophic supernatant from the 5,7-DHT lesioned hippocampus. The current study shows that a new 5-HT neurotrophic signal was monitored in the striatum and nigra after DA-denervation. Such a signal may be involved in the heterotypic sprouting. Dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA), was injected directly into the substantia nigra of adult rats. Two months after surgery, immunocytochemical staining showed that tyrosine hydroxylase (TH)-positive cell bodies had mostly disappeared in the substantia nigra, and TH-positive terminals in the striatum were almost completely depleted. Meanwhile, the 5-HT fibers, which exist in the same areas with low density, sprouted in the nigra as well as in the striatum and became dense. Normally 5-HT fibers innervate the striatum sparsely and the globus pallidus densely with sharp delineation (in the control side), and become dense across both areas with no appreciable delineation (in the lesion side). The increase of 5-HT fibers was more prominent in the posterior than in the anterior striatum. A significant increase in 5-HT and 5-HIAA levels was also evident in the posterior striatum when the decrease in DA level exceeded 90% in the nigra and striatum. In addition, we found that induction of 5-HT sprouting requires a greater than 90% decrease of DA level. Current data support that 6-OHDA injection in the substantia nigra of adult rats triggered a trophic signal or removed an inhibition for the growth of 5-HT neurons which responded with sprouting in the nigra as well as in the striatum.  相似文献   

7.
The topography-dependent vulnerability of midbrain dopaminergic neurons to neonatal intracranial exposure to 6-hydroxydopamine (6-OHDA) was investigated at adult age by the quantitative analysis of cell counts of tyrosine hydroxylase-immunopositive neurons. In all cases of intracisternal 6-OHDA treatment, A9 dopaminergic neurons in the substantia nigra (SN) were much more vulnerable to death than more medially located A10 dopaminergic neurons. Moreover, within each cell group, there were also lateromedial topographic gradients. In the A9 neuronal group, cells located in the pars lateralis of the SN and the lateral part of the pars compacta of the SN were more susceptible to 6-OHDA toxicity than those located more medially. In the A10 neuronal group, cells located in the medial part of the ventral tegmental area were more resistant to toxicity than those located more laterally, and dopaminergic cells in the midline midbrain areas (interfascicular nucleus and rostral linear nucleus of raphe) were completely spared from 6-OHDA toxicity. These findings revealed that 6-OHDA is not equally toxic to all midbrain dopaminergic neurons in neonates and that the lateromedial vulnerability pattern shows similarities to those reported in Parkinson's disease.  相似文献   

8.
This study investigated the effects of curcumin on nigrostriatal dopaminergic (DA) neurons and glial response in 6-hydroxydopamine (6-OHDA) hemiparkinsonian mice. Following unilateral intrastriatal 6-OHDA injection, mice were daily injected with curcumin for seven days, beginning on the day of lesion. Seven days after 6-OHDA lesioning, sections from the striatum and the substantia nigra pars compacta (SNpc) were collected and immunohistochemically stained for DA neurons and reactive glia. Curcumin decreased 6-OHDA-induced loss of nigral tyrosine hydroxylase-immunoreactive (TH-IR) neurons and striatal TH-IR fibers. The neuroprotection was coincided with a significant attenuation of microglial and astroglial reaction in the SNpc and the striatum. These results suggest that the neuroprotective effects of curcumin in 6-OHDA-lesioned mice may be mediated through its anti-inflammatory properties or direct protection on nigral DA neurons, thereby reducing neuronal injury-induced glial activation.  相似文献   

9.
The effects of neonatal intracisternal 6-hydroxydopamine (6-OHDA; 50 micrograms) treatment on striatal serotonin (5-HT) nerve terminals in rat have been characterized using histo- and neurochemical methods. The 6-OHDA lesion caused a 60% reduction of striatal dopamine (DA) concentration when analyzed in the adult stage, while 5-HT levels were increased by about 40% and 3H-5-HT uptake in vitro was increased by about 60%. Using computerized image analysis, a marked increase in 5-HT-like immunoreactive terminal density was found in both rostral (+200%) and caudal (+50%) striatum. Pretreatment with the DA uptake blocker amfolenic acid completely counteracted the 6-OHDA-induced alterations in both DA and 5-HT neurons in the striatum, while pretreatment with the noradrenaline uptake blocker desipramine had no significant effects. Regional analysis of 5-HT levels in the CNS after neonatal 6-OHDA treatment or the combined desipramine + 6-OHDA treatment showed no significant effect in any of the brain areas analyzed, apart from the observed 5-HT increase in striatum. It was furthermore observed that the striatal 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio was decreased, while the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio was increased following the 6-OHDA lesion, indicating compensatory mechanisms in turnover of transmitters. These alterations were completely reversed after pretreatment with amfolenic acid. The present results support the view that the 5-HT hyperinnervation following neonatal 6-OHDA treatment is a collateral sprouting response induced by lesioning of the striatal DA neurons.  相似文献   

10.
Unilateral injections of 6-hydroxydopamine into the rat striatum result in amphetamine-induced circling behavior. This rotational behavior was associated with an almost complete disappearance of desmethylimipramine-insensitive [3H]mazindol binding sites--which represent dopamine uptake sites-in the ipsilateral caudate-putamen (CPu), the substantia nigra pars compacta (SNpc), and in the ventral tegmental area (VTA). There were significant increases in [3H]spiperone-labeled dopamine (DA) D2 receptors in specific subdivisions of the ipsilateral CPu, with the dorsolateral (DL) and ventrolateral (VL) regions showing significant increases in DA D2 receptors. There were nonsignificant increases in the dorsomedial (DM) aspects of the ipsilateral CPu whereas there were no changes in the ventromedial (VM) aspects of that structure. In contrast, there were no significant changes in [3H]SCH 23390-labeled DA D1 receptors in any of the subdivisions of the CPu ipsilateral to the 6-OHDA-induced lesions. These results provide evidence that intrastriatal injections of 6-OHDA result in biochemical changes in rat brain which are almost identical to those observed after 6-OHDA-induced lesions of the substantia nigra. These long-term biochemical effects caused by intrastriatal 6-OHDA injections provide further support for the idea that the nigral DA cell loss observed in the brains of parkinsonian patients could be secondary to retrograde changes due to oxyradicals generated during the metabolism of catecholamines within the caudate-putamen.  相似文献   

11.
Both glial cell line-derived neurotrophic factor (GDNF) and its recently discovered congener, neurturin (NTN), have been shown to exert neuroprotective effects on lesioned nigral dopamine (DA) neurons when administered at the level of the substantia nigra. In the present study, we have explored the relative in vivo potency of these two neurotrophic factors using two alternative routes of administration, into the striatum or the lateral ventricle, which may be more relevant in a clinical setting. In rats subjected to an intrastriatal (IS) 6-hydroxydopamine (6-OHDA) lesion, GDNF and NTN were injected every third day for 3 weeks starting on the day after the 6-OHDA injection. GDNF provided almost complete (90-92%) protection of the lesioned nigral DA neurons after both IS and intracerebroventricular (ICV) administration. NTN, by contrast, was only partially effective after IS injection (72% sparing) and totally ineffective after ICV injection. Although the trophic factor injections protected the nigral neurons from lesion-induced cell death, the level of expression of the phenotypic marker, tyrosine hydroxylase (TH), was markedly reduced in the rescued cell bodies. The extent of 6-OHDA-induced DA denervation in the striatum was unaffected by both types of treatment; consistent with this observation, the high rate of amphetamine-induced turning seen in the lesioned control animals was unaltered by either GDNF or NTN treatment. In the GDNF-treated animals, and to a lesser extent also after IS NTN treatment, prominent axonal sprouting was observed within the globus pallidus, at the level where the lesioned nigrostriatal axons are known to end at the time of onset of the neurotrophic factor treatment. The results show that GDNF is highly effective as a neuroprotective and axon growth-stimulating agent in the IS 6-OHDA lesion model after both IS and ICV administration. The lower efficacy of NTN after IS, and particularly ICV, administration may be explained by the poor solubility and diffusion properties at neutral pH.  相似文献   

12.
Severe chronic dopamine (DA) depletion increases the proportion of neurons in the basal ganglia that fire rhythmic bursts of action potential (LFO units) synchronously with the cortical oscillations. Here we report on how different levels of mesencephalic DA denervation affect substantia nigra pars reticulata (SNpr) neuronal activity in the rat and its relationship to akinesia (stepping test). Chronic nigrostriatal lesion induced with 0 (control group), 4, 6 or 8 microg of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle resulted in a dose-dependent decrease of tyrosine hydroxylase positive (TH+) neurons in the SN and ventral tegmental area (VTA). Although 4 microg of 6-OHDA reduced the number of TH+ neurons in the SN by approximately 60%, both stepping test performance and SNpr neuronal activity remained indistinguishable from control animals. By contrast, animals that received 6 microg of 6-OHDA showed a marked reduction of TH+ cells in the SN ( approximately 75%) and VTA ( approximately 55%), a significant stepping test deficit and an increased proportion of LFO units. These changes were not dramatically enhanced with 8 microg 6-OHDA, a dose that induced an extensive DA lesion (> 95%) in the SN and approximately 70% reduction of DA neurons in the VTA. These results suggest a threshold level of DA denervation for both the appearance of motor deficits and LFO units. Thus, the presence of LFO activity in the SNpr is not related to a complete nigrostriatal DA neuron depletion (ultimate stage parkinsonism); instead, it may reflect a functional disruption of cortico-basal ganglia dynamics associated with clinically relevant stages of the disease.  相似文献   

13.
Male rats received intraventricular infusions of the dopamine (DA) neurotoxin 6-hydroxydopamine (6-OHDA; 0, 75, 150, and 250 μg) in order to determine if DA neuron loss was associated with an increase in striatal trophic activity. After 4 weeks, the animals were sacrificed and perfused with normal saline, and the brains were removed, immediately frozen, and processed. Intraventricular infusions of 6-OHDA were associated with a dose-dependent reduction in striatal DA content and tyrosine hydroxylase-immunoreactive (THir) cell counts in the substantia nigra while striatal DA activity ([HVA]/[DA]) was increased. Extracts of the striatum from these animals increased the survival of E15 primary, dissociated rostral mesencphalic cultures growing at low cell density. This growth effect was positively correlated with the dose of 6-OHDA infused. THir cell counts present in high-cell-density mesencephalic cultures following 72 h of extract incubation were similarly correlated to 6-OHDA dose but inversely correlated with striatal DA content and THir cell counts in the substantia nigra. Trophic activity in the cerebellar extracts from these animals was significantly lower than that present in striatal extracts and was not influenced by 6-OHDA lesions. These data suggest that loss of DA innervation in the striatum is associated with an increase in striatal trophic activity directed at DA neurons. A compensatory response to the loss of DA neurons involving increased striatal trophic activity may result in increased DA terminal sprouting of remaining viable DA neurons that, in turn, would serve to help reinstate normal DA tone.  相似文献   

14.
Glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming growth factor-beta superfamily that when exogenously administrated exerts a potent trophic action on dopaminergic (DA) cells. Although we know a lot about its signalling mechanisms and pharmacological effects, physiological actions of GDNF on the adult brain remain unclear. Here, we have used morphological and molecular techniques, and an experimental model of Parkinson's disease in rats, to investigate whether GDNF constitutively expressed in the adult mesostriatal system plays a neuroprotective role on midbrain DA cells. We found that although all midbrain DA cells express both receptor components of GDNF (GFRalpha1 and Ret), those in the ventral tegmental area (VTA) and rostromedial substantia nigra (SNrm) also contain GDNF but not GDNFmRNA. The levels of GDNFmRNA are significantly higher in the ventral striatum (vSt), the target region of VTA and SNrm cells, than in the dorsal striatum (dSt), the target region of DA cells in the caudoventral substantia nigra (SNcv). After fluoro-gold injection in striatum, VTA and SNrm DA cells show triple labelling for tyrosine hydroxylase, GDNF and fluoro-gold, and after colchicine injection in the lateral ventricle, they become GDNF-immunonegative, suggesting that GDNF in DA somata comes from their striatal target. As DA cells in VTA and SNrm are more resistant than those in SNcv to intracerebroventricular injection of 6-OHDA, as occurs in Parkinson's disease, we can suggest that the fact that they project to vSt, where GDNF expression is significantly higher than in the dSt, is a neuroprotective factor involved in the differential vulnerability of midbrain DA neurons.  相似文献   

15.
目的 电压依赖性钙离子通道分布对6-羟基多巴胺(6-OHDA)诱导的SD大鼠多巴胺能神经元缺失的影响.方法 6-OHDA单侧脑内内侧前脑束(MFB)立体定位注射,术后10d观测行为学变化;并取脑固定,免疫组化酪氨酸羟化酶(TH)染色观察中脑黑质致密部(SNc)与腹侧背盖区(VTA)多巴胺能神经元的凋亡情况.并应用膜片钳全细胞记录技术,测量SNc与VTA多巴胺能神经元的电压依赖性钙离子通道的电流密度.结果 损伤侧的SNc区TH阳性细胞与对侧比较明显减少,而VTA区TH阳性细胞与对侧相比变化较小;全细胞记录电压膜片钳技术测量,发现SNc多巴胺能神经元钙通道电流密度与VTA相比明显较高.结论 该结果的发现,提示钙离子通道可能参与到帕金森氏病中脑多巴胺能神经元的选择性凋亡的机制.  相似文献   

16.
In a model of Parkinson's disease (PD), amphetamine, a dopamine (DA)-releasing drug, fails to induce ipsilateral drug rotations in a proportion of rats with complete unilateral 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle and DA neurons of the substantia nigra. To investigate this phenomenon, individual 6-OHDA lesions (measured by tyrosine hydroxylase immunohistochemistry) in the substantia nigra pars compacta (A9), ventral tegmental area (A10), and striatum were examined in conjunction with outcomes of four behavioral tests. The behavioral tests were skilled paw reaching, a head-turning test, and apomorphine (0.05 mg/kg) and amphetamine (4 mg/kg) drug-induced rotations. Four weeks postlesion, ipsilateral side bias measured by the head-turning test correlated strongly with extent of A9 DA neuronal lesion. Additional A10 neuronal DA lesions did not substantially improve the model fit, indicating that the head-turning bias was primarily A9 dependent. In contrast, total head-turning activity increased monotonically with lesions of A10 striatal DA fibers. Skilled paw-reaching accuracy decreased with increased lesion of both A9 and A10 DA neuronal systems. Associating amphetamine-induced rotations with extent of A9 DA lesion generated a second-order polynomial model, y = -11.1x + 0.20 x(2) + 208.7 (R(2) = 0.73), with an overall F ratio (df = 2,21) of 28.4 (P < 0.0001). This model predicts that an A9 DA lesion of about 50% is required to induce an ipsilateral turning bias, after which rotations increase with the degree of A9 DA neuronal lesion. No further change in rotational behavior was seen until an additional A10 DA lesion reached 60%, after which the rotational response decreased. This analysis provides tests that differentiate between A9 DA degeneration and combined A9/A10 lesions in animal models and in addition allows predictive testing of PD therapeutic intervention at a preclinical level.  相似文献   

17.
Our previous studies indicate that the KDI (Lys-Asp-Ile) tripeptide of gamma1 laminin protects central neurons from mechanical trauma and excitotoxicity. At least part of the neuroprotective effect of the KDI tripeptide may be mediated by its inhibitory function on ionotropic glutamate receptors. We studied the protective effect of the KDI tripeptide against 6-hydroxy-dopamine (6-OHDA) induced neurotoxicity in a rat experimental model of Parkinson's disease (PD). We found that a single unilateral injection of the KDI tripeptide into the substantia nigra before an injection of 6-OHDA protected the dopaminergic neurons from the neurotoxicity of 6-OHDA. Compared to rats treated with 6-OHDA alone, the KDI + 6-OHDA-treated substantia nigra was relatively intact with large numbers of dopaminergic neurons present at the injection side. In the rats treated with 6-OHDA alone, no dopaminergic neurons were detected, and the substantia nigra-area at the injection side was filled with blood-containing cavities. Quantification of the rescue effect of the KDI tripeptide indicated that, in animals receiving KDI before 6-OHDA, 33% of tyrosine hydroxylase-positive dopaminergic neurons of the substantia nigra were present as compared to the contralateral non-injected side. In animals receiving 6-OHDA alone, only 1.4% of the tyrosine hydroxylase expressing dopaminergic neurons could be verified. If this much protection were achieved in humans, it would be sufficient to diminish or greatly alleviate the clinical symptoms of PD. We propose that the KDI tripeptide or its derivatives might offer a neuroprotective biological alternative for treatment of PD.  相似文献   

18.
Previous work has demonstrated that viral vector mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF), when administered prior to a striatal injection of the specific neurotoxin, 6-hydroxydopamine (6-OHDA), can protect nigral dopamine (DA) neurons from cell death. When considering gene therapy for Parkinson's disease (PD), vector delivery prior to the onset of neuropathology is not possible and chronic delivery will likely be necessary in a GDNF-based PD therapy. The present study was undertaken to determine if GDNF delivered via a recombinant adeno-associated viral vector (rAAV) could affect nigral DA cell survival when initiated just after the administration of striatal 6-OHDA. The onset of rAAV-mediated GDNF transgene expression near the substantia nigra was determined to begin somewhere between 1 and 7 days after the 6-OHDA injection and subsequent vector administration. The cell survival data indicate that rAAV-GDNF delivery results in a highly significant sparing of nigral DA neurons. These data indicate that a single delivery of rAAV encoding GDNF is efficacious when delivered after the onset of progressive degeneration in a rat model of PD.  相似文献   

19.
M E Olds 《Brain research》1975,98(2):327-342
Although 6-hydroxydopamine (6-OHDA) reduced the rate of hypothalamic self-stimulation, it is not known whether the same effect is produced at other reinforcing sites remote from the hypothalamus. This was investigated in rats implanted with rewarding probes in the hypothalamus, in the substantia nigra, in the midbrain, and in the pontine region. Two patterns of self-stimulation emerged in each subject. One, characterized by short, medium and long-stimulus-train durations, was seen in the hypothalamus, in the substantia nigra, and in selected sites in the pons. The other, which comprised only short stimulus-trains, was found in the medial midbrain and in the pontine region. 6-OHDA (250 mug intraventricular route) reduced the rate of responding in the regions where responding was for short, medium, and long stimulus trains. It has a minor effect on responding in regions where the brain rewards were exclusively of short duration. Thus, self-stimulation in the hypothalamus, in the substantia nigra and in the pons was suppressed after 6-OHDA, while self-stimulation in the medial midbrain and at sites in the pons, where selection was for short trains, was only slightly below control levels after 6-OHDA. L-Norepinephrine (L-NE) (10, 20 and 30 mug) injected into the lateral ventricle of the 6-OHDA-treated rats temporarily reinstated self-stimulation in the lateral hypothalamus but not in the substantia nigra and not in the pontine region where the pattern of selection had been for long brain rewards. Dopamine (DA) was not effective as an antagonist of the suppressant action of 6-OHDA. Serotonin (5-HT) reinstated self-stimulation behavior in the lateral hypothalamus but not in the other positive regions. Its action was less than that of NE and did not take place in all animals tested.  相似文献   

20.
Biochemical and immunocytochemical changes after unilateral 6-hydroxydopamine (6-OHDA) injection into the striatum were investigated in the rat nigro-striatal dopamine (DA) neuron system. Four weeks after 6-OHDA injection into the striatum, concentrations of DA and its metabolites were specifically decreased in the substantia nigra (SN), as well as in the striatum, ipsilateral to the injection. Immunocytochemistry of tyrosine hydroxylase (TH) revealed a marked decrease in the number of TH-immunoreactive neuronal cell bodies in the SN ipsilateral to the injection; this effect appeared 2 weeks after the injection and remained even 10 months after the injection. Electron microscopic study of these periods demonstrated degenerative neurons in the SN pars compacta, suggesting that the degenerative changes persisted for a long time after a single injection of 6-OHDA into the striatum. The results showed that degeneration of the dopaminergic terminals in the striatum may lead to cell death of the parent cell bodies in the SN and suggest that the striatum may be the initial site in which the neurodegeneration occurs in Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号