首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
While the mechanisms are not fully understood, olfactory bulbectomy (OBX) is a well-known rat model of depression and depression-related disorders such as anxiety and aggression. Alterations in neuropeptide Y (NPY) levels in the brain have been linked to depression and have been shown to be involved in the response to stress. This study explored the possible regulation of NPY immunoreactivity in specific regions of the amygdala 14 days after OBX in adult male Sprague-Dawley rats (n=6). Unilateral OBX and immunohistochemistry permitted comparisons of NPY in the ipsilateral amygdala with NPY in the contralateral (sham) amygdala. OBX resulted in significant increases (P<0.05) in NPY immunoreactivity in the anterior medial amygdala (threefold) and the posterior medial amygdala (2.5-fold). These regions receive projections from the accessory olfactory bulb (AOB). In contrast, the anterior and posterolateral cortical nuclei of the amygdala receive projections from the main olfactory bulb (MOB). NPY was not increased in these nuclei. These data show that not only does OBX increase NPY immunoreactivity in the amygdala, but also suggest that the AOB plays a prominent role in this regulation.  相似文献   

2.
Our group has reported on the cloning of a novel rat neuropeptide Y (NPY) receptor involved in NPY-induced food intake, the Y5 receptor. The distribution in rat brain of the mRNA encoding this receptor has been determined by in situ hybridization histochemistry, using radiolabeled oligonucleotide probes. Control experiments were carried out in cell lines transfected with either rat Y1 or rat Y5 cDNAs. With the exception of the cerebellum, only the antisense probes yielded hybridization signal in rat brain tissue sections. A number of brain regions contained hybridization signals indicative of Y5 mRNA localization. Chief among these were various hypothalamic nuclei, including the medial preoptic nucleus, the supraoptic nucleus, the paraventricular nucleus, and the lateral hypothalamus. Other regions with substantial hybridization signals included the midline thalamus, parts of the amygdala and hippocampus, and some midbrain and brain-stem nuclei. In general a low density of Y5 mRNA was observed in most cortical structures, with the exception of the cingulate and retrosplenial cortices, each of which contained a moderate abundance of Y5 hybridization signal. The distribution of this receptor mRNA is consistent with a role for the Y5 receptor in food intake and also suggests involvement in other processes mediated by NPY.  相似文献   

3.
The effects of central and peripheral administration of enterostatin (ENT) on food intake and gastric emptying of a non-nutrient liquid meal have been studied in rats. Intraperitoneal and intragastric administration of ENT at a dose of 120 nmol suppressed the intake of a high-fat diet but failed to inhibit gastric emptying in Sprague-Dawley (SD) rats. Intracerebroventricular (i.c.v.) ENT (1 nmol) reduced intake of a high-fat diet in Osborne-Mendel (OM) and SD rats but not in S5B/Pl rats, whereas it decreased gastric emptying in S5B/Pl and SD rats but not in OM rats. The data suggest that although central ENT may reduce gastric emptying rate, this effect is not related to the inhibitory effect of ENT on food intake.  相似文献   

4.
Holmes PV 《Neuropeptides》1999,33(3):206-211
The effects of bilateral olfactory bulbectomy (OBX) on prepro-enkephalin, thyrotropin-releasing hormone, and D-2 receptor mRNA levels in the ventral striatum were examined by in situ hybridization histochemistry. Pre- pro-enkephalin mRNA levels were significantly increased in the olfactory tubercle (OT), but not in the nucleus accumbens, 14 days following bilateral OBX. Levels of D-2 receptor mRNA were also increased in the OT, though to a lesser degree. Prepro-thyrotropin-releasing hormone mRNA was unaffected by OBX. A separate experiment revealed no effect of OBX on enkephalin gene expression 7 days following surgery but a comparable elevation in pre- pro-enkephalin mRNA 14 and 28 days post-surgery. The findings are consistent with previously-reported effects of dopamine lesions on striatal gene expression, suggesting that the observed effects may be mediated by deafferentation-induced alterations in dopaminergic transmission in the OT. Altered dopaminergic function in the OT may be particularly relevant to the 'anhedonia' that has been associated with the olfactory bulbectomized rat model of depression.  相似文献   

5.
The neuropeptide Y (NPY) has been suggested to act as a major regulator of emotional processes and body weight. The full spectrum of biological effects of this peptide is mediated by at least four classes of receptors known as the Y(1), Y(2), Y(4), and Y(5) subtypes. However, the respective contribution of each of these receptor subtypes, especially the Y(5) subtype, in emotional processes is still mostly unknown. In the present study, we investigated the effect of long term administration of a selective Y(5) agonist [cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]hPP on emotional processes and body weight using two rat models of emotional dysfunctions, the corticosterone (CORT)-induced anxiety model as well as the olfactory bulbectomized (OBX) model of depression and anxiety in Wistar and Sprague-Dawley rats, respectively. The sub-chronic administration of the Y(5) agonist reversed the high levels of locomotion, rearing and grooming in the open field test and the impaired social activity induced by OBX, while increased the percentage of entries and time in the open arm of the elevated plus maze in CORT-treated rats. Furthermore, this Y(5) agonist increased body weight in both strains of control rats. These data further demonstrate that Y(5) receptors are not only involved in the control of body weight but also mediate emotional processing under challenged conditions. Thus, the pharmacotherapeutic administration of a Y(5) agonist could be considered as a potentially novel strategy to alleviate some forms of anxiety and depression in humans.  相似文献   

6.
An outbred rat model of novelty-seeking phenotype has predictive value for the expression of locomotor sensitization to nicotine. When experimentally naïve rats are exposed to a novel environment, some display high rates of locomotor reactivity (HRs, scores ranking at top 1/3rd of the population), whereas some display low rates (LRs, scores ranking at bottom 1/3rd of the population). Basally, HRs display lower anxiety-like behavior compared to LRs along with higher neuropeptide Y (NPY) mRNA in the amygdala and the hippocampus. Following an intermittent behavioral sensitization to nicotine regimen and 1 wk of abstinence, HRs show increased social anxiety-like behavior in the social interaction test and robust expression of locomotor sensitization to a low dose nicotine challenge. These effects are accompanied by a deficit in NPY mRNA levels in the medial nucleus of the amygdala and the CA3 field of the hippocampus, and increases in Y2R mRNA levels in the CA3 field and corticotropin releasing factor (CRF) mRNA levels in the central nucleus of the amygdala. Systemic and daily injections of a Y2R antagonist, JNJ-31020028, during abstinence fully reverse nicotine-induced social anxiety-like behavior, the expression of locomotor sensitization to nicotine challenge, the deficit in the NPY mRNA levels in the amygdala and the hippocampus, as well as result an increase in Y2R mRNA levels in the hippocampus and the CRF mRNA levels in the amygdala in HRs. These findings implicate central Y2R in neuropeptidergic regulation of social anxiety in a behavioral sensitization to nicotine regimen in the LRHR rats.  相似文献   

7.
Microinjection of colchicine (COL), a neurotoxin that blocks axoplasmic flow in the neurons, bilaterally into the ventromedial nucleus (VMN) evokes transient hyperphagia and body weight gain. These shifts in energy balance occurred in conjunction with development of increased sensitivity to neuropeptide Y (NPY), the endogenous orexigenic signal. In order to trace the aetiology of NPY supersensitivity, we have evaluated (1) NPY Y1 and Y5 receptor (R) gene expression in the hypothalamus and (2) the possibility of alterations in the inhibitory action of leptin, a hormone produced by lipocytes. Adult male rats were rendered hyperphagic with bilateral microinjections of COL (4 μg/side) into the VMN. We observed that hypothalamic NPY Y1 mRNA levels, as measured by RNAase protection assay, were significantly increased on day 2 and returned to the control level on day 4 in COL-injected rats. The effects on NPY Y5R mRNA were not as clear cut. Interestingly, serum leptin levels increased in association with the hyperphagia and body weight gain, thereby raising the likelihood of development of resistance to the suppressive effect of endogenous leptin on food intake. Indeed, intracerebroventricular injection of 7 μg human recombinant leptin, a dose that attenuated daily food intake in normal and fasted rats, was completely ineffective in attenuating hyperphagia in COL-treated rats. These results show that transient hyperphagia induced by interruption of signalling in the VMN may be caused by increased sensitivity to NPY, which may be caused, in part, by increased expression of NPY Y1R in hypothalamic sites involved in regulation of ingestive behaviour. Additionally, the observation of increased leptin release and concurrent development of leptin resistance suggest that a normally functioning VMN may be necessary for the central inhibitory effects of leptin on food intake.  相似文献   

8.
Suzuki R  Lumeng L  McBride WJ  Li TK  Hwang BH 《Brain research》2004,1014(1-2):251-254
Levels of neuropeptide Y (NPY) mRNA expression in discrete brain regions of alcohol preferring (P) rats and alcohol nonpreferring (NP) rats were examined using in situ hybridization. NPY mRNA expression was significantly lower in the central nucleus of amygdala (CeA) of P rats than NP rats, whereas no differences were found in the medial or basolateral amygdaloid nuclei. This study suggests that reduced NPY gene expression in the CeA may contribute to differences in alcohol preference and other behavioral differences observed between P and NP rats.  相似文献   

9.
Recent evidence suggests that neuropeptide Y (NPY) is an important signal in the neural circuitry that controls feeding behavior. Previously we observed that in rats entrained to 4 h daily scheduled feeding regimen (SFR), NPY content and release in the paraventricular nucleus (PVN) was elevated but decreased rapidly in association with food consumption. In the present study, we investigated the pattern of hypothalamic NPY gene expression in SFR rats before and after food consumption by measuring the content of preproNPY mRNA in the medial basal hypothalamus (MBH). Adult male rats were maintained on either ad libitum diet (control) or on SFR. Rats were killed before food presentation at 11.00 h and at the end of 4 h food consumption at 15.00 h. The levels of preproNPY mRNA in the MBH were determined by solution hybridization/RNase protection assay using a cRNA probe complementary to rat NPY precursor mRNA. We observed that, as compared to that in control rats on ad libitum diet, preproNPY mRNA levels in the MBH were increased two-fold in the SFR rat at 11.00 h and remained elevated even after 4 h of food consumption. These results show a simultaneous enhancement in PVN NPY release and hypothalamic gene expression in advance of scheduled feeding time, but food intake rapidly decreases PVN NPY release and content, with little impact on hypothalamic gene expression.  相似文献   

10.
We investigated the effect of centrally administered pituitary adenylate cyclase activating polypeptide (PACAP) on feeding in rats, and the involvement of hypothalamic neuropeptide gene expression using in situ hybridization. lntracerebroventricular injection of PACAP (1000  pmol/rat) significantly decreased food intake in a dose-dependent manner. In PACAP-treated rats, neuropeptide Y (NPY) mRNA levels in the arcuate nucleus and galanin mRNA levels in the paraventricular nucleus increased, and corticotropin-releasing hormone (CRH) mRNA levels in the paraventricular nucleus decreased. In rats fasted for 72  h, NPY mRNA levels increased, and CRH mRNA levels decreased, but galanin mRNA levels were unchanged. These results indicate that the anorectic function of PACAP is not mediated by NPY or CRH, and that PACAP increases galanin synthesis.  相似文献   

11.
Neuropeptide Y (NPY) synthesized in the arcuato-paraventricular projection in the rat hypothalamus is thought to play an important role in controlling energy homeostasis. The factors that regulate hypothalamic NPY are not known but, amongst others, insulin has been postulated as an inhibitory modulatory agent. To test this hypothesis, normal male rats were given either insulin (2 units/day) or saline via subcutaneous osmotic minipumps for 3 days. Euglycaemia was maintained by a concomitant glucose infusion in insulin-infused rats which had peripheral insulin levels 5–8 times higher than saline-infused controls. Hyperinsulinaernic rats ate 42% less than controls, but their total energy intake (food intake plus glucose infusion) was higher than that of controls, and they gained more weight than controls during the experimental period. Hyperinsulinaemia had no significant effect on hypothalamic NPY mRNA or NPY levels in the arcuate nucleus. NPY concentrations in the paraventricular nucleus were, however, significantly increased by 73% in hyperinsulinaemic rats, but were closely similar to controls in all other areas. Insulin may act as a satiety factor in that hyperinsulinaemic rats ate less, but the fact that these animals had increased total energy intake and gained excessive weight suggests that insulin may not function as an overall regulator of energy balance. In addition, physiological hyperinsulinaemia does not apparently inhibit NPY gene expression in the arcuate nucleus. Due to the lack of effect of hyperinsulinaemia on NPY synthesis in the arcuate nucleus, the elevated NPY concentrations in the paraventricular nucleus could result from a reduction of its release, which would be in keeping with the reduction in food intake.  相似文献   

12.
Stratford TR  Wirtshafter D 《Neuroreport》2004,15(17):2673-2676
Injections of muscimol into the nucleus accumbens shell (AcbSh) induce large increases in food intake in satiated rats and also activate neurons in a number of feeding-related brain regions, including NPY-containing neurons in the arcuate hypothalamic nucleus and cells in the paraventricular hypothalamic nucleus. This suggests that the NPY system may participate in the expression of AcbSh-mediated feeding behavior. Therefore, we examined the effects of intraventricular administration of the Y1 receptor antagonist 1229U91 or the Y5 receptor antagonist L-152,804 on AcbSh-mediated food intake. Intra-AcbSh muscimol elicited a large increase in food intake which was potently suppressed by blocking either central Y1 or Y5 receptors. Our results suggest that the AcbSh influences food intake, in part, through the release of NPY.  相似文献   

13.
Appetite suppressants lose efficacy when given chronically; the mechanisms are unknown. We gave male rats once-daily dl-fenfluramine (dl-FEN, 5 mg/kg, i.p.) injections for 15 days and measured mRNA expression of corticotropin releasing factor (CRF), neuropeptide Y (NPY) and proopiomelanocortin (POMC) in hypothalamic neurons on days 1, 2 and 15. dl-FEN decreased food intake on days 1-2 but not on day 15. The drug increased CRF mRNA and decreased NPY mRNA on days 1-2; on day 15, NPY mRNA was normal, but CRF mRNA remained elevated. No changes occurred in POMC mRNA. Thus, only the NPY mRNA response to dl-FEN correlated with changes in food intake over time in a manner consistent with the known effects of NPY on food intake.  相似文献   

14.
The hypothesis that treatment with neuropeptide Y (NPY) can increase running activity and decrease food intake and body weight was tested. Female rats with a running wheel lost more weight than sedentary rats and ran progressively more as the availability of food was gradually reduced. When food was available for only 1h/day, the rats lost control over body weight. Correlatively, the level of NPY mRNA was increased in the hypothalamic arcuate nucleus. This phenomenon, activity-based-anorexia, was enhanced by intracerebroventricular infusion of NPY in rats which had food available during 2h/day. By contrast, NPY stimulated food intake but not wheel running in rats which had food available continuously. These findings are inconsistent with the prevailing theory of the role of the hypothalamus in the regulation of body weight according to which food intake is a homeostatic process controlled by "orexigenic" and "anorexigenic" neural networks. However, the finding that treatment with NPY, generally considered an "orexigen", can increase physical activity and decrease food intake and cause a loss of body weight is in line with the clinical observation that patients with anorexia nervosa are physically hyperactive and eat only little food despite having depleted body fat and up-regulated hypothalamic "orexigenic" peptides.  相似文献   

15.
Preclinical and clinical evidence suggests that neuropeptides play a role in the pathophysiology of mood disorders. In the present study, we investigated the involvement of the peptides corticotropin-releasing hormone (CRH), neuropeptide Y (NPY) and nociceptin/orphanin FQ (N/OFQ) and of their receptors in the regulation of emotional behaviours. In situ hybridization experiments were performed in order to evaluate the mRNA expression levels of these neuropeptidergic systems in limbic and limbic-related brain regions of the Flinders Sensitive Line (FSL) rats, a putative genetic animal model of depression. The FSL and their controls, the Flinders Resistant Line (FRL) rats, were subjected to one hour acute restraint and the effects of the stress exposure, including possible strain specific changes on these neuropeptidergic systems, were studied. In basal conditions, no significant differences between FSL and FRL rats in the CRH mRNA expression were found, however an upregulation of the CRH mRNA hybridization signal was detected in the central amygdala of the stressed FRL, compared to the non stressed FRL rats, but not in the FSL, suggesting a hypoactive mechanism of response to stressful stimuli in the "depressed" FSL rats. Baseline levels of NPY and N/OFQ mRNA were lower in the FSL rats compared to the FRL in the dentate gyrus of hippocampus and in the medial amygdala, respectively. However, the exposure to stress induced a significant upregulation of the N/OFQ mRNA levels in the paraventricular thalamic nucleus, while in the same nucleus the N/OFQ receptor mRNA expression was higher in the FSL rats. In conclusion, selective alterations of the NPY and N/OFQ mRNA in limbic and limbic-related regions of the FSL rats, a putative animal model of depression, provide further support for the involvement of these neuropeptides in depressive disorders. Moreover, the lack of CRH activation following stress in the "depressed" FSL rats suggests a form of allostatic load, that could alter their interpretation of environmental stimuli and influence their behavioural response to stressful situations.  相似文献   

16.
The anorexia (anx) mutation causes reduced food intake in preweanling mice, resulting in death from starvation within 3–4 weeks. In wild-type rodents, starvation induces increased neuropeptide Y (NPY) mRNA levels in the arcuate nucleus that promotes compensatory hyperphagia. Despite severely decreased body weight and food intake at 3-weeks age, anx/anx mice do not show elevated NPY mRNA levels in the hypothalamic arcuate nucleus compared to wild-type/heterozygous littermates. The NPY mRNA levels can be upregulated in normal mice at this chronological age, because 24-h food deprivation increased arcuate NPY mRNA in wild-type littermates. The unresponsiveness of NPY expression in the arcuate of anx/anx mice was paralleled by serotonergic hyperinnervation of the arcuate nucleus, comparable to the serotonergic hyperinnervation previously reported in the rest of the anx/anx brain. This result is consistent with the hypothesis that wasting disorders are accompanied by disregulation of NPY mRNA expression in the arcuate nucleus, and suggests that reduced food intake, the primary behavioral phenotype of the anx/anx mouse, may be the result of altered hypothalamic mechanisms that normally regulate feeding.  相似文献   

17.
Available data suggest that estradiol exerts an inhibitory effect on food intake by modulating the actions of multiple gut- and brain-derived peptides implicated in the control of food intake. For example, recent studies have shown that estradiol decreases the orexigenic effects of ghrelin and melanin-concentrating hormone. In the present study, we examined estradiol's ability to decrease the actions of two additional orexigenic peptides, neuropeptide Y (NPY) and agouti-related protein (AgRP). Food intake was monitored following lateral ventricular infusions of 5 microg NPY, 10 microg AgRP, or saline vehicle in ovariectomized rats treated with either 1 microg estradiol or sesame oil vehicle. NPY increased food intake for 2h in both oil- and estradiol-treated ovariectomized rats. During this interval, the orexigenic effect of NPY was significantly greater in oil-treated rats, relative to estradiol-treated rats. In contrast to the short-term action of NPY, a single injection of AgRP increased food intake for 3 days in oil- and estradiol-treated rats. Meal pattern analysis revealed that the orexigenic effect of AgRP is mediated by an increase in meal size, not meal number. Unlike that observed following NPY treatment, estradiol failed to modulate the magnitude by which AgRP increased food intake and meal size. We conclude that a physiological regimen of estradiol treatment decreases the orexigenic effect of NPY, but not AgRP, in ovariectomized rats.  相似文献   

18.
Affective disorders and substance abuse frequently coexist, yet few previous studies have examined drug self-administration using animal models of depression. The olfactory-bulbectomized rat is a well-established model that exhibits a high degree of neurochemical similarity to depression. Olfactory bulbectomy (OBX) increases dopamine receptor densities in the ventral striatum, which may increase the reinforcing effects of drugs of abuse. Experiments were designed to test the hypotheses that acquisition and stable self-administration of amphetamine would be increased in bulbectomized rats. In the first experiment, rats underwent bilateral OBX or sham surgery and intravenous jugular catheters were implanted 12-14 days later. Acquisition was examined using a standard operant paradigm involving a nose-poke response for a very low dose of D-amphetamine sulfate (12 microg/infusion, IV). A separate group of rats received coinfusions of sulpiride. In a second experiment designed to minimize differences in acquisition and examine stable self-administration, lever pressing for a low (0.10 mg/kg, IV) or high (0.25 mg/kg, IV) dose of D-amphetamine sulfate was measured in rats pretrained to lever press for food. Bulbectomized rats acquired the self-administration of very low dose amphetamine faster than sham-operated rats and this effect was reversed by sulpiride coinfusion. Stable self-administration of the low dose of amphetamine was also markedly increased in bulbectomized rats. The findings reveal the utility of the OBX model for studying the neurobiological basis of depression and drug abuse comorbidity and support the hypothesis that neurochemical abnormalities associated with depression may enhance the addictive properties of some drugs of abuse.  相似文献   

19.
Lesions centered on the area postrema (AP) and adjacent nucleus of the solitary tract (AP/mNTS-lesions) are reported to result in increased consumption of highly palatable diets. Recent studies suggest that neuropeptide Y (NPY) may cause a preference for carbohydrate-rich diets. Thus, it is possible that NPY may play a role in the enhanced intake of highly palatable diets by AP/mNTS-lesioned rats. In the studies reported here, we found that lesions centered on the AP result in increased levels of NPY-immunoreactivity in the paraventricular nucleus of the hypothalamus. Additionally, steady-state NPY mRNA in the basomedial hypothalamus including the arcuate nucleus was elevated. Enhanced NPY was not found throughout the hypothalamus however, as NPY-immunoreactivity was not elevated in the lateral hypothalamus or the tissue bordering the anteroventral third ventricle. These data suggest the possibility that elevated hypothalamic NPY, particularly in the arcuate and paraventricular nuclei, may contribute to the altered food intake and energy balance observed in rats with lesions centered on the AP.  相似文献   

20.
The olfactory bulbectomized (OBX) rat is an extensively investigated animal model of depression. In the present study the effects of olfactory bulbectomy in drug-naive adult male Sprague–Dawley rats (200–240 g) on global (gCGU) and regional cerebral glucose (rCGU) utilization was evaluated. Two weeks following surgery, the autoradiographic measurement of CGU using [14C]-2-deoxyglucose was employed. The levels of CGU in the OBX and sham-operated rats were compared in 40 brain regions. Statistical methods indicate significantly lower levels of global (overall) CGU in the OBX group than in the sham group. Discriminant analysis was done on the z-scores to remove animal to animal variability. The following thirteen regions were identified by the stepwise discriminant analysis of the z-scores as significantly contributing to the differences between the sham and OBX: amygdala, cingulate cortex, caudate putamen at the level of globus pallidus, caudate putamen-lateral part, dorsal subiculum, dorsal thalamus, hypothalamus, median raphe, somatosensory cortex, substantia nigra, ventral hippocampus, ventral tegmental area and the ventral thalamus. The pattern of changes in the rCGU following OBX does not completely correlate with the pattern of connectivity of the olfactory bulbs, however, many regions with direct connection to the olfactory bulbs (e.g., amygdala, hypothalamus, ventral hippocampus, and ventral tegmental area) were found to be important for differentiation. No left to right asymmetries in the rCGU were found. The data suggest that there are very important regional differences in glucose utilization between the OBX and sham operated rats, which points to the need to study antidepressants in an animal model of depression rather than in normal animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号