首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the antiplatelet effect and its mechanism of a new synthetic compound YD-3 [1-benzyl-3-(ethoxycarbonylphenyl)-indazole] were examined. YD-3 inhibited the aggregation of washed human platelets caused by protease-activated receptor (PAR) 4 agonist peptide GYPGKF (IC50 = 0.13 +/- 0.02 microM), but had no or little effect on that by thrombin, PAR1 agonist peptide SFLLRN, collagen or U46619. YD-3 produced a parallel, rightward shift of the concentration-response curve for GYPGKF without decreasing of the maximum platelet aggregation, indicating a competitive antagonism. In contrast to human platelets, both thrombin- and GYPGKF-induced mouse platelet shape change and aggregation were completely inhibited by YD-3. YD-3 also selectively prevented GYPGKF-induced intracellular Ca2+ mobilization in human platelets. Furthermore, in the PAR1-desensitized human platelets, thrombin induced a relatively slow rise and decay of calcium mobilization that was significantly inhibited by YD-3. In addition, the synergistic effect of SFLLRN and GYPGKF on platelet activation was prevented by YD-3. YD-3 also inhibits both fMLP-stimulated neutrophil- and purified cathepsin G-induced platelet aggregation, which has been demonstrated to be PAR4-dependent. Taken together, our results suggest that YD-3 selectively inhibits PAR4-dependent platelet activation through blockade of PAR4. To the best of our knowledge, it is the first non-peptide PAR4 antagonist.  相似文献   

2.
Thrombin exosite-1 mediates the specific binding of thrombin with fibrinogen and protease-activated receptor (PAR) 1. Exosite-1 inhibitors have been shown to effectively decrease the clotting activity of thrombin, while their antiplatelet effects are relatively weak. In the present study, the inhibitory effects of two exosite-1 inhibitors, hirugen and HD1, but not the exosite-2 inhibitor HD22, on thrombin-induced platelet aggregation and P-selectin expression were dramatically enhanced by a PAR4 antagonist, YD-3. In contrast, the PAR1 antagonist SCH-79797 did not affect the antiplatelet effects of exosite-1 inhibitors. The exosite-1 inhibitors and YD-3 prevented the Ca2+ spike and the prolonged Ca2+ response in thrombin-stimulated platelets, respectively; and combination of these two classes of agents led to abolishment of Ca2+ signal. Unlike exosite-1 inhibitors, the antiplatelet effects of the active site inhibitor PPACK and the bivalent inhibitor bivalirudin were not significantly enhanced by YD-3. In addition, the platelet-stimulating activity of γ-thrombin, an autolytic product of α-thrombin which lacks exosite-1, was inhibited by YD-3. These results suggest that the synergistic antiplatelet effects of exosite-1 inhibitor and PAR4 antagonist are resulted from combined blockade of PAR1 and PAR4 in platelets. In fibrinogen or plasma clotting assay, YD-3 neither prolonged the clotting time on its own nor enhanced the anticoagulant activity of exosite-1 inhibitors. Therefore, the combined blockade of exosite-1 and PAR4 may offer a potential strategy for improving the balance of benefits and risks of antithrombotic therapy.  相似文献   

3.
The causes for reduced platelet thromboxane synthesis in patients with acquired platelet storage pool disease are incompletely understood. The present study was designed to define the nature of the defect(s) underlying diminished thromboxane synthesis in human platelets previously exposed to thrombin in vitro. Platelets pretreated with high concentrations of thrombin were unable to form measurable amounts of thromboxane in response to a second stimulation with thrombin. In contrast, thrombin-pretreated platelets formed additional thromboxane in response to arachidonate, collagen, or A23,187. Thrombin-pretreated platelets did not recover with respect to thrombin-inducible thromboxane synthesis when incubated for two hours in plasma either in the presence or absence of added arachidonic acid. These observations suggest that neither inactivation of cyclooxygenase nor depletion of endogenous arachidonic acid is responsible for the impaired thrombin-induced thromboxane synthesis in thrombin-prestimulated platelets. Impaired thrombin-induced thromboxane synthesis in these platelets may be due to agonist-specific, irreversible receptor uncoupling.  相似文献   

4.
Thrombin plays an important role in diverse neurological processes such as proliferation, cell migration, differentiation and neuroinflammation. In this study, we investigated the effect of thrombin on matrix metalloprotease-9 (MMP-9) expression in rat primary astrocytes. Thrombin (1–10 U/ml) induced a significant increase in MMP-9 activity as measured by gelatin zymography. Thrombin also increased MMP-9 mRNA expression. Among three isotypes of thrombin receptor, i.e. protease-activated receptor (PAR)-1, -3 and -4, PAR1 agonist (1–100 μM) but not PAR3 and PAR4 agonist induced MMP-9 expression. Inhibition of thrombin-induced MMP-9 production by SCH 79797 (10–50 nM), a selective PAR1 receptor antagonist, confirmed that PAR1 is a main receptor for thrombin-induced MMP-9 expression. In astrocytes, thrombin activated Erk1/2, and it was inhibited by PD98059. In this study, thrombin-induced MMP-9 expression was inhibited by PD98059. PAR1 agonist activated Erk1/2 and PD98059 inhibited PAR1 agonist-induced MMP-9 expression. MMP-9 promoter reporter assay confirmed the positive effect of ERK1/2 on MMP-9 expression. These results suggest that the activation of PAR1 mediates thrombin-induced MMP-9 expression through the regulation of Erk1/2.  相似文献   

5.
Effects of ethanol on pathways of platelet aggregation in vitro   总被引:1,自引:0,他引:1  
Ethanol, at physiologically tolerable concentrations, did not affect the primary phase of ADP-induced aggregation of human or rabbit platelets, which is not associated with the secretion of granule contents. Potentiation by epinephrine of the primary phase of ADP-induced aggregation of rabbit platelets was also not inhibited by ethanol. However, ethanol did inhibit the secondary phase of ADP-induced aggregation which occurs with human platelets in citrated platelet-rich plasma and is dependent on the formation of thromboxane A2. Inhibition by ethanol of thromboxane production by stimulated platelets is likely due to inhibition of the mobilization of arachidonic acid from membrane phospholipids, as ethanol had little or no effect on aggregation and secretion induced by arachidonic acid or the thromboxane mimetic U46619. Rabbit platelet aggregation and secretion in response to low concentrations of collagen, thrombin, or PAF were inhibited by ethanol. Inhibition of the effects of thrombin and PAF was also observed with aspirin-treated platelets. Thus, in addition to inhibiting the mobilization of arachidonate for thromboxane formation that occurs with most agonists, ethanol can also inhibit aggregation and secretion through other effects on platelet responses.  相似文献   

6.
In the present study, phospholipase A(2) (PLA(2))-catalyzed hydrolysis of platelet membrane phospholipids was investigated by measuring PLA(2) activity, phospholipid hydrolysis, arachidonic acid release and choline lysophospholipid production in thrombin-stimulated human platelets. Thrombin-stimulated platelets demonstrated selective hydrolysis of arachidonylated plasmenylcholine and plasmenylethanolamine, with little change in diacyl phospholipids. Accelerated plasmalogen hydrolysis was accompanied by increased arachidonic acid and thromboxane B(2) release and increased lysoplasmenylcholine production. Thrombin stimulation caused an increase in PLA(2) activity measured in the cytosolic fraction with plasmenylcholine only; no increase in activity was measured with phosphatidylcholine. No change in membrane-associated PLA(2) activity was observed with either substrate tested. Pretreatment with the Ca(2+)-independent PLA(2)-selective inhibitor, bromoenol lactone, inhibited completely any thrombin-stimulated phospholipid hydrolysis. Thus, thrombin stimulation of human platelets activates a cytosolic PLA(2) that selectively hydrolyzes arachidonylated plasmalogen phospholipids.  相似文献   

7.
Three members of the protease-activated receptor family, PAR1, PAR3 and PAR4, are activated when thrombin cleaves the receptor N-terminus, exposing a tethered ligand. Proteases other than thrombin can also cleave PAR family members and, depending upon whether this exposes or removes the tethered ligand, either activate or disable the receptor. For example, on human platelets PAR1 is disabled by cathepsin G, although aggregation still occurs because cathepsin G can activate PAR4. The present studies examine the interaction of cathepsin G and a second neutrophil protease, elastase, with PAR3 using two model systems: COS-7 cells transfected with human PAR3 and mouse platelets, which express PAR3 and PAR4, but not PAR1. In contrast to human platelets, cathepsin G did not aggregate murine platelets, and prevented their activation only at low thrombin concentrations. Elastase had no effect on thrombin responses in mouse platelets, but when added to COS cells expressing human PAR3, both cathepsin G and elastase prevented activation of phospholipase C by thrombin. Notably, this inhibition occurred without loss of the binding sites for two monoclonal antibodies that flank the tethered ligand on human PAR3. We therefore conclude that 1) exposure to cathepsin G disables signaling through human PAR3, and prevents murine PAR3 from serving its normal role, which is to facilitate PAR4 cleavage at low thrombin concentrations, 2) elastase disables human, but not murine, PAR3, 3) in contrast to human PAR4, mouse PAR4 will not support platelet aggregation in response to cathepsin G, and 4) the inactivation of human PAR3 by cathepsin G and elastase involves a mechanism other than amputation of the tethered ligand domain. These results extend the range of possible interactions between PAR family members and proteases, and provide further support for species-specific differences in the interaction of these receptors with proteases other than thrombin.  相似文献   

8.
The minor gammaA/gamma' fibrinogen isoform contains a high affinity binding site for thrombin exosite II that is lacking in the major gammaA/gammaA fibrinogen isoform. We therefore investigated the biological consequences of the gamma' chain binding to thrombin. Thrombin-induced platelet aggregation was inhibited by gammaA/gamma' fibrinogen. Carboxyl terminal peptide fragment gamma'410-427 from the gamma' chain was also inhibitory, with an IC(50) of approximately 200 microM in whole plasma. Deletion of the peptide from either the amino or carboxyl end significantly decreased inhibition. In contrast to thrombin-induced platelet aggregation, aggregation induced by epinephrine, ADP, arachidonic acid, or SFLLRN peptide showed little inhibition by the gamma' peptide. The inhibition of thrombin-induced platelet aggregation was not due to direct inhibition of the thrombin active site, since cleavage of a small peptidyl substrate was 91% of normal even in the presence of 1 mM gamma'410-427. The gamma'410-427 peptide blocked platelet adhesion to immobilized thrombin under both static and flow conditions, blocked soluble thrombin binding to platelet GPIbalpha, and inhibited PAR1 cleavage by thrombin. These results suggest that the gamma' chain of fibrinogen inhibits thrombin-induced platelet aggregation by binding to thrombin exosite II. Thrombin that is bound to the gamma' chain is thereby prevented from activating platelets, while retaining its amidolytic activity.  相似文献   

9.
Thrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (less than or equal to 0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (greater than or equal to 60 micrograms/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (greater than or equal to 60 micrograms/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Stimulation of human platelets with thrombin or thrombin receptor agonist peptide (TRAP/ Ser-Phe-Leu-Leu-Arg-Asn) resulted in phosphorylation of the protease-activated receptor 1 (PAR1). However, protein kinase(s), capable of phosphorylating PAR1 upon activation of this receptor, has not been as yet identified in human platelets. The present study was undertaken to assess the presence of protein kinase(s) that may interact with PAR1 using a procedure based on the ability of protein kinase to undergo renaturation and phosphorylate a protein substrate fixed in a gel. We employed a fusion protein that was prepared using a glutathione S-transferase (GST) and the cytoplasmic tail of PARI (Pro368-Thr425)(GST-PAR1) or a reverse sequenced peptide of this domain (GST-rPAR1). The results showed that treatment of platelets with thrombin induced about 10-fold increase in the activity of the 33-kDa Ser/Thr protein kinase, which was also activated by TRAP, but not by hirudin-treated thrombin or diisopropylfluorophosphate-inactivated thrombin, suggesting that it is activated through PAR1. Furthermore, treatment of platelets with thromboxane A1 analog, STA2, led to an activation of this protein kinase and phosphorylation of PAR1. In conclusion, the present study provides evidence of homologous and heterologous activation of a novel 33-kDa Ser/Thr kinase that phosphorylates the cytoplasmic tail of PAR1.  相似文献   

11.
Chloroquine inhibited arachidonic acid liberation from membrane phospholipids of thrombin and A23187- stimulated platelets. In addition, it dose-dependently inhibited stimulated malondialdehyde formation and thromboxane B2 generation in the same platelets. The linear correlation between the inhibition of arachidonic acid liberation and malondialdehyde formation indicated that chloroquine inhibited activated phospholipase A2 in thrombin-stimulated platelets, similarly as it does in different cells and tissues. Yet, the nonlinear relationship between arachidonic acid liberation along with malondialdehyde formation and thromboxane generation as well as aggregation suggest that phospholipase A2 does not seem to be the only site of chloroquine action. Rather, it may affect platelets either at other levels of the arachidonic acid cascade too, or at some different stimulatory pathways, like intraplatelet calcium mobilisation, phosphoinositide cycle, calmodulin and protein kinase C activation.  相似文献   

12.
Systemic inflammation has been shown to be a contributing factor to the instability of atherosclerotic plaques in patients with acute coronary syndromes (ACS). VX-702, a novel p38 mitogen-activated protein kinase (MAPK) inhibitor, is currently under investigation in ACS patients with unstable angina to evaluate its safety and efficacy during percutaneous coronary intervention (PCI). The role of p38 MAPK in platelet aggregation of normal individuals was examined using the selective second generation p38 MAPK inhibitor VX-702. Treatment of platelets with thrombin (activates PAR1 and PAR4 thrombin receptors), SFLLRN (PAR1), AYPGKF (PAR4), collagen (alpha2beta1 and GPVI/FCgammaIIR receptors) and U46619 (TXA(2)) resulted in strong activation of p38 MAPK. Activation of the GPIb von Willebrand factor receptor with ristocetin did not stimulate p38 MAPK. Pre-treatment of platelets with 1 microM VX-702 completely inhibited activation of p38 MAPK by thrombin, SFLLRN, AYPGKF, U46619, and collagen.There was no effect of VX-702 on platelet aggregation induced by any of the agonists in the presence or absence of aspirin, heparin or apyrase. It has been postulated that a potential role of p38 MAPK is to activate phospholipase A(2) (cPLA(2)) which catalyses formation of arachidonic acid leading to production of thromboxane. Interestingly, we show contrasting effects of p38 MAPK inhibition as compared to aspirin inhibition on platelet aggregation in response to collagen. Blockade of TXA(2) production by aspirin results in significant inhibition of collagen activation. However,VX-702 has no effect on collagen-mediated platelet aggregation, suggesting that blocking p38 MAPK does not effect thromboxane production in human platelets.Therefore, unlike aspirin blockade of thromboxane production in platelets, p38 MAPK inhibitors such as VX-702 do not significantly affect platelet function and would not be expected to contribute to an elevated risk of bleeding side-effects in treated patients.  相似文献   

13.
Thromboxane B2 (TXB2) formation in isolated, thrombin-stimulated rat platelets was time dependent and appeared after 5 s of incubation. Beta-adrenoceptor blocking (BAB) drugs inhibited thrombin-stimulated TXB2 formation in the following rank order of potency: metipranolol approximately alprenolol approximately propranolol > oxprenolol > practolol. Atenolol was ineffective in inhibiting TXB2 production in stimulated platelets. The inhibition of thrombin-stimulated TXB2 formation by BAB drugs correlated with their inhibitory effect on thrombin-stimulated platelet aggregation, arachidonic acid liberation from membrane phospholipids and with their membrane fluidization. The higher was the liposolubility of the beta-adrenoceptor blocking drugs investigated, the higher was their inhibition of stimulated TXB2 formation. Hydrophilic, selective atenolol and practolol revealed slight or no inhibitory effect on stimulated thromboxane production.  相似文献   

14.
INTRODUCTION: Thrombin stimulation enhances plasminogen binding to platelets and promotes platelet-dependent plasmin generation. The objective of this study was to determine whether carboxyterminal lysines (C-lysines) are important for these processes, as they are in other cell types. MATERIALS AND METHODS: 125I-plasminogen and varying concentrations of unlabeled plasminogen were added to washed platelets that were either resting or stimulated with thrombin, thrombin receptor activating peptide, or ADP. In some experiments the platelets were digested with carboxypeptidase B to remove C-lysines. Platelet-dependent plasmin generation was also studied by adding plasminogen and tissue plasminogen activator to platelet suspensions and monitoring the conversion of a plasmin specific chromogenic substrate. The cells were either resting or stimulated with thrombin, thrombin receptor activating peptide, or ADP. The effect of the thrombin inhibitor lepirudin and the plasmin inhibitor aprotinin on plasminogen binding and the appearance of C-lysines was also investigated. RESULTS: Thrombin, but not thrombin receptor activating peptide or ADP, stimulated high-affinity binding of plasminogen and greatly promoted platelet-dependent plasmin generation. Digestion with carboxypeptidase B eliminated thrombin-induced high-affinity binding and reduced thrombin-induced plasmin generation by increasing the Michaelis constant. Lepirudin, but not aprotinin, inhibited thrombin-stimulated plasminogen binding to platelets. CONCLUSION: C-terminal lysines are necessary for high-affinity binding of plasminogen to platelets and for platelet-supported plasmin generation. The origin of the C-lysines is not clear, but they may result from a direct effect of thrombin, rather than an intermediate enzyme such as plasmin.  相似文献   

15.
The influence of forskolin, an adenylate cyclase activator, and of dibutyryl cyclic AMP (Bt2cAMP) on [3H]glycerol incorporation into glycerolipids was investigated in human platelets. It was found that preincubation with 2.5 mM Bt2cAMP produced a 2-4-fold increase in thrombin-induced incorporation into phospholipids compared to platelets activated by thrombin alone. Pretreatment with forskolin, which increased cellular cAMP content, also resulted in an increase in thrombin-stimulated [3H]glycerol incorporation into phospholipids. These findings demonstrate that a rise in platelet cAMP can accentuate thrombin-induced de novo synthesis of phospholipids from [3H]glycerol. Since the content of cellular cAMP was correlated with its ability to inhibit platelet activation monitored by serotonin release, it seems likely that glycerolipid, in particular phospholipid biosynthesis, is involved in controlling platelet activation by thrombin.  相似文献   

16.
Thrombin, a serine protease generated by the activation of the blood coagulation cascade following vessel injury, converts fibrinogen to fibrin, activates platelets and several coagulation factors, and plays a pivotal role in thrombosis and haemostasis. Thrombin acts as a mitogen and apoptosis inducer in a dose-dependent fashion. We have previously shown that thrombin caused proliferation of vascular smooth muscle cells (VSMCs). Here, we show that a low concentration of thrombin caused proliferation of mouse neuroblastoma (Neuro-2a) and human neuroblastoma (NB-1) cells, while higher concentrations affected cell viability in a time-dependent manner. Similar effects were observed when thrombin receptor agonist peptide (SFLLRNPNDKYEPF, TRAP) was applied. The dying cells showed nuclear condensation and fragmentation, suggesting that cell death occurred by apoptosis. The extent to which thrombin induced cell death was significantly attenuated by recombinant thrombomodulin (rTM), or by a minimum functional domain of TM, termed E456. Furthermore, a synthetic compound that inhibits signaling from the thrombin receptor, 4-cyano-5,5-bis (4-methoxyphenyl)-4-pentanoic acid (E5510), and the antioxidant N-acetyl L-cysteine (NAC), efficiently prevented thrombin-induced Neuro-2a cell death. Thus, thrombin inhibitors and antioxidant appear to neutralize thrombin toxicity.  相似文献   

17.
Inhibition of platelet aggregation by some flavonoids.   总被引:14,自引:1,他引:13  
The inhibitory effects of five flavonoids on the aggregation and secretion of platelets were studied. These flavonoids inhibited markedly platelet aggregation and ATP release of rabbit platelets induced by arachidonic acid or collagen, and slightly those by platelet-activating factor. ADP-induced platelet aggregation was also suppressed by myricetin, fisetin and quercetin. The IC50 on arachidonic acid-induced platelet aggregation was: fisetin, 22 microM; kaempferol, 20 microM; quercetin, 13 microM; morin, 150 microM less than IC50 less than 300 microM. The thromboxane B2 formations were also inhibited by flavonoids in platelets challenged with arachidonic acid. Fisetin, kaempferol, morin and quercetin antagonized the aggregation of washed platelets induced by U46619, a thromboxane A2/prostaglandin endoperoxides mimetic receptor agonist. In human platelet-rich plasma, quercetin prevented the secondary aggregation and blocked ATP release from platelets induced by epinephrine or ADP. These results demonstrate that the major antiplatelet effect of flavonoids tested may be due to both the inhibition of thromboxane formation and thromboxane receptor antagonism.  相似文献   

18.
Osthole, isolated from Chinese herb Angelica pubescens, inhibited platelet aggregation and ATP release induced by ADP, arachidonic acid, PAF, collagen, ionophore A23187 and thrombin in washed rabbit platelets. It showed a weak activity in platelet-rich plasma. Osthole inhibited the thromboxane B2 formation caused by arachidonic acid, collagen, ionophore A23187 and thrombin in washed platelets, and also the thromboxane B2 formation caused by the incubation of lysed platelet homogenate with arachidonic acid. The generation of inositol phosphates in washed platelets caused by collagen, PAF and thrombin was suppressed by osthole. These data indicate that the inhibitory effect of osthole on platelet aggregation and release reaction was due to the inhibition of thromboxane formation and phosphoinositides breakdown.  相似文献   

19.
Thrombin is a pivotal enzyme formed in the coagulation cascade and an important and potent platelet activator. The two protease-activated thrombin receptors on human platelets are denoted PAR1 and PAR4. The physiological relevance of PAR4 is still unclear, as both aggregation and secretion can be accomplished by PAR1 activation alone. In the present study we have investigated the role of PARs in platelet activation, blood coagulation, clot elasticity and fibrinolysis. Flow cytometry, free oscillation rheometry and thrombin generation measurements were used to analyze blood or platelet-rich plasma from healthy individuals. Maximum PAR1 activation with the peptide SFLLRN gave fewer fibrinogen-binding platelets with lower mean fluorescent intensity than maximum PAR4 activation with AYPGKF. Inhibition of any of the receptors prolonged clotting times. However, PAR1 is more important for fibrinolysis; inhibition of this receptor prolonged all the steps in the fibrinolytic process. Clot elasticity decreased significantly when the PAR4 receptor was inhibited. In the thrombin generation measurements, PAR4 inhibition delayed the thrombin generation start and peak, but did not affect the total amount of thrombin generated. PAR1 inhibition had no significant impact on thrombin generation. We found that PAR4 is most likely activated by low concentrations of thrombin during the initial phase of thrombin generation and is of importance to the clotting time. Furthermore, we suggest that the PAR4 receptor may have a physiological role in the stabilisation of the coagulum.  相似文献   

20.
We have demonstrated that in vitro addition of vincristine to human platelets: 1) inhibits aggregation induced by arachidonic acid, epinephrine, collagen, thrombin and ADP; 2) inhibits arachidonic acid conversion to thromboxane A2; and 3) inhibits generation of thromboxane A2 upon stimulation by mechanical agitation, collagen, or thrombin. It is suggested that the inhibitory effect of vincristine on platelet aggregation is due to the inhibition of thromboxane A2 production. Vincristine has no demonstrable effect on the release of prostacyclin from normal rat aorta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号