首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluvastatin (Fluva), a synthetic inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, induces CYP2B1/2 in rat liver and primary cultured rat hepatocytes. However, the overall profile of CYP induction, which includes induction of CYP4A, suggests that Fluva is not a typical "phenobarbital (PB)-like" inducer. Several treatments affecting diverse cell signaling pathways have been reported to modify PB-inducible CYP2B expression in primary cultured rat hepatocytes. We examined the effects of selected treatments on the ability of Fluva to induce CYP2B1/2 mRNA. Only dexamethasone (Dex) produced effects on Fluva-inducible CYP2B1/2 mRNA expression that differed from those produced on PB-inducible CYP2B1/2 mRNA expression. Dex concentrations up to 10(-7) M of potentiated PB (10(-4) M)-mediated CYP2B1/2 mRNA induction, while higher Dex concentrations produced a progressive reduction in PB-induced CYP2B1/2 mRNA levels. By contrast, Dex concentrations up to 10(-8) M had no effect on Fluva (3 x 10(-5) M)-induced CYP2B1/2 mRNA levels, while Dex concentrations of 10(-7) M and higher markedly suppressed Fluva-mediated CYP2B1/2 mRNA induction. The concentrations of several glucocorticoids that produced suppression of Fluva-induced CYP2B1/2 mRNA levels were the same concentrations that induced CYP3A mRNA. Treatment with pregnenolone 16 alpha-carbonitrile also produced a concentration-dependent suppression of Fluva-induced CYP2B1/2 mRNA levels. Dex-mediated suppression of Fluva-induced CYP2B1/2 mRNA was concentration-dependently reversed when hepatocytes were cotreated with troleandomycin, a selective CYP3A inhibitor. The amounts of Fluva detected in culture medium and cells were reduced significantly when hepatocytes were incubated with Dex. However, Dex-mediated suppression of Fluva-induced CYP2B1/2 mRNA expression was not overcome when hepatocytes were incubated with Fluva concentrations greater than 3 x 10(-5) M, suggesting that mechanisms other than CYP3A-catalyzed metabolism may contribute to Dex-mediated suppression of Fluva-induced CYP2B1/2 expression.  相似文献   

2.
Our previous studies have suggested a role for AMP-activated protein kinase (AMPK) in the induction of CYP2B6 by phenobarbital (PB) in hepatoma-derived cells (Rencurel et al., 2005). In this study, we showed in primary human hepatocytes that: 1) 5'-phosphoribosyl-5-aminoimidazol-4-carboxamide 1-beta-d-ribofuranoside and the biguanide metformin, known activators of AMPK, dose-dependently increase the expression of CYP2B6 and CYP3A4 to an extent similar to that of PB. 2) PB, but not the human nuclear receptor constitutive active/androstane receptor (CAR) ligand 6-(4-chlorophenyl)imidazol[2,1-6][1,3]thiazole-5-carbaldehyde, dose-dependently increase AMPK activity. 3) Pharmacological inhibition of AMPK activity with compound C or dominant-negative forms of AMPK blunt the inductive response to phenobarbital. Furthermore, in transgenic mice with a liver-specific deletion of both the alpha1 and alpha2 AMPK catalytic subunits, basal levels of Cyp2b10 and Cyp3a11 mRNA were increased but not in primary culture of mouse hepatocytes. However, phenobarbital or 1,4 bis[2-(3,5-dichloropyridyloxy)]benzene, a mouse CAR ligand, failed to induce the expression of these genes in the liver or cultured hepatocytes from mice lacking hepatic expression of the alpha1 and alpha2 subunits of AMPK. The distribution of CAR between the nucleus and cytosol was not altered in hepatocytes from mice lacking both AMPK catalytic subunits. These data highlight the essential role of AMPK in the CAR-mediated signal transduction pathway.  相似文献   

3.
Infection-associated inflammation can alter the expression levels and functions of cytochrome P450s (CYPs). Cyp gene expression is regulated by the activation of several nuclear receptors, including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR). These receptors can be activated by xenobiotics, including medicines. Here, to study the xenobiotic-induced fluctuations in CYP during inflammation, we examined the effect of lipopolysaccharide (LPS) treatment on the level of mRNAs encoding hepatic CYPs induced by xenobiotic-activated nuclear receptors, in mice. Both the mRNA induction of Cyp genes and the metabolic activities of CYP proteins were examined. LPS treatment caused a significant decrease in the induced expression of the mRNAs for Cyp3a11, 2c29, 2c55, and 1a2, but not for Cyp2b10. To assess the CYP enzymatic activities, CYP3A-mediated testosterone 6β-hydroxylation and the intrinsic clearance (CL(int)) of nifedipine in liver microsomes were measured in mice treated with the xenobiotic pregnenolone-16alpha-carbonitrile (PCN) with or without LPS administration. Both assays revealed that the CYP3A activity, which was induced by PCN, declined significantly after LPS treatment, and this decline correlated with the Cyp3a11 mRNA level. In addition, we found that the mRNAs for interleukin (IL)-1β and tumor necrosis factor (TNF) α were increased after treatment with LPS plus xenobiotics. Our findings demonstrated that LPS treatment reduces the PXR- and AhR-mediated, and possibly CAR-mediated Cyp gene expression and further suggest that these decreases are dependent on inflammatory cytokines in the liver.  相似文献   

4.
Propiconazole is a N-substituted triazole used as a fungicide on fruits, grains, seeds, hardwoods, and conifers. In the present study, propiconazole was examined for its effects on the expression of hepatic cytochrome P450 genes and on the activities of P450 enzymes in male Sprague-Dawley rats and male CD-1 mice. Rats and mice were administered propiconazole by gavage daily for 14 days at doses of 10, 75, and 150 mg/kg body weight/day. Quantitative real time RT-PCR assays of rat hepatic RNA samples from animals treated at the 150 mg/kg body weight/day dose revealed significant mRNA overexpression of the following genes compared to control: CYP1A2 (1.62-fold), CYP2B1 (10.8-fold), CYP3A1/CYP3A23 (2.78-fold), and CYP3A2 (1.84-fold). In mouse liver, propiconazole produced mRNA overexpression of Cyp2b10 (2.39-fold) and Cyp3a11 (5.19-fold). mRNA expression of CYP1A1 was not detected in liver tissues from treated or controls animals from either species. Propiconazole significantly induced both pentoxyresorufin O-dealkylation (PROD) and methoxyresorufin O-dealkylation (MROD) activities in both rat and mouse liver at the 150 mg/kg body weight/day and 75 mg/kg body weight/day doses. In summary, these results indicated that propiconazole induced CYP1A2 in rat liver and CYP2B and CYP3A families of isoforms in rat and mouse liver.  相似文献   

5.
High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 μM MTF and 50 μM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2′-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10–1000 μM MTF and 100–500 μM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5–50 ng/ml epidermal growth factor or 5–100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver.  相似文献   

6.
The CYP3As are broad-spectrum drug-metabolizing enzymes that are collectively responsible for more than 50% of xenobiotic metabolism. Unlike other CYP3As, murine CYP3A44 is expressed predominantly in the female liver, with much lower levels in male livers and no detectable expression in brain or kidney in either gender. In this study, we examined the role of nuclear hormone receptors in the regulation of Cyp3a44 gene expression. Interestingly, we observed differential effects of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) -mediated activation of Cyp3a44 gene expression, which was gender-specific. For example, activation of PXR by pregnenolone-16alpha-carbonitrile (PCN) and dexamethasone (DEX) induced CYP3A44 mRNA levels in a PXR-dependent fashion in male mice, whereas no induction was detected in female mice. In contrast, PCN and DEX down-regulated CYP3A44 expression in female PXR null animals. Similar to PXR, CAR activation also showed a male-specific induction with no effect on CYP3A44 levels in females. When PXR knockout mice were challenged with the CAR activator phenobarbital, a significant up-regulation of male CYP3A44 levels was observed, whereas levels in females remained unchanged. We conclude that gender has a critical impact on PXR- and CAR-mediated effects of CYP3A44 expression.  相似文献   

7.
Multiple transporter systems are involved in the disposition of xenobiotics and endogenous compounds. The pregnane X receptor (PXR) is a major chemical sensor known to activate the expression of CYP3A/Cyp3a in humans and rodents. The purpose of this study is to systematically determine whether the major xenobiotic transporters in liver, kidney, duodenum, jejunum, and ileum are induced by pregnenolone-16alpha-carbonitrile (PCN), and whether this increase is mediated by the nuclear receptor PXR. In liver, PCN induced the expression of Oatp1a4 and Mrp3 mRNA in wild-type (WT) mouse liver, but not in PXR-null mice. In kidney, PCN did not alter the expression of any drug transporter. In duodenum, PCN increased Abca1 and Mdr1a mRNA expression in WT mice, but not in PXR-null mice. In jejunum and ileum, PCN increased Mdr1a and Mrp2 mRNA, but decreased Cnt2 mRNA in WT mice, but none of these transporters was altered when PCN was administered to PXR-null mice. Therefore, PCN regulates the expression of some transporters, namely, Oatp1a4 and Mrp3 in liver, as well as Abca1, Cnt2, Mdr1a, and Mrp2 in small intestine via a PXR-mediated mechanism.  相似文献   

8.
9.
Paclitaxel, a taxane anti-microtubule agent, is known to induce CYP3A in rat and human hepatocytes. Recent studies suggest that a member of the nuclear receptor family, pregnane X Receptor (PXR), is a key regulator of the expression of CYP3A in different species. We investigated the role of PXR activation, in vitro and in vivo, in mediating Cyp3a induction by paclitaxel. Pregnenolone 16 alpha-carbonitrile (PCN), an antiglucocorticoid, was employed as a positive control for mouse PXR (mPXR) activation in vitro, and Cyp3a induction in vivo. In cell based reporter gene assays paclitaxel and PCN activated mPXR with an EC(50) of 5.6 and 0.27 microM, respectively. Employing PXR wild-type and transgenic mice lacking functional PXR (-/-), we evaluated the expression and activity of CYP3A following treatment with paclitaxel and PCN. Paclitaxel significantly induced CYP3A11 mRNA and immunoreactive CYP3A protein in PXR wild-type mice. Consistent with kinetics of CYP3A induction, the V(max) of testosterone 6 beta-hydroxylation in microsomal fraction increased 15- and 30-fold in paclitaxel- and PCN-treated mice, respectively. The Cyp3a induction response was completely abolished in paclitaxel- and PCN-treated PXR-null mice. This suggests that paclitaxel-mediated CYP3A induction in vivo requires an intact PXR-signaling mechanism. Our study validates the use of PXR activation assays in screening newer taxanes for potential drug interactions that may be related to PXR-target gene induction.  相似文献   

10.
CYP2S1 is an evolutionarily conserved, mainly extra-hepatic member of the CYP2 family and proposed to be regulated by the aryl hydrocarbon receptor (AhR). The present study explores AhR's regulation of CYP2S1 in male Sprague Dawley rats using PCB126 (3,3',4,4',5-pentachlorobiphenyl), the most potent AhR agonist among the PCBs. Additionally, CYP2S1 expression was examined after treatments with the classic CYP-inducers β-naphthoflavone (β-NF, AhR activator), phenobarbital (PB, CAR activator) and dexamethasone (Dex, PXR activator). CYP2S1 and CYP1A1/2, CYP1B1, CYP2B and CYP3A mRNAs were measured in liver, lung, spleen, stomach, kidney, and thymus at different time points. Constitutive CYP2S1 was expressed at comparable levels to other CYPs with the highest expression levels in stomach, kidney and lung. CYP2S1 mRNA was only non-significantly elevated by β-NF in liver tissues. PCB126 did not increase CYP2S1 mRNA in any organ and at any time point examined despite a significant induction of CYP1 genes. PCB126 reduced CYP2S1 mRNA by 40% (not significant) from the 7th post-exposure day in thymus. PB and Dex had no effect on CYP2S1 mRNA levels. These observations show that in this model CYP2S1 is not, or only weakly, regulated by AhR and not induced by CAR or PXR activators.  相似文献   

11.
Models of inflammation and infection, such as bacterial lipopolysaccharide (LPS), cause suppression of cytochrome P450 expression in various species, although the mechanisms involved are poorly understood. The effects of LPS on expression of phenobarbital (PB)-induced CYP2B1/2 in rats have been well characterized, but less is known about the effects of LPS on PB-induced CYP2B in mice. Since genetically manipulated mice represent an attractive model to study the mechanisms involved in the down-regulation of CYP2B expression by LPS, we investigated the effects of LPS on PB-induced CYP2B expression in mouse liver. Female C57BL/6 mice were injected with 100 mg/kg PB once daily for 4 days to induce CYP2B10 expression, and 1 mg/kg LPS was injected i.p. with the last PB dose. LPS inhibited the mRNA expression of CYP2B10 and CYP2B9 at 6 and 12 h of treatment, with the inhibitory effect more profound at 12 h. LPS also suppressed the CYP2B9 mRNA level at 24 h. However, CYP2B10 mRNA levels in mice treated with PB alone had declined markedly by 24 h after the last PB injection; therefore, no effect of LPS could be discerned. Further experiments showed that injections of 33 mg/kg PB every 8 h produced more stable CYP2B10 mRNA and enzymatic activity. Suppression of CYP2B protein level was found in LPS-treated animals at 24 h of treatment, although no significant effects were noticed at 6 and 12 h of treatment. This study suggests that LPS suppresses the expression of phenobarbital-induced CYP2B expression in mice, which resembles its effects in rats.  相似文献   

12.
The role of the glucocorticoid receptor (GR) and pregnane X receptor (PXR) in the regulation of female-predominant expression of mouse CYP3A44 by glucocorticoid hormones was evaluated using a primary culture of female mouse hepatocytes, as the expression was suppressed in adrenalectomized female mice, restored by dexamethasone (DEX) treatment and was not detected in male mouse livers. Glucocorticoid hormones, such as DEX, hydrocortisone, and corticosterone, 11beta-[4-dimethylamino] phenyl-17beta-hydroxy-17-[1-propynyl]estra-4,9-diene-3-one (RU486), antagonists for GR and an agonist for PXR, and rifampicin, an agonist for PXR, were chosen to investigate the relationship of GR/PXR activation and Cyp3a44 gene expression. Glucocorticoid-inducible expression of CYP3A44 was not suppressed but rather was increased by RU486. Treatment of GR expression plasmid-transfected hepatocytes with DEX concentration dependently enhanced the expression of PXR as well as CYP3A44 mRNAs. A synergistic effect of DEX at submicromolar concentrations and rifampicin is observed. Furthermore, transfection of PXR and retinoid X receptor-alpha (RXRalpha) also showed prominent induction of CYP3A44 mRNA by DEX. These results suggest that DEX plays a dual role in CYP3A44 expression: first, direct activation of the Cyp3a44 gene by the PXR-RXRalpha complex, and, second, indirect activation of the Cyp3a44 gene through the induction of PXR gene expression by the GR pathway.  相似文献   

13.
The effect of cell shape, cell density, contact with extracellular matrix and cell polarity on the phenobarbital (PB)-induced gene expression of CYP2B1 and CYP2B2 (CYP2B1/2B2) in adult rat hepatocytes was investigated. High cell density enhanced the induction of CYP2B1/2B2 gene expression by PB. Hepatocytes cultured on EHS gel showed a spherical cell shape and highly enhanced the induction of CYP2B1/2B2 gene expression by PB. Although monolayer hepatocytes cultured on type I collagen (TIC) and type IV collagen exhibited poor induction of CYP2B1/2B2 gene expression by PB, monolayer cells on laminin showed substantial induction. The addition of soluble laminin to media did not show any effect on induction in monolayer hepatocytes cultured on TIC. Dishes coated with different concentrations of immovable laminin demonstrated complicated effects. Coating with higher concentrations of laminin resulted in greater induction of CYP2B1/2B2 gene expression by PB. On the other hand, when hepatocytes were cultured on dishes coated with lower concentrations of laminin, they became round and greater induction of CYP2B1/2B2 gene expression by PB was observed. Spherical hepatocytes cultured on low concentrations of TIC also showed highly enhanced induction of CYP2B1/2B2 gene expression by PB. EHS gel overlay to hepatocytes cultured on TIC and collagen sandwich configurations that are known to induce cell polarity enhanced the induction by PB. The induction of CYP2B1/2B2 gene expression needed cytoskeleton organization, such as actin filament, microtubule filament and intermediate filament. These results demonstrate that cell shape, cell density, contact with extracellular matrix and cell polarity all play critical roles in the induction of CYP2B1/2B2 gene expression by PB.  相似文献   

14.
We previously demonstrated that multidrug resistance protein 3 (Mrp3/ABCC3) is induced in rat liver by phenobarbital (PB) and several other microsomal enzyme inducers that induce cytochrome P450 2B (CYP2B). CYP2B is induced by constitutive androstane receptor (CAR)-retinoid X receptor (RXR) heterodimer binding to a phenobarbital-responsive promoter element in the CYP2B promoter. Hepatic mRNA levels of CYP2B and Mrp3 were measured in three models of altered CAR activity to determine whether CAR is also involved in the induction of Mrp3. In Wistar Kyoto rats, where males express higher CAR protein levels than females, the induction of CYP2B1/2 was significantly higher in males than in females by PB, diallyl sulfide, and trans-stilbene oxide but not oltipraz. Mrp3 was induced by each of these treatments, but in contrast to CYP2B1/2, to a similar magnitude in males and females. In male hepatocyte-specific RXRalpha-/- mice, CYP2B10 was not induced by diallyl sulfide or oltipraz but remained inducible by PB and trans-stilbene oxide after considering the decrease in basal CYP2B10 expression. Mrp3, however, was induced by PB, diallyl sulfide, trans-stilbene oxide and oltipraz in both wild-type and RXRalpha-/- mice. Additionally, constitutive expression of Mrp3 was significantly reduced in RXRalpha-/- mice. In CAR-/- mice, the robust induction of CYP2B10 by PB was completely absent. However, Mrp3 was equally induced both in wild-type and CAR-/- mice by PB. These data clearly demonstrate that induction of hepatic Mrp3 by PB and other microsomal enzyme inducers is CAR-independent and implies a role for RXRalpha in the constitutive expression of Mrp3.  相似文献   

15.
16.
17.
Lupp A  Danz M  Müller D 《Toxicology》2005,206(3):427-438
Precision-cut rat liver slices are a widely accepted in vitro tool for the examination of drug metabolism, enzyme induction or hepatotoxic effects of xenobiotics. After prolonged incubation, however, distinct histopathological changes and increasing losses in function are seen with liver slices from adult animals. Since tissue from neonatal animals is expected to be less vulnerable, in the present study liver slices from 1-day-old rats were examined for morphological changes and for the expression of different cytochrome P450 (CYP) isoforms after incubation for up to 24 h and after a 24 h in vitro exposure to beta-naphthoflavone (BNF), phenobarbital (PB), dexamethasone (DEX) or pregnenolone 16alpha-carbonitrile (PCN). In parallel, CYP activities were assessed by different model reactions in slice homogenates and in intact slices. Histopathological changes were less pronounced in liver slices from 1-day-old rats than in those from adult animals. During the 24 h of incubation even a maturation of the tissue occurred, since the proportion of haemopoietic stem cells declined and the glycogen content of the hepatocytes increased. The CYP expression pattern after 2 and 24 h of incubation was similar to that of normal liver specimens from neonatal rats showing a moderate CYP1A1, 2B1 and 3A2 expression. The immunostaining for CYP1A1 and 2B1 was elevated after incubation with BNF. PB enhanced CYP2B1 and 3A2 expression, and DEX and PCN increased CYP3A2 immunostaining. This induction pattern was paralleled by respective effects on the corresponding model reactions. Thus, besides increased viability, slices from neonatal rats are excellently suited for the evaluation of an in vitro induction of CYP enzymes as well.  相似文献   

18.
目的 研究丁香酸和柠檬苦素对小鼠肝脏细胞色素P450主要亚型mRNA及蛋白表达水平的影响.方法 C57BL/6小鼠随机分为空白对照组、丁香酸组、柠檬苦素组和苯巴比妥组,连续灌胃给药2周,末次给药后处死,提取小鼠肝脏总RNA及肝微粒体,荧光定量聚合酶链式反应(PCR)技术和蛋白质免疫印迹(Western blot)测定CYP450酶主要亚型mRNA和蛋白表达水平.结果 在mRNA水平上,丁香酸对Cyp1a2、Cyp2c37、Cyp2d9 mRNA表达没有明显作用,柠檬苦素对Cyp1a2 mRNA的表达有显著诱导作用;在蛋白水平上,丁香酸对CYP1A1、CYP1A2、CYP3A、CYP2D和CYP2E1蛋白的表达有明显的诱导作用,柠檬苦素对CYP1A1、CYP1A2、CYP2A、CYP2D和CYP2E1有显著的诱导,对CYP2B和CYP2C蛋白表达产生抑制作用.结论 丁香酸和柠檬苦素对细胞色素P450主要亚型均具有不同程度的诱导和抑制作用.  相似文献   

19.
20.
Dehydroepiandrosterone (DHEA), the major precursor of androgens and estrogens, has several beneficial effects on the immune system, on memory function, and in modulating the effects of diabetes, obesity, and chemical carcinogenesis. Treatment of rats with DHEA influences expression of cytochrome P450 (P450) genes, including peroxisome proliferator-activated receptor alpha (PPAR alpha)- and pregnane X receptor (PXR)-mediated induction of CYP4As and CYP3A23, and suppression of CYP2C11. DHEA treatment elevated the expression and activities of CYP3A4, CYP2C9, CYP2C19, and CYP2B6 in primary cultures of human hepatocytes. Induction of CYP3A4 in human hepatocytes was consistent with studies in rats, but induction of CYP2Cs was unexpected. The role of PXR in this response was studied in transient transfection assays. DHEA activated hPXR in a concentration-dependent manner. Because CYP2B6 induction by DHEA in human hepatocytes might involve either PXR or constitutive androstane receptor (CAR) activation, we performed experiments in primary hepatocytes from CAR knockout mice and observed that CAR was required for maximal induction of Cyp2b10 by DHEA. Furthermore, CAR-mediated Cyp2b10 induction by DHEA was inhibited by the inverse agonist of CAR, androstanol (5 alpha-androstan-3 alpha-ol). Further evidence for CAR activation was provided by cytoplasmic/nuclear transfer of CAR upon DHEA treatment. Elucidation of CAR activation and subsequent induction of CYP2B6 by DHEA presented an additional mechanism by which the sterol can modify the expression of P450s. The effect of DHEA on the activation of the xenosensors PPAR alpha, PXR, and CAR, and the consequent potential for adverse drug/toxicant interactions should be considered in humans treated with this nutriceutical agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号