首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of bisphenol A (BPA) on microsomal cytochrome P450 (P450) enzymes in rats. Rats were treated intraperitoneally with BPA daily for 4 days, at doses of 10, 20, and 40 mg/kg. Among the P450-dependent monooxygenase activities, testosterone 2α-hydroxylase (T2AH) and testosterone 6β-hydroxylase (T6BH) activities, which are associated with CYP2C11 and CYP3A2 respectively, were remarkably decreased by 40 mg/kg BPA. The levels of the control activities were 13 and 50%, respectively. Furthermore, immunoblotting showed that BPA (20 or 40 mg/kg) significantly reduced CYP2C11/6 and CYP3A2/1 protein levels in rat liver microsomes. In addition, estradiol 2-hydroxylase (ED2H) and benzphetamine N-demethylase (BZND) activities were significantly decreased by BPA at 20 and 40 mg/kg (by 19–73%). The K m values for T2AH and T6BH in 20 and 40 mg/kg BPA-treated rats were significantly high compared with that in control rats. The V max for T2AH was dose-dependently decreased by BPA treatment, whereas that of T6BH was only decreased by BPA at 40 mg/kg. On the other hand, lauric acid ω-hydroxylase (LAOH) activity was significantly increased by BPA at 20 and 40 mg/kg (1.5- and 1.7-fold, respectively). Immunoblot analysis showed that 20 and 40 mg/kg BPA induced CYP4A1/2 protein expression. However, the activities 7-ethoxyresorufin O-deethylase (EROD), 7-methoxyresorufin O-demethylase (MROD), 7-ethoxycoumarin O-deethylase (ECOD), 7-benzyloxyresorufin O-debenzylase (BROD), aminopyrine N-demethylase (APND), chlorzoxazone 6-hydroxylase (CZ6H), erythromycin N-demethylase (EMND), and testosterone 7α-hydroxylase (T7AH) were not affected by BPA at any dose. These results suggest that BPA affects male-specific P450 isoforms in rat liver, and that these changes closely relate to the toxicity of BPA. Received: 26 January 1998 / Accepted: 26 February 1998  相似文献   

2.
We examined the effect of 1,1-dichloroethylene (1,1-DCE) on microsomal cytochrome P450 (P450) enzymes in rat liver and kidney. Rats were treated intraperitoneally with 1,1-DCE daily for 4 days, at doses of 200, 400, and 800 mg/kg. Among the P450-dependent monooxygenase activities in liver microsomes, testosterone 2α-hydroxylase (T2AH), which is associated with CYP2C11 activity, was remarkably decreased by 800 mg/kg 1,1-DCE. The level relative to control activity was <10%. Furthermore, immunoblotting showed that 1,1-DCE (≥400 mg/kg) significantly decreased CYP2C11/6 protein levels in liver microsomes. In addition, 7-methoxyresorufin O-demethylase (MROD), 7-ethoxycoumarin O-deethylase (ECOD), benzphetamine N-demethylase (BZND), chlorzoxazone 6-hydroxylase (CZ6H), and testosterone 6β-hydroxylase (T6BH) activities were significantly decreased by the highest dose of 1,1-DCE (by 40–70%). However, the activities of other P450-dependent monooxygenases, namely 7-ethoxyresorufin O-deethylase (EROD), 7-benzyloxyresorufin O-debenzylase (BROD), aminopyrine N-demethylase (APND), erythromycin N-demethylase (EMND), lauric acid ω-hydroxylase (LAOH), and testosterone 7α-hydroxylase (T7AH) were not affected by 1,1-DCE at any dose. Immunoblotting showed CYP1A1/2, CYP2B1/2, CYP2E1, and CYP3A2/1 protein levels were significantly decreased by 60–66% by 1,1-DCE (800 mg/kg), whereas that of CYP4A1/2 was not affected by any dose of 1,1-DCE. By contrast, among the P450-dependent monooxygenase activities in kidney microsomes, only CZ6H activity was increased by 1,1-DCE (1.6-fold at 800 mg/kg). Also, it was␣observed that 1,1-DCE (800 mg/kg) significantly increased CYP2E1 protein levels by immunoblotting (∼1.5-fold). These results suggest that 1,1-DCE changes the constitutive P450 isoforms in the rat liver and kidney, and that these changes closely relate to the toxicity of 1,1-DCE. Received: 28 January 1997 / Accepted: 18 August 1997  相似文献   

3.
1. The effects of some biodegradation products of 4-tert-octylphenol ethoxylate (OPEO), namely 4-tert-octylphenol (OP), 4-tert-octylphenol diethoxylate (OP2EO) and 4-tert-octylphenol monocarboxylate (OP1EC) on the kinetics of cytochrome P450 (P450) -dependent monooxygenases in rat liver microsomes have been studied. 2. Testosterone 16β-hydroxylase (TS16BH), testosterone 2α-hydroxylase (TS2AH) and testosterone 6β-hydroxylase (TS6BH) activities were extensively inhibited by OP at 100 μM (56.0-90.3%). Inhibition was competitive for all P450-dependent monooxygenases. Kis of TS16BH, TS2AH and TS6BH from Lineweaver-Burk plots were 6.37, 3.38 and 34.8 μM respectively. 3. The activities of acetanilide 4-hydroxylase(AA4H),7-ethoxycoumarin O-deethylase (ECOD) and bufuralol 1′-hydroxylase (BF1'H) were also effectively inhibited by OP at 100 μM (48.6-56.0%). The inhibition of these P450-dependent monooxygenases was non-competitive, and Kis (50.1-63.9 μM) were higher than those of TS16BH, TS2AH and TS6BH. 4. OP2EO also inhibited AA4H, ECOD, TS16BH, TS2AH, BF1'H and TS6BH activities by 38.7-69.3% at 100 μM, although the inhibition rates were slightly lower than those for OP. Kis were 14.4-106 μM, and the inhibition was of mixed type (AA4H and ECOD), competitive (TS16BH, TS2AH and TS6BH) and non-competitive (BF1'H). 5. Testosterone 7α-hydroxylase (TS7AH), 4-nitrophenol 2-hydroxylase (4NP2H) and lauric acid ω-hydroxylase (LAOH) activities were only slightly affected by OP and OP2EO. 6. The ability of OP1EC to inhibit P450-dependent monooxygenase activities was generally weaker than that of OP and of OP2EO: Ki > 200 μM. 7. These results suggest that OPEO biodegradation products interact with constitutive P450 isoforms, CYP1A2, CYP2A2, CYP2B2, CYP2C11 and CYP3A2 in rat liver in vitro (OP > OP2EO > OP1EC), and that the mechanism of this interaction differs depending on the compound and P450 isoform.  相似文献   

4.
Metabolism of carteolol by cDNA-expressed human cytochrome P450   总被引:2,自引:0,他引:2  
Objectives: To determine human cytochrome P450 isoform(s) (CYPs) involved in the metabolism of carteolol, the biotransformation of the compound was investigated in vitro using ten isoforms of human cytochrome P450 expressed in human AHH-1 TK ± cell lines. In addition, the inhibitory effects of carteolol on the activities of important CYP isoforms, namely, CYP1A2, 2C9, 2C19, 2E1, and 3A4, were examined. Results: Carteolol was metabolised to 8-hydroxycarteolol by CYP 2D6 with KM and Vmax values of 183 μmoles · l−1 and 26.09 pmol · min−1 · pmol−1 P450, respectively. CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4 were not involved in the metabolism of the compound. CYP2D6-mediated carteolol 8-hydroxylase activity was inhibited by quinidine, propranolol, nortriptyline, dextromethorphan, sparteine, bufuralol, and biperiden. Biperiden competitively inhibited the catalytic reaction with a Ki value of 0.45 μmoles · l−1. Carteolol did not affect the following catalytic reactions:␣CYP1A2-mediated (R)-warfarin 6-hydroxylation, CYP2C9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated (S)-mephenytoin 4-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, and CYP3A4-mediated testosterone 6β-hydroxylation. Conclusion: 8-Hydroxylation is the only cytochrome P450-catalyzed metabolic reaction of carteolol by its expressed microsomes, and CYP2D6 is the principal isoform of the enzyme involved in the catalytic reaction. Carteolol has neither stimulative nor inhibitory effects on CYP1A2, 2C9, 2C19, 2E1, and 3A4 activities. Received: 17 December 1996 / Accepted in revised form: 11 March 1997  相似文献   

5.
In this study we investigated cytochrome P450 (CYP) 2E1 expression using a probe drug, chlorzoxazone (CZX), whose metabolism can be used to monitor toluene exposure in rats. The animals received an i.p. injection of toluene (0.25, 0.5 and 1 ml/kg) once a day for 3 days. The total CYP and CYP2E1 content and the aniline and CZX hydroxylase activity (V max and CLint) increased depending on the dose of toluene administered. At the highest concentration (128 mM) of diethyldithiocarbamate, a specific inhibitor of CYP2E1, the production of 6-hydroxychlorzoxazone (HCZX) in microsomes from toluene-treated rats was reduced by about 80%. The IC50 values in microsomes from toluene-treated rats were between 3 and 5 μM. The production of HCZX and the activity of aniline hydroxylase in toluene-treated rats were correlated with the amount of rat CYP2E1 protein (r=0.88 and r=0.88, respectively). The elimination of CZX by toluene-treated rats was increased and the HCXZ production in the toluene-treated group was greater than that in the olive oil control group. The correlations between intrinsic clearance (CLint: V max/K m) in vitro and total body clearance (CLtot) of CZX hydroxylation and the elimination half-life (t 1/2) of CZX in vivo in toluene-treated rats were high (r=0.784, P < 0.001; r=−0.678, P < 0.001, respectively). In addition, the metabolic plasma HCZX/CZX ratio did not require multiple blood sampling and 2 h after CZX administration in vivo there was also a high correlation with CLint (V max/K m) in vitro (r=−0.729, P < 0.001). In conclusion, these results demonstrate that CZX is a very good probe for monitoring induction in toluene-treated rats. Received: 28 September 1999 / Accepted: 10 January 2000  相似文献   

6.
Objective: Metabolic interactions at the level of drug-metabolising enzymes are important for drug therapy. We investigated potential interactions of losartan, irbesartan, valsartan, eprosartan and candesartan with cytochrome P 450 (CYP) enzymes in human liver microsomes. Methods: In incubations with human liver microsomes in vitro, the inhibitory potency of angiotensin-II receptor antagonists (sartans) on CYP-specific model activities were compared by measuring the IC50 and, with respect to more potent inhibition, K i values. Results: None of the five sartans inhibited CYP2A6-, CYP2D6- or CYP2E1-associated activities (coumarin 7-hydroxylation, dextromethorphan O-demethylation and chlorzoxazone 6-hydroxylation, respectively) to any significant extent. Losartan and irbesartan inhibited the CYP2C9-associated tolbutamide methylhydroxylation more potently (K i values 4.1 μM and 24.5 μM), than valsartan, candesartan or eprosartan (K i values 135 μM, 155 μM and >1000 μM, respectively). Losartan and irbesartan inhibited CYP1A2- and CYP3A4-associated activities (ethoxyresorufin O-deethylation and testosterone 6β-hydroxylation) with relatively weak affinities (IC50 values between 200 μM and 500 μM). CYP2C19-associated S-mephenytoin 4′-hydroxylation activity was inhibited by losartan (IC50 value 138 μM) and much less or not at all by the other sartans tested. Conclusion: All sartans except eprosartan have at least some affinity for CYP2C9, but only losartan has an affinity for CYP2C19. Losartan and irbesartan have modest affinity for CYP1A2 and CYP3A4. This would suggest that the theoretical potential for drug interactions is likely to be quite low, with the possible exceptions of losartan and irbesartan for CYP2C9. Based on these findings, further studies on the interaction potential of losartan and irbesartan are warranted. Received: 27 October 1999 / Accepted in revised form: 10 February 2000  相似文献   

7.
Objective: The present study was conducted to identify in vitro the cytochrome P450(CYP) isoform involved in the metabolic conversion of reduced haloperidol to haloperidol using microsomes derived from human AHH-1 TK +/− cells expressing human cytochrome P450s. The inhibitory and/or stimulatory effects of reduced haloperidol or haloperidol on CYP2D6-catalyzed carteolol 8-hydroxylase activity were also investigated. Results: The CYP isoform involved in the oxidation of reduced haloperidol to haloperidol was CYP3A4. CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 2E1 were not involved in the oxidation. The kM value for the CYP3A4 expressed in the cells was 69.7 μmol · l−1, and the Vmax was 4.87 pmol · min−1 · pmol−1 P450. Troleandomycin, a relatively selective probe for CYP3A enzymes, inhibited the CYP3A4-mediated oxidation of reduced haloperidol in a dose-dependent manner. Quinidine and sparteine competitively inhibited the oxidative reaction with a ki value of 24.9 and 1390 μmol · l−1, respectively. Carteolol 8-hydroxylase activity, which is a selective reaction probe for CYP2D6 activity, was inhibited by reduced haloperidol with a ki value of 4.3 μmol · l−1. Haloperidol stimulated the CYP2D6-mediated carteolol 8-hydroxylase activity with an optimum concentration of 1 μmol · l−1, whereas higher concentrations of the compound (>10 μmol · l−1) inhibited the hydroxylase activity. Conclusion: It was concluded that CYP3A4, not CYP2D6, is the principal isoform of cytochrome P450 involved in the metabolic conversion of reduced haloperidol to haloperidol. It was further found that reduced haloperidol is a substrate of CYP3A4 and an inhibitor of CYP2D6, and that haloperidol has both stimulatory and inhibitory effects on CYP2D6 activity. Received: 10 April 1997 / Accepted in revised form: 16 December 1997  相似文献   

8.
Objective: Interindividual variations in immunoreactivity and function of three major human drug metabolising P450 monooxygenases has been investigated in liver microsomes from 42 Caucasians (kidney donors or liver biopsies). Methods: Diclofenac 4′-hydroxylation, dextromethorphan O-demethylation and midazolam 1′-hydroxylation, measured by HPLC in incubates, were used as probes to determine CYP2C9, CYP2D6 and CYP3A4 function kinetics, respectively. Immunoquantification of the three isoforms was achieved by Western blotting, using rabbit polyclonal antibodies raised against human CYP2C9 and human CYP3A4, and mouse monoclonal antibody raised against human CYP2D6. Results: Diclofenac 4′-hydroxylation exhibited Michaelis-Menten kinetics with kM= 3.4 μmol ⋅l−1 and Vmax = 45 nmole ⋅mg−1P ⋅h−1. Relative immunoreactivity of CYP2C9 was correlated with Vmax and CLint. Dextromethorphan O-demethylation in EM (extensive metabolisers) liver microsomes also showed Michaelis-Menten kinetics, with kM = 4.4 μmol ⋅l−1 and Vmax = 5.0 nmol ⋅mg−1P ⋅h−1. Relative immunoreactivity of CYP2D6 was correlated with Vmax and CLint. Midazolam 1′-hydroxylation also exhibited Michaelis-Menten kinetics with kM = 3.3 μmol ⋅l−1 and Vmax = 35 nmol ⋅mg−1P ⋅h−1. Relative immunoreactivity of CYP3A4 was correlated with Vmax and CLint. Immunoreactivity and function were correlated for each isozyme, but there was no cross correlation between isozymes. Conclusion: The velocity of metabolite formation (Vmax) by the three major human drug metabolising P450 monooxygenases is correlated with their immunoreactivity in liver microsomes. Interindividual variation was much larger for Vmax than kM. Interindividual variability was more pronounced for CYP2D6, probably due to the presence of several different functional alleles in the population of extensive metabolisers. Received: 27 December 1995/Accepted in revised form: 29 March 1996  相似文献   

9.
 This study aimed to investigate the effect of single and repeated administration of fenarimol on murine liver, kidney and lung microsomal CYP-catalyzed drug metabolism. The modulation of the regio- and stereo-selective hydroxylation of testosterone by fenarimol was considered in evaluating cocarcinogenic properties. Induction or suppression of different CYPs was recorded after a single dose of the fungicide. For example, in liver, 6β-(mainly associated with CYP3A), 7α- and 2β-testosterone hydroxylase (TH) activities were induced up to 4.8-fold (7α-TH) in female mice, at a dose of 150 mg/kg. In contrast, at 150 and 300 mg/kg, 16α-TH (CYP2B9), 17-TH (female) and 6α-TH (CYP2A1 and 2B1, male) activities were appreciably reduced. In extrahepatic tissues, the CYP modulation pattern was different, 16α-TH being the only metabolite decreased (lung, male). In kidney, 16β-TH and 17-TH activities were increased up to 5.8-fold in female mice (lowest dose), while in lung 6α-TH and 7α-TH activities were induced up to 6- and 7-fold, respectively (both doses). Repeated treatment (150 mg/kg for 3 days) was able markedly to induce all steroid hydroxylations, up to 78- fold in 2α-TH activity (male liver). In conclusion, fenarimol has a complex pattern of CYP induction or suppression in various tissues of both sexes, suggesting the possible toxic, cotoxic/cocarcinogenic and promoting potential of this fungicide. Received: 13 June 1995/Accepted: 28 September 1995  相似文献   

10.
The objective of this study was to assess the in vitro uterus relaxing potency of β2-adrenergic receptor (β2-AR) agonists in pregnant rats after in utero administration of the bacterial lipopolysaccharide, Escherichia coli endotoxin (LPS). The LPS (100 μg/kg) was injected into the uterine lumen on day 16 of pregnancy. The effects of β2-AR agonist terbutaline was tested in vitro, in isolated uterine rings precontracted by electric field stimulation. Uterine β2-AR densities were detected by radioligand binding assay, the activated G-protein levels were investigated by a radiolabelled GTP binding assay. Uterine cAMP accumulation and the serum tumor necrosis factor-α (TNF-α) levels were measured by enzyme immunoassay. The endotoxin-evoked preterm delivery occurred on day 21. Higher pD2 values of terbutaline (p < 0.001) were detected in endotoxin-treated rats: 9.14 ± 0.36 vs. 7.71 ± 0.12 compared with sham-operated rats. The densities or the equilibrium dissociation constants of β2-ARs were not different (p > 0.05) in LPS-treated vs. control animals. Serum TNF-α level rose threefold after LPS treatment, but this rise was abolished by thalidomide. In LPS + thalidomide-treated rats, the effect of terbutaline became similar to that in sham-operated controls. By the measurement of myometrial cAMP levels, we documented that the concentration–response curve of terbutaline on cAMP accumulation was shifted to the left in the LPS-treated rats, with a significant rise in the pD2. We concluded that in the case of uterine inflammation, the in vitro uterus-relaxing potency of β2-agonists enhances, which is possibly mediated by TNF-α and uterine cAMP levels and that may serve as a rationale for the use of β2-AR agonists in the attenuation of preterm uterine contractions on an inflammatory basis.  相似文献   

11.
In order to evaluate the potential adverse effects due to genetic polymorphism and/or inter-individual variation, it is necessary to calculate the cytochrome P450 (CYP) contribution to the metabolism of new drugs. In the current study, the in vitro intrinsic clearance (CLint) values of marker substrates and drugs were determined by measuring metabolite formation and substrate depletion, respectively. Recombinant CYP microsomes expressing CYP2C9, CYP2C19 and CYP3A4 with co-expressed cytochrome b5 were used, but those expressing CYP1A2 and CYP2D6 did not have co-expressed cytochrome b5. The following prediction methods were compared to determine the CLint value using data from recombinant CYP enzymes: (1) relative CYP enzyme content in human liver microsomes; (2) relative activity factor (RAF) estimated from the Vmax value; and (3) RAF estimated from the CLint value. Estimating RAF from CLint proved the most accurate prediction method among the three tested, and differences in the CYP3A4 marker reactions did not affect its accuracy. The substrate depletion method will be useful in the early drug-discovery stage when the main metabolite and/or metabolic pathway has not been identified. In addition, recombinant CYP microsomes co-expressed with cytochrome b5 might be suitable for the prediction of the CLint value.  相似文献   

12.
The role of CYP enzymes in cocaine-induced liver damage   总被引:1,自引:0,他引:1  
 Cocaine is hepatotoxic in several species, including man. A high dose of cocaine produces metabolism-dependent, mainly pericentral, liver damage. At 24 h after a single dose of cocaine, mouse hepatic P450 content decreases but CYP2A activities; coumarin 7-hydroxylase and testosterone 15α-hydroxylase increase concomitant with prominent diffuse cell necrosis. Repeated administration of cocaine for up to 5 days decreases CYP1A1/2, 2A4/5, 2Cx, and 2E1 related enzymatic activities. However, after five doses of cocaine, CYP2B10 increases in conjunction with the healing process. In the acute phase, the increased CYP2A activities do not participate in cocaine bioactivation. CYP3A enzymes are principally responsible for the cocaine N-demethylation in human and mouse liver microsomes. The hepatic metabolic CYP enzyme profile will change during prolonged cocaine intake, this being accompanied by altered cell morphology. Possible connections to cocaine toxicity in man are discussed. Received: 5 September 1994 / Accepted: 21 November 1994  相似文献   

13.
The dose-effect relationships were analysed for several noncarcinogenic endpoints, such as immunological and biochemical responses at subchronic, low dose exposure of female C57BL/6 mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The animals were treated i.p. with TCDD according to the initial- and maintenance-dose principle for a period of 135 days. The initial doses were 1, 10 and 100 ng TCDD/kg, the weekly maintenance doses were 0.2, 2 and 20 ng TCDD/kg, respectively. At days 23, 79 and 135 of TCDD treatment 10 animals of each dose group were killed. As immunological parameters the number of thymocytes and the pattern of thymocyte subpopulations were determined. In liver, lung and thymus, mRNA expression of TGF-α, TGF-β1, TGF-β2, TGF-β3, TNF-α, IL-1β and different CYP1 isoforms (CYP1A1, CYP1A2, CYP1B1) was analysed. In the livers, activities of 7-ethoxyresorufin-O-deethylase (EROD) and 7-methoxyresorufin-O-demethylase (MROD) were measured. TCDD content in the liver was determined. The main results are summarized as follows: (1) The TCDD doses were not sufficient to elicit dose-dependent changes of pattern of thymocyte subpopulation. (2) TCDD failed to change the mRNA expression of TGF-α, TGF-β and TNF-α, but led to an increase of IL-1β mRNA expression in liver, lung and thymus. The results show that the TCDD induced IL-1β mRNA increase is at least as sensitive a marker as the induction of CYP1A isoforms. (3) The expression of CYP1B1 mRNA remained unchanged at the doses tested, while CYP1A1 and CYP1A2 mRNA expression was dose-dependently enhanced. EROD and MROD activities in the liver paralleled the increases of CYP1A1 and CYP1A2 mRNA expression. (4) Regression analysis of the data showed that most of the parameters tested fit a linear model. (5) From the data, a benchmark dose for EROD/MROD activities in the livers of female C57BL/6 mice of about 0.03 ng TCDD/kg per day was calculated. Received: 7 October 1996 / Accepted: 20 November 1996  相似文献   

14.
Nicotine C-oxidation by recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes was investigated using a convenient high-performance liquid chromatographic method. Experiments with recombinant human P450 enzymes in baculovirus systems, which co-express human nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH)-P450 reductase, revealed that CYP2A6 had the highest nicotine C-oxidation activities followed by CYP2B6 and CYP2D6; the K m values by these three P450 enzymes were determined to be 11.0, 105, and 132 μM, respectively, and the V max values to be 11.0, 8.2, and 8.6 nmol/min per nmol P450, respectively. CYP2E1, 2C19, 1A2, 2C8, 3A4, 2C9, and 1A1 catalysed nicotine C-oxidation only at high (500 μM) substrate concentration. CYP1B1, 2C18, 3A5, and 4A11 had no measurable activities even at 500 μM nicotine. In liver microsomes of 16 human samples, nicotine C-oxidation activities were correlated with CYP2A6 contents at 10 μM substrate concentration, whereas such correlation coefficients were decreased when the substrate concentration was increased to 500 μM. Contribution of CYP2B6 (as well as CYP2A6) was demonstrated by experiments with the effects of orphenadrine (and also coumarin and anti-CYP2A6) on the nicotine C-oxidation activities by human liver microsomes at 500 μM nicotine. CYP2D6 was found to have minor roles since quinidine did not inhibit microsomal nicotine C-oxidation at both 10 and 500 μM substrate concentrations. These results support the view that CYP2A6 has major roles for nicotine C-oxidation at lower substrate concentration and both CYP2A6 and 2B6 play roles at higher substrate concentrations in human liver microsomes. Received: 27 October 1998 / Accepted: 11 January 1999  相似文献   

15.
Objective  To investigate the interaction between allicin and omeprazole and to observe the effects of allicin on CYP2C19 and CYP3A4 activity in healthy Chinese male volunteers with different CYP2C19 genotypes. Methods  Eighteen subjects (six CYP2C19*1/CYP2C19*1, four CYP2C19*1/CYP2C19*2, two CYP2C19*1/ CYP2C19*3, and six CYP2C19*2/ CYP2C19*2) were enrolled in a two-phase randomized crossover trial. In each phase, all subjects received placebo or a 180 mg allicin capsule once daily for 14 consecutive days. The pharmacokinetics of omeprazole (20 mg orally on day 15) was determined for up to 12 h following administration by high-performance liquid chromatography. Results  In carriers of the CYP2C19*1/CYP2C19*1 and CYP2C19*1/CYP2C19*2 or *3 genotype, allicin treatment increased the peak plasma concentration (Cmax) of omeprazole by 49.7 ± 7.2 (p < 0.001) and 54.2 ± 9.2% (p < 0.001), and increased the area under the plasma time–concentration curve ( ) of omeprazole by 48.1 ± 9.0 (p = 0.001) and 73.6 ± 26.7% (p < 0.001), respectively. The ratio of of 5-hydroxyomeprazole to omeprazole (a marker for CYP2C19 activity) decreased significantly (p < 0.001 and p = 0.001, respectively). However, no pharmacokinetic parameters were significantly changed by allicin in CYP2C19*2/CYP2C19*2. The Cmax and of omeprazole sulfone were unchanged in all three genotypes. Conclusions  Allicin reduced the metabolism of omeprazole by inhibiting CYP2C19 activity in individuals with the CYP2C19*1/CYP2C19*1 and CYP2C19*1/CYP2C19*2 or *3 genotypes, but not in those with the CYP2C19*2/ CYP2C19*2 genotype. Allicin did not significantly affect the activity of CYP3A4 in all subjects.  相似文献   

16.
Objective: The aim of this study was to find whether endogenous substances could modulate CYP3A activity. There is evidence that CYP3A, a major phase-I xenobiotic metabolizing enzyme, is present in human brain but, at the present time, endogenous substrates for such an enzyme remain to be identified. A possible linkage between the CYP2D6 enzyme and serotonergic transmission has been recently reported by our group. In the same manner, structurally related enzymes such as CYP3A could also be related to endogenous compounds. Methods: CYP3A activity was measured using the enzyme-specific substrate midazolam in human liver microsomes. Several neurotransmitters, precursors, and their metabolites, corresponding to three different metabolic routes, were assayed as putative modulators of CYP3A enzyme activity. These comprised serotonergic, catecolaminergic, and GABAergic transmitters and precursors. The inhibitory capacity of ketoconazole, a competitive inhibitor of CYP3A, was also analyzed for comparison. Results: The kinetic analysis of the midazolam 1-hydroxylase activity measured in microsomes from five human liver samples indicated K m values (mean ± SD) of 5.8 ± 4.9 μM, and Vmax values of 1.7 ± 1.4 nmol min−1 per mg microsomal protein in all the samples used in the study. Of the 14 substances analyzed, adrenaline, serotonin, and 5-hydroxytriptofol were full inhibitors of CYP3A enzyme activity (Ki values of 42.3, 26.4, and 43 μM, respectively). The remaining substances were weak inhibitors or had no inhibitory effect. Conclusion: Brain CYP3A activity could be modulated by some neurotransmitters and precursors. Received: 28 October 1999 / Accepted in revised form: 10 February 2000  相似文献   

17.
The ratio of urinary 6β-hydroxycortisol (6β-OHF) to free cortisol (F), i.e., the 6β-OHF/F ratio, has been reported to be a specific marker for human CYP3A induction by in vivo studies of human subjects. In the development of drugs, it is quite beneficial to predict human CYP3A induction in preclinical safety studies using urine samples from experimental animals. We examined the 6β-OHF/F ratio in urine of common marmosets administered with rifampicin, a potent inducer of CYP3A, to evaluate the usefulness of common marmosets for the prediction of CYP3A induction. Rifampicin was orally administered to three groups of four male common marmosets at doses of 0, 10, and 20 mg/kg per day for 4 days. Amounts of 6β-OHF and F in urine samples were determined by means of high-performance liquid chromatography (HPLC) during the experimental period. One day after the 4th dosing, animals were killed, and P450 contents and P450-catalyzed, 7-alkoxycoumarin O-dealkylase (ACD) activities in the liver were measured. Western blot analysis of liver microsomes was also performed using anti-rat P450 (CYP1A1, 2B1/2, 3A, and 4A) antibodies. The results indicated elevations in the 6β-OHF/F ratios that were dependent on both the dosing period and dose levels adopted. The ratios on day 4 reached 4.7- and 5.3-fold the pre-administration values in the 10 and 20 mg/kg per day groups, respectively. P450 contents and ACD activities were also elevated in all of the groups. Western blot analysis showed specific increases in the protein which cross-reacts with anti-rat CYP3A antibody in all of the groups. Furthermore, the 6β-OHF/F ratio was well correlated with the CYP3A contents in liver (r = 0.906). These results indicated that increase in urinary excretion of 6β-OHF is a specific marker of the induction of hepatic CYP3A in common marmosets just as in humans. Consequently, the present study suggested that human CYP3A induction elicited by chemical agents can be predicted in common marmosets by measuring the urinary excretion of 6β-OHF. Received: 7 December 1998 / Accepted: 9 March 1999  相似文献   

18.
Objective Thalassemia disease is a genetic haemoglobinopathy usually associated with an iron overload and some degree of organ impairment. The impact of the disease on the drug metabolising enzyme cytochrome P450 (CYP) is not known. CYP2E1 and CYP3A4 are responsible for the metabolism of a large number of drugs and changes in their activities may have clinical consequences. Methods Haemoglobin E-β thalassemia paediatric, blood transfusion-dependent patients apparently without complications (n = 35) and healthy controls (n = 42) were recruited in this study. The ratios of plasma 6-hydroxychlorzoxazone to chlorzoxazone, and urinary 6-beta-hydroxycortisol (6β-OHF) to cortisol were used as indices for CYP2E1 and CYP3A4 activities, respectively. Blood and plasma samples were assayed for parameters of clinical biochemistry, oxidants and antioxidants. Results There were significant increases in serum iron, protein carbonyl and lipid peroxidation in thalassemia patients, whereas there was a decrease in blood glutathione, but unchanged plasma nitric oxide metabolites. CYP2E1 activity in the patients was unchanged; however, when the patients were stratified by splenectomy status, CYP2E1 activity was increased in non-splenectomised patients in comparison with the controls and splenectomised subjects. On the other hand, 6β-OHF/cortisol ratios increased markedly in patients associated with depressed growth hormone levels. There were no correlations between CYP2E1 activity and oxidant stress or antioxidant parameters. Conclusions This report is the first demonstration that thalassemia major is associated with an alteration of CYP2E1 and CYP3A4 activities; this could modify the sensitivity of thalassemia patients to the toxic or therapeutic effects of drugs.  相似文献   

19.
The present study investigated pharmacogenetic associations of common cytochrome P450 3A (CYP3A5 and CYP3A4) polymorphisms with dose requirements of calcineurin inhibitors, cyclosporine (CsA) and tacrolimus (Tac) in renal transplant recipients of North India. Two hundred twenty four patients on CsA and 73 patients on Tac-based immunosuppression regimen were genotyped for CYP3A5*3 (6986A>G) and CYP3A4*1B (-290A>G) and correlated with CsA/Tac dose requirement (mg/kg/day) and dose-adjusted CsA (C2)/Tac (T 0) blood levels (concentration/dose ratio) at 1 month and 3 months posttransplantation. The dose-adjusted levels were significantly lower in CYP3A5 expressers for CsA (p = 0.037; 3 months) and Tac (p < 0.001; 1 month and p < 0.001; 3 months) compared to the non-expressers, suggesting that for a given dose their CsA/Tac blood concentration is lower. The CYP3A5 non-expresser genotype was associated with reduced risk for allograft rejection (HR-0.18, 95% CI 0.03–0.99). No influence of CYP3A4*1B on CsA/Tac pharmacokinetics was observed. CYP3A5 expressers were associated with significantly lower dose-adjusted CsA/Tac concentrations and higher allograft rejection episodes in patients on Tac therapy.  相似文献   

20.
The chlorodibromomethane (CDBM) metabolites bromide and CO were analysed as bromide level in plasma and carboxyhaemoglobin (COHb) level in blood of rats, respectively. The mean basic levels of bromide in plasma of rats receiving vehicle were 0.075 ± 0.036 mmol/l (n = 27). After administration of CDBM at 0.4, 0.8, 1.6, and 3.1 mmol/kg p.o., the mean bromide levels rose to maximal values that were higher by a factor 27, 48, 69, and 135, respectively. Bromide elimination was slow and the plasma level was significantly increased following repeated administration in comparison to a single administration of CDBM. The CDBM concentrations in blood and in fat tissue 6 h after the last of 7 administrations of 0.8 mmol CDBM/kg p.o., once a day for 7 consecutive days, were significantly lower than 6 h after a single gavage of this CDBM dose. The mean normal level of 0.45 ± 0.32% COHb in rats (n = 30) was significantly increased following oral CDBM uptake. Initially higher COHb levels were measured after 7 consecutive applications of 0.8␣mmol/kg CDBM. After a single administration of CDBM the level of glutathione disulphide in the liver was significantly increased; this effect was reversible. The oxidative CDBM metabolism was influenced by the glutathione (GSH) concentration in the liver. The rate of COHb and bromide formation was decreased after GSH depletion due to pretreatment of rats with buthionine sulphoximine (BSO) and increased following enhancement of the GSH concentration due to pretreatment of the animals with butylated hydroxyanisole (BHA). CDBM is a substrate for cytochrome P-450 2E1 (CYP2E1), as demonstrated by the inhibition of bromide and COHb formation due to simultaneous administration of CDBM and the CYP2E1 inhibitor diethyldithiocarbamate (DDTC); also by the initially higher levels of bromide in plasma and COHb in blood after gavage of CDBM pretreated with isoniazid (INH), an inducer of CYP2E1. The increase of bromide formation after CDBM administration in phenobarbital (PB)-pretreated rats indicated that cytochrome P-450 2B1 and 2B2 (CYP2B1 and CYP2B2) play a role as catalysts of the CDBM biotransformation. It is shown that m-xylene pretreatment, which activates CYP2E1 as well as CYP2Bs, leads to a higher bromide level after CDBM administration than the INH or PB pretreatment. In liver microsomes of rats treated with CDBM (0.8 mmol/kg p.o., seven daily applications), the p-nitrophenol hydroxylase (p-NPH) activity, a marker of CYP2E1, was increased. It is concluded that CDBM may be an inducer of CYP2E1. These results combined with literature data demonstrate that the oxidation of CDBM was catalysed mainly by CYP2E1 and CYP2Bs and that there may be a risk of bromide accumulation following repeated uptake of the trihalomethane. Received: 15 May 1996 / Accepted: 5 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号