首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigates whether Schwann cells (SCs) could promote the survival and differentiation of neural stem cells in the injured spinal cord. Neural stem cells were dissociated and cloned from the hippocampal tissue of newborn rats. SCs were also dissociated and purified simultaneously from the sciatic nerves of 4-day-old rats. The results showed that the number of surviving neural stem cells and differentiated neuron-like cells was significantly increased in the co-grafted (SCs and neural stem cells) group compared with the control group (neural stem cells only). Neuron-like cells that developed axon-like processes were observed more commonly in the co-grafted group. These results demonstrate that SCs can promote the survival and differentiation of transplanted neural stem cells in the injured spinal cord.  相似文献   

2.
Safe and efficient transplantation of embryonic stem (ES) cells to the brain requires that local inflammatory and immune responses to allogeneic grafts are inhibited. To investigate cytokines that affect graft cell survival and differentiation, we used stromal cell-derived inducing activity to induce the differentiation of neural progenitor cells (NPCs) from mouse ES cells and transplanted the NPCs into mouse brain. Examination of surrounding brain tissue revealed elevated expression levels of interleukin (IL)-1β, IL-4, and IL-6 in response to NPC transplantation. Among these, only IL-6 reduced neuronal differentiation and promoted glial differentiation in vitro. When we added anti-IL-6 receptor antibodies to NPCs during transplantation, this single and local blockade of IL-6 signaling reduced the accumulation of host-derived leukocytes, including microglia. Furthermore, it also promoted neuronal differentiation and reduced glial differentiation from the grafted NPCs to an extent similar to that with systemic and continuous administration of cyclosporine A. These results suggest that local administration of anti-IL-6 receptor antibodies with NPCs may promote neuronal differentiation during the treatment of neurological diseases with cell replacement therapy.  相似文献   

3.
We previously reported that hepatocyte growth factor (HGF) promoted proliferation of neurospheres and neuronal differentiation of neural stem cells (NSCs) derived from mouse embryonic brain. In this study, spheres from mouse embryonic stem (ES) cells were generated by floating culture following co-culture on PA6 stromal cells. In contrast to the behavior of the neurospheres derived from embryonic brain, addition of HGF to the growth medium of the floating cultures decreased the number of spheres derived from ES cells. When spheres were stained using a MAP-2 antibody, more MAP-2-positive cells were observed in spheres cultured with HGF. When HGF was added to the growth and/or differentiation medium, more MAP-2-positive cells were also obtained. These results suggest that HGF promotes neuronal differentiation of NSCs derived from ES cells.  相似文献   

4.
Transplantation of neural stem cells for spinal cord injury]   总被引:15,自引:0,他引:15  
Neural progenitor cells, including neural stem cells (NSCs), are an important potential graft material for cell therapeutics of damaged spinal cord. Here we used as a source of graft material a NSC-enriched population derived from human fetal spinal cord (Embryonic week 8-9) and expanded in vitro by neurosphere formation. NSCs labeled with BrdU (TP) or culture medium (CON) were transplanted into the adult marmoset spinal cord after contusion injury at C5 level. Grafted NSCs survived and migrated up to 7 mm far from the lesion epicenter. Double-staining with TuJ1 for neuron, GFAP for astrocyte, or CNPase for oligodendrocyte and BrdU revealed that grafted NSCs differentiated into neurons and oligodendrocytes 8 weeks after transplantation. More neurofilaments were observed in TP than those of CON. Furthermore, behavioral assessment of forelimb muscle strength using bar grip test and amount of spontaneous motor activity using infrared-rays monitoring revealed that the grafted NSCs significantly increased both of them compared to those of CON. These results indicate that in vitro expanded NSCs derived from human fetal spinal cord are useful sources for the therapeutics of spinal cord injury in primates.  相似文献   

5.
Transplantation of neural stem cells (NSC) into lesioned spinal cord offers the potential to increase regeneration by replacing lost neurons or oligodendrocytes. The majority of transplanted NSC, however, typically differentiate into astrocytes that may exacerbate glial scar formation. Here we show that blocking of ciliary neurotrophic factor (CNTF) with anti-CNTF antibodies after NSC transplant into spinal cord injury (SCI) resulted in a reduction of glial scar formation by 8 weeks. Treated animals had a wider distribution of transplanted NSC compared with the control animals. The NSC around the lesion coexpressed either nestin or markers for neurons, oligodendrocytes, or astrocytes. Approximately 20% fewer glial fibrillary acidic protein-positive/bromodeoxyuridine (BrdU)-positive cells were seen at 2, 4, and 8 weeks postgrafting, compared with the control animals. Furthermore, more CNPase(+)/BrdU(+) cells were detected in the treated group at 4 and 8 weeks. These CNPase(+) or Rip(+) mature oligodendrocytes were seen in close proximity to host corticospinal tract (CST) and 5HT(+) serotonergic axon. We also demonstrate that the number of regenerated CST fibers both at the lesion and at caudal sites in treated animals was significantly greater than that in the control animals at 8 weeks. We suggest that the blocking of CNTF at the beginning of SCI provides a more favorable environment for the differentiation of transplanted NSC and the regeneration of host axons.  相似文献   

6.
Oh JS  An SS  Gwak SJ  Pennant WA  Kim KN  Yoon do H  Ha Y 《Neuroreport》2012,23(3):174-178
We established three stable neural stem cell (NSC) lines to explore the possibility of using hypoxia-specific vascular endothelial growth factor (VEGF) expressing NSC lines (EpoSV-VEGF NSCs) to treat spinal cord injury. The application of EpoSV-VEGF NSCs into the injured spinal cord after clip compression injury not only showed therapeutic effects such as extended survival and angiogenesis, but also displayed its safety profile as it did not cause unwanted cell proliferation or angiogenesis in normal spinal cord tissue, as EpoSV-VEGF NSCs consistently showed hypoxia-specific VEGF expression patterns. This suggests that our EpoSV-VEGF NSCs are both safe and therapeutically efficacious for the treatment of spinal cord injury. Furthermore, this hypoxia-inducible gene expression system may represent a safe tool suitable for gene therapy.  相似文献   

7.
BACKGROUND: Wnt proteins as growth factor have multiple functions in neural development, and especially serve key roles in differentiation and development. Wnt-3a is an intercellular signaling molecule that is involved in a variety of morphogenetic events. The purpose of this study was to investigate the effects of Wnt-3a signal protein on proliferation and differentiation of neural stem cells derived from adult mouse spinal cord. METHODS: Adult mouse neural stem cells were cultured with serum free incubation. The recombined plasmid pSecTag2/Hygro B-Wnt3a for eukaryotic expression transfected adult neural stem cell, then the expression protein was detected by Western blot. The differentiation of adult neural stem cells was identified by the immunocytochemical technique. RESULTS: The inducing differentiated rates of neurons were improved greatly by Wnt-3a protein compared with control (p<0.05). CONCLUSION: Wnt-3a has obvious influence on the neuronal differentiation of adult neural stem cell.  相似文献   

8.
《Neurological research》2013,35(8):847-854
Abstract

Background: Wnt proteins as growth factor have multiple functions in neural development, and especially serve key roles in differentiation and development. Wnt-3a is an intercellular signaling molecule that is involved in a variety of morphogenetic events. The purpose of this study was to investigate the effects of Wnt-3a signal protein on proliferation and differentiation of neural stem cells derived from adult mouse spinal cord.

Methods: Adult mouse neural stem cells were cultured with serum free incubation. The recombined plasmid pSecTag2/Hygro B-Wnt3a for eukaryotic expression transfected adult neural stem cell, then the expression protein was detected by Western blot. The differentiation of adult neural stem cells was identified by the immunocytochemical technique.

Results: The inducing differentiated rates of neurons were improved greatly by Wnt-3a protein compared with control (p<0.05).

Conclusion: Wnt-3a has obvious influence on the neuronal differentiation of adult neural stem cell.  相似文献   

9.
Our previous study showed that cell cycle exit and neuronal differentiation 1(CEND1)may participate in neural stem cell cycle exit and oriented differentiation.However,whether CEND1-transfected neural stem cells can improve the prognosis of traumatic brain injury remained unclear.In this study,we performed quantitative proteomic analysis and found that after traumatic brain injury,CEND1 expression was downregulated in mouse brain tissue.Three days after traumatic brain injury,we transplanted CEND1-transfected neural stem cells into the area surrounding the injury site.We found that at 5 weeks after traumatic brain injury,transplantation of CEND1-transfected neural stem cells markedly alleviated brain atrophy and greatly improved neurological function.In vivo and in vitro results indicate that CEND1 overexpression inhibited the proliferation of neural stem cells,but significantly promoted their neuronal differentiation.Additionally,CEND1 overexpression reduced protein levels of Notch1 and cyclin D1,but increased levels of p21 in CEND1-transfected neural stem cells.Treatment with CEND1-transfected neural stem cells was superior to similar treatment without CEND1 transfection.These findings suggest that transplantation of CEND1-transfected neural stem cells is a promising cell therapy for traumatic brain injury.This study was approved by the Animal Ethics Committee of the School of Biomedical Engineering of Shanghai Jiao Tong University,China(approval No.2016034)on November 25,2016.  相似文献   

10.
ObjectiveSpinal neuronal function is impaired after a severe spinal cord injury (SCI) and can be assessed by the analysis of spinal reflex (SR) behavior. We applied transcutaneous spinal direct current stimulation (tsDCS) and locomotor activity, to determine whether the excitability of spinal neuronal circuitries underlying locomotion can be modulated after motor complete SCI.MethodSRs were evoked by non-noxious electrical stimulation of the tibial nerve. SR behavior was assessed before, immediately after, and 20 min after four different interventions (anodal, cathodal, sham tsDCS, or locomotion) in subjects with motor complete SCI and healthy subjects.ResultsSR amplitudes in SCI subjects were increased after anodal tsDCS by 84% (p < 0.05). Cathodal, sham tsDCS and locomotion had no influence on SR amplitudes. In addition, reflex threshold was lower after anodal tsDCS and locomotion in SCI subjects (p < 0.05).ConclusionAnodal tsDCS is able to modulate spinal neuronal circuitries after SCI.SignificanceThis novel, noninvasive approach might be used as a tool to excite spinal neuronal circuitries. If applied repetitively within a training approach, anodal tsDCS might prevent adverse alterations in spinal reflex function in severely affected SCI subjects, i.e., a manifestation of a spinal neuronal dysfunction taking part below the level of a spinal lesion.  相似文献   

11.
Transplantation of neural stem cells (NSCs) has shown promise for improving functional recovery after spinal cord injury (SCI). The inhospitable milieu of injured spinal cord, however, does not support survival of grafted NSCs, reducing therapeutic efficacy of transplantation. The present study sought to examine whether overexpression of antiapoptotic gene Bcl‐XL in NSCs could promote graft survival and functional recovery following transplantation in rat contusive SCI model. A human NSC line (HB1.F3) was transduced with a retroviral vector encoding Bcl‐XL to generate Bcl‐XL‐overexpressing NSCs (HB1.F3.Bcl‐XL). Overexpression of Bcl‐XL conferred resistance to staurosporine‐mediated apoptosis. The number of HB1.F3.Bcl‐XL cells was 1.5‐fold higher at 2 weeks and 10‐fold higher at 7 weeks posttransplantation than that of HB1.F3 cells. There was no decline in the number of HB1.F3.Bcl‐XL cells between 2 and 7 weeks, indicating that Bcl‐XL overexpression completely blocked cell death occurring between these two time points. Transplantation of HB1.F3.Bcl‐XL cells improved locomotor scores and enhanced accuracy of hindlimb placement in a grid walk. Approximately 10% of surviving NSCs differentiated into oligodendrocytes. Surviving NSCs produced brain‐derived neurotrophic factor (BDNF), and the level of BDNF was significantly increased only in the HB1.F3.Bcl‐XL group. Transplantation of HB1.F3.Bcl‐XL cells reduced cavity volumes and enhanced white matter sparing. Finally, HB1.F3.Bcl‐XL grafts enhanced connectivity between the red nucleus and the spinal cord below the lesion. These results suggest that enhancing graft survival with antiapoptotic gene can potentiate therapeutic benefits of NSC‐based therapy for SCI. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
Granulocyte colony-stimulating factor (G-CSF) is a protein that stimulates differentiation, proliferation, and survival of granulocytic lineage cells. Recently, a neuroprotective effect of G-CSF was reported in a model of cerebral infarction. The aim of the present study was to elucidate the potential therapeutic effect of G-CSF for spinal cord injury (SCI) in mice. We found that G-CSF is neuroprotective against glutamate-induced cell death of cerebellar granule neurons in vitro. Moreover, we used a mouse model of compressive SCI to examine the neuroprotective potential of G-CSF in vivo. Histologic assessment with cresyl violet staining revealed that the number of surviving neurons in the injured spinal cord was significantly increased in G-CSF-treated mice. Immunohistochemistry for neuronal apoptosis revealed that G-CSF suppressed neuronal apoptosis after SCI. Moreover, administration of G-CSF promoted hindlimb functional recovery. Examination of signaling pathways downstream of the G-CSF receptor suggests that G-CSF might promote functional recovery by inhibiting neuronal apoptosis after SCI. G-CSF is currently used in the clinic for hematopoietic stimulation, and its ongoing clinical trial for brain infarction makes it an appealing molecule that could be rapidly placed into trials for patients with acute SCI.  相似文献   

14.
Transplantation of human neural stem cells for spinal cord injury in primates   总被引:23,自引:0,他引:23  
Recent studies have shown that delayed transplantation of neural stem/progenitor cells (NSPCs) into the injured spinal cord can promote functional recovery in adult rats. Preclinical studies using nonhuman primates, however, are necessary before NSPCs can be used in clinical trials to treat human patients with spinal cord injury (SCI). Cervical contusion SCIs were induced in 10 adult common marmosets using a stereotaxic device. Nine days after injury, in vitro-expanded human NSPCs were transplanted into the spinal cord of five randomly selected animals, and the other sham-operated control animals received culture medium alone. Motor functions were evaluated through measurements of bar grip power and spontaneous motor activity, and temporal changes in the intramedullary signals were monitored by magnetic resonance imaging. Eight weeks after transplantation, all animals were sacrificed. Histologic analysis revealed that the grafted human NSPCs survived and differentiated into neurons, astrocytes, and oligodendrocytes, and that the cavities were smaller than those in sham-operated control animals. The bar grip power and the spontaneous motor activity of the transplanted animals were significantly higher than those of sham-operated control animals. These findings show that NSPC transplantation was effective for SCI in primates and suggest that human NSPC transplantation could be a feasible treatment for human SCI.  相似文献   

15.
Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem ceils were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.  相似文献   

16.
Hepatocyte growth factor (HGF), originally cloned as a hepatocyte mitogen, has recently been reported to exhibit neurotrophic activity in addition to being expressed in different parts of the nervous system. At present, the effects of HGF on neural stem cells (NSCs) are not known. In this study, we first report the promoting effect of HGF on the proliferation of neurospheres and neuronal differentiation of NSCs. Medium containing only HGF was capable of inducing neurosphere formation. Addition of HGF to medium containing fibroblast growth factor 2 or epidermal growth factor increased both the size and number of newly formed neurospheres. More neurons were also obtained when HGF was added in differentiation medium. In contrast, neurosphere numbers were reduced after repeated subculture by mechanical dissociation, suggesting that HGF-formed neurospheres comprised predominantly progenitor cells committed to neuronal or glial lines. Together, these results suggest that HGF promotes proliferation of neurospheres and neuronal differentiation of NSCs derived from mouse embyos.  相似文献   

17.
New strategies must be developed to resolve the problems of stroke treatment. In recent years, stem cell–based therapy after stroke has come into the public and academic lens. Previously we have shown that uncoupling neuronal nitric oxide synthase (nNOS) from the postsynaptic density protein‐95 (PSD‐95) by ZL006, a small molecular compound, can ameliorate ischemic damage and promote neuronal differentiation of endogenous neural stem cells (NSCs) in focal cerebral ischemic male rats. In this study, we transplanted exogenous NSCs into the ipsilateral hemisphere of male rats in combination with ZL006 treatment after ischemic stroke. We show that ZL006 treatment facilitates the migration of transplanted NSCs into the ischemia‐injured area and promotes neuronal differentiation of these cells, which is not due to a direct effect of ZL006 on exogenous NSCs but is associated with increased phosphorylation of cAMP response element–binding protein (CREB) in neurons and favorable microenvironment. Moreover, improved functional outcome in the ZL006‐treated group was also found. Taken together, our data indicate that ZL006, uncoupling nNOS–PSD‐95 in neurons, positively regulates the fate of transplanted NSCs and benefits the functional outcome after stroke in male rats.  相似文献   

18.
Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibdssa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (~lll-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demon- strate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.  相似文献   

19.
<正>The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury(SCI).Adaptive changes within spared neuronal circuits may occur at cortical,brainstem,or spinal cord level,both above and below a spinal lesion(Bareyre et al.,2004).At each level the reorganization is a very dynamic process,and its degree is highly variable,depending on several factors,including the age of the  相似文献   

20.
近年来神经干细胞的研究给中枢神经系统损伤患者带来了新的希望,但神经干细胞的分化诱导仍然是医学界的一大难题。文章试对神经干细胞分化发育过程的基因信号转导通路Notch信号途径、螺旋-环-螺旋转录因子家族信号途径及Wnt信号途径等作以综合分析。探讨这些基因信号转导通路对神经干细胞分化的作用及其修复脊髓损伤的前景。神经干细胞的分化发育受多种途径的共同作用,基因水平的调控,局部微环境以及各种生长因子的作用都对其分化发育有重要影响;其对脊髓损伤的修复具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号