首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear factor kappa B(NF-κB) in the spinal cord is involved in pro-infl ammatory cytokine-mediated pain facilitation. However, the role of NF-κB activation in chronic morphine-induced analgesic tolerance and the underlying mechanisms remain unclear. In the present study, we found that the level of phosphorylated NF-κB p65(p-p65) was increased in the dorsal horn of the lumbar 4–6 segments after intrathecal administration of morphine for 7 consecutive days, and the p-p65 was co-localized with neurons and astrocytes. The expression of TNF-α and IL-1β was also increased in the same area. In addition, pretreatment with pyrrolidinedithiocarbamate(PDTC) or SN50, inhibitors of NF-κB, prevented the development of morphine analgesic tolerance and alleviated morphine withdrawal-induced allodynia and hyperalgesia. The increase in TNF-α and IL-1β expression induced by chronic morphine exposure was also partially blocked by PDTC pretreatment. In another experiment, rats receiving PDTC or SN50 beginning on day 7 of morphine injection showed partial recovery of the anti-nociceptive effects of morphine and attenuation of the withdrawal-induced abnormal pain. Meanwhile, intrathecal pretreatment with lipopolysaccharide from Rhodobacter sphae-roides, an antagonist of toll-like receptor 4(TLR4), blocked the activation of NF-κB, and prevented the development of morphine tolerance and withdrawal-induced abnormal pain. These data indicated that TLR4-mediated NF-κB activation in the spinal cord is involved in the development and maintenance of morphine analgesic tolerance and withdrawalinduced pain hypersensitivity.  相似文献   

2.
Electroacupuncture has traditionally been used to treat pain, but its effect on pain following brachial plexus injury is still unknown. In this study, rat models of an avulsion injury to the left brachial plexus root(associated with upper-limb chronic neuropathic pain) were given electroacupuncture stimulation at bilateral Quchi(LI11), Hegu(LI04), Zusanli(ST36) and Yanglingquan(GB34). After electroacupuncture therapy, chronic neuropathic pain in the rats' upper limbs was significantly attenuated. Immunofluorescence staining showed that the expression of β-endorphins in the arcuate nucleus was significantly increased after therapy. Thus, experimental findings indicate that electroacupuncture can attenuate neuropathic pain after brachial plexus injury through upregulating β-endorphin expression.  相似文献   

3.
Applying a stimulating current to acupoints through acupuncture needles-known as electroacupuncture-has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.  相似文献   

4.
The perception of pain is a dynamic process that is subject to ongoing modulation by central pro- and anti-nociceptive control systems. Diverse factors that may be genetic, gender specific, environmentally determined, psychological or, indeed, engendered by already existing pain-related neuronal activity influence the level of descending control on spinal nociceptive processing. In particular, pain is exacerbated by anxiety. This review examines the evidence for cholecystokinin (CCK)-evoked activation of descending pro-nociceptive facilitatory pathways from the midbrain periaqueductal grey matter (PAG) in mediating anxiety-induced hyperalgesia as well as in the development and maintenance of hyperalgesia associated with peripheral neuropathy. CCK drives a spinal-PAG-medullo-spinal pro-nociceptive positive feedback loop that potentiates spinal transmission of nociceptive afferent input, whilst at the same time suppressing activity in the opioid-driven anti-nociceptive descending pathway from the PAG. In females, responsiveness of PAG neurones to CCK is further modulated by changes in the levels of circulating ovarian hormones, an effect that could underlie the changes in pain sensitivity and responsiveness to opiates that occur during the menstrual cycle and postpartum period.  相似文献   

5.
Acupuncture has been used to treat neuropathic pain for a long time, but its mechanisms of action remain unknown. In this study, we observed the effects of electroacupuncture and manual acu-puncture on neuropathic pain and on ephrin-B/EphB signaling in rats models of chronic constriction injury-induced neuropathic pain. The results showed that manual acupuncture and elec-puncture significantly reduced mechanical hypersensitivity following chronic constriction injury, es-pecially electroacupuncture treatment. Real-time PCR results revealed that ephrin-B1/B3 and EphB1/B2 mRNA expression levels were significantly increased in the spinal dorsal horns of chronic constriction injury rats. Electroacupuncture and manual acupuncture suppressed the high sion of ephrin-B1 mRNA, and elevated EphB3/B4 mRNA expression. Electroacupuncture signifi-cantly enhanced the mRNA expression of ephrin-B3 and EphB3/B6 in the dorsal horns of neuro-pathic pain rats. Western blot results revealed that electroacupuncture in particular, and manual acupuncture, significantly up-regulated ephrin-B3 protein levels in rat spinal dorsal horns. The re-sults of this study suggest that acupuncture could activate ephrin-B/EphB signaling in neuropathic pain rats and improve neurological function.  相似文献   

6.
Midbrain periaqueductal gray (PAG) and spinal cord dorsal horn are major action sites of opioid analgesics in the pain pathway. Our previous study has shown that opioid antagonists activate MORS196A-CSTA (a mutant of mu-opioid receptor) as full agonists in vitro cell models and naloxone showed antinociceptive effects after the expression of MORS196A-CSTA in the spinal cord in mice. The purpose of this study is to investigate the site-directed antinociceptive effects of naloxone in mice injected with dsAAV-MORS196A-CSTA-EGFP at spinal cord or at periaqueductal gray. MORS196A-CSTA-EGFP was administered to ICR mice using dsAAV as vector. We measured MORS196A-CSTA-EGFP expression by detecting the EGFP visualization with a fluorescence microscope. The antinociceptive effect of naloxone was determined by tail-flick test and hot plate test. Drug rewarding effect was evaluated by the conditioned place preference test. Naloxone (10 mg/kg, s.c.) elicited both supraspinal and spinal antinociceptive responses in mice injected with the virus at PAG while only spinal antinociceptive response was observed in mice injected with virus at dorsal horn region. Chronic naloxone treatment did not induce physical dependence or rewarding effect in mice injected with MORS196A-CSTA-EGFP in spinal cord or PAG. These data suggest that the observed naloxone-induced antinociceptive response is the consequence of the local expression of MORS196A-CSTA at specific sites of pain pathway. Injection of such MOR mutant and the systemic administration of naloxone can be a new strategy in the management of chronic pain without the various side effects associated with the use of morphine.  相似文献   

7.
The need to use anaesthetised or restrained animals in acupuncture research in laboratory animals may represent a confounding variable, since both anaesthesia and stress alter the pain threshold and the activity of pain-related brain areas. In the current study we assessed the participation of the periaqueductal gray (PAG) in electroacupuncture's (EA) analgesic effects applied to the Zusanli point (36S) under carefully controlled stress conditions. Repeated immobilisation protocols (6 days, 1 h/day and 13 days, 2 h/day) were used to diminish the influence of acute immobilisation stress on c-Fos expression and analgesia (tail-flick test) induced by electroacupuncture on the 36S point (EA36S). Animals submitted to immobilisation alone (IMMO) or to electroacupuncture (100 Hz, 2-4 V, faradic wave) on a non-point region (EANP) were compared with animals submitted to electroacupuncture on the 36S point. In animals not previously submitted to repeated immobilisation, electroacupuncture on the 36S point induced analgesia and c-Fos expression in the PAG was not different from that induced by electroacupuncture at a non-acupuncture point. In animals submitted to repeated immobilisation (repeated immobilisation for 6 days or repeated immobilisation for 13 days), however, electroacupuncture on point 36S led to higher levels of analgesia and c-Fos expression, specifically in the ventrolateral PAG (vlPAG), as compared with animal groups subjected only to immobilisation or to electroacupuncture on a non-point. Our findings endorse previous results, and point to a specific part of the PAG involved in the effects of electroacupuncture at the Zusanli point.  相似文献   

8.
We tested whether transfer of the gene coding for glutamic acid decarboxylase to dorsal root ganglion using a herpes simplex virus vector to achieve release of GABA in dorsal horn would attenuate nociception in this condition. Subcutaneous inoculation of a replication-defective herpes simplex virus vector expressing glutamic acid decarboxylase (vector QHGAD67) 7 days after selective L5 spinal nerve ligation reversed mechanical allodynia and thermal hyperalgesia; the antiallodynic effect lasted 6 weeks and was reestablished by reinoculation. QHGAD67 inoculation also suppressed induction of c-Fos and phosphorylated extracellular signal-regulated kinase 1 and 2 in the spinal cord.  相似文献   

9.
Effect of oxytocin on acupuncture analgesia in the rat   总被引:1,自引:0,他引:1  
Yang J  Yang Y  Chen JM  Liu WY  Wang CH  Lin BC 《Neuropeptides》2007,41(5):285-292
Oxytocin has been demonstrated to be involved in pain modulation. Acupuncture analgesia is a very useful clinical tool for pain relief, which has over 2500-year history in China. The present study investigated the role of oxytocin in acupuncture analgesia in the rat through oxytocin administration and measurement. Central administration of oxytocin (intraventricular injection or intrathecal injection) enhanced acupuncture analgesia, while central administration of anti-oxytocin serum weakened acupuncture analgesia in a dose-dependent manner. However, intravenous injection of oxytocin or anti-oxytocin serum did not influence acupuncture analgesia. Electrical acupuncture of "Zusanli" (St. 36) reduced oxytocin concentration in the hypothalamic supraoptic nucleus, and elevated oxytocin concentration in the hypothalamic suprachiasmatic nucleus, hypothalamic ventromedial nucleus, thalamic ventral nucleus, periaqueductal gray, raphe magnus nucleus, caudate nucleus, thoracic spinal cord and lumbar spinal cord, but did not alter oxytocin concentration in the hypothalamic paraventricular nucleus, anterior pituitary, posterior pituitary and plasma. The data suggested that oxytocin in central nervous system rather than in peripheral organs is involved in acupuncture analgesia.  相似文献   

10.
In precollicular decerebrate cats, experiments were performed to ascertain the presence of primary afferent depolarization at the slowly conducting fiber terminals of the sural nerve, in an attempt to substantiate our previous postulation of a possible presynaptic mechanism underlying acupuncture analgesia in the spinal cord. A well correlated temporal course has been observed to exist between the negativity of dorsal root potential, suppression of sural polysynaptic reflexes, and increased excitability of sural primary afferent terminals, under the influence of the same electroacupuncture to the left tsusanli point in the hindlimb. Furthermore, by a collision test and conduction velocity measurement, the acupuncture-evoked primary afferent depolarization thus indicated was found to occur solely at the terminals of the slowly conducting fibers of the sural nerve, fibers believed to transmit “pain” impulses. As primary afferent depolarization has powerful inhibitory actions and its existence is well demonstrated in the spinal cord and trigeminal system, we suggest that acupuncture can also utilize this well established mechanism in modulating “pain” information at the primary afferent level in the spinal cord. This spinal presynaptic inhibitory mechanism, however, is thought to be only a part of an overall process underlying the production of acupuncture analgesia.  相似文献   

11.
Remifentanil is widely used to control intraoperative pain. However, its analgesic effect is limited by the generation of postoperative hyperalgesia. In this study, we investigated whether the impairment of transmembrane protein 16C (TMEM16C)/Slack is required for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) activation in remifentanil-induced postoperative hyperalgesia. Remifentanil anesthesia reduced the paw withdrawal threshold from 2 h to 48 h postoperatively, with a decrease in the expression of TMEM16C and Slack in the dorsal root ganglia (DRG) and spinal cord. Knockdown of TMEM16C in the DRG reduced the expression of Slack and elevated the basal peripheral sensitivity and AMPAR expression and function. Overexpression of TMEM16C in the DRG impaired remifentanil-induced ERK1/2 phosphorylation and behavioral hyperalgesia. AMPAR-mediated current and neuronal excitability were downregulated by TMEM16C overexpression in the spinal cord. Taken together, these findings suggest that TMEM16C/Slack regulation of excitatory synaptic plasticity via GluA1-containing AMPARs is critical in the pathogenesis of remifentanil-induced postoperative hyperalgesia in rats.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12264-021-00652-5.  相似文献   

12.
The periaqueductal gray is well known for its involvement in nociception control, but it also plays an important role in the emotional motor system. To accomplish these functions the periaqueductal gray receives input from the limbic system and from the caudal brainstem and spinal cord. Earlier studies gave the impression that the majority of the periaqueductal gray projecting cells in caudal brainstem and spinal cord are located in the contralateral lamina I, which is involved in nociception. The present study in the cat, however, demonstrates that of all periaqueductal gray projecting neurons in the contralateral caudal medulla less than 7% was located in lamina I. Of the spinal periaqueductal gray projecting neurons less than 29% was located in lamina I. However, within the spinal cord large segmental differences exist: in few segments of the enlargements the lamina I-periaqueductal gray projecting neurons represent a majority. In conclusion, although the lamina I-periaqueductal gray projection is a very important nociceptive pathway, it constitutes only a limited part of the total projection from the caudal medulla and spinal cord to the periaqueductal gray. These results suggest that a large portion of the medullo- and spino-periaqueductal gray pathways conveys information other than nociception.  相似文献   

13.
Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring 5 min after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia.  相似文献   

14.
Despite the evidence for a significant contribution of brainstem serotonergic (5HT) systems to the control of spinal cord "pain" transmission neurons, attention has turned recently to the influence of nonserotonergic neurons, including the facilitatory and inhibitory controls that originate from so-called "on" and "off" cells of the rostroventral medulla (RVM). Unclear, however, is the extent to which these latter circuits interact with or are influenced by the serotonergic cell groups. To address this question we selectively targeted expression of a transneuronal tracer, wheat germ agglutinin (WGA), in the 5HT neurons so as to study the interplay between the 5HT and non-5HT systems. In addition to confirming the direct medullary 5HT projection to the spinal cord we also observed large numbers of non-5HT neurons, in the medullary nucleus reticularis gigantocellularis and magnocellularis, that were WGA-immunoreactive, i.e., were transneuronally labeled from 5HT neurons. FluoroGold injections into the spinal cord established that these reticular neurons are not only postsynaptic to the 5HT neurons of the medulla, but that most are also at the origin of descending, bulbospinal pathways. By contrast, we found no evidence that neurons of the midbrain periaqueductal gray that project to the RVM are postsynaptic to midbrain or medullary 5HT neurons. Finally, we found very few examples of WGA-immunoreactive noradrenergic neurons, which suggests that there is considerable independence of the monoaminergic bulbospinal pathways. Our results indicate that 5HT neurons influence "pain" processing at the spinal cord level both directly and indirectly via feedforward connections with multiple non-5HT descending control pathways.  相似文献   

15.
Endogenous pain control mechanisms: review and hypothesis.   总被引:20,自引:0,他引:20  
The anatomy, physiology, and pharmacology of an intrinsic neural network that monitors and modulates the activity of pain-transmitting neurons is reviewed. This system can be activated by opiate administration or by electrical stimulation of discrete brainstem sites. Evidence is presented that its pain-suppressing action is mediated in part by endogenous opiatelike compounds (endorphins). This pain suppression system is organized at three levels of the neuraxis: midbrain, medulla, and spinal cord. Activation of neurons in the midbrain periaqueductal gray matter (by electrical stimulation, opiates, and possibly psychological factors) excites neurons of the rostral medulla, some of which contain serotonin. The medullary neurons, in turn, project to and specifically inhibit the firing of trigeminal and spinal pain-transmission neurons. As part of a negative feedback loop, the output of the pain transmission neurons, i.e., pain itself, is an important factor in activating the pain-suppression system. A neural model which incorporates the experimental findings is proposed, and the clinical implications of the model are discussed.  相似文献   

16.
To examine the possible correlation of aberrant Wnt signaling and pathological changes in Alzheimer's disease, we established a rat model of Alzheimer's disease and measured axin and β-catenin expression in the hippocampus. Rats were pretreated with moxibustion or electroacu-puncture, or both, at Baihui(GV20) and Shenshu(BL23). Axin expression was lower, β-catenin expression was greater, and neuronal cytoplasmic edema was visibly prevented in the rats that had received the pretreatments. Our results suggest that the mechanism underlying the neuro-protective effect of acupuncture and moxibustion in Alzheimer's disease is associated with axin and β-catenin expression in the Wnt signal transduction pathway.  相似文献   

17.
Met-enkephalin immunoreactivity was investigated with an indirect immunoperoxidase technique in the cervical spinal cord, brainstem and midbrain of the cat, paying special attention to pain-related nuclei. Different technical conditions were used to reveal preferentially met-enkephalin-containing fibres and terminals or perikarya. Immunoreactive fibres and terminals were revealed optimally in sections from control animals incubated with detergent (Triton X-100). Immunoreactive perikarya were revealed in colchicine treated animals. Comparison between different routes of administration showed that local injections of colchicine are needed to reveal optimally immunoreactive perikarya in nuclei located far from the ventricles. Met-enkephalin-containing fibres and terminals are widely distributed in the posterior brain and spinal cord. The densest network of immunoreactive fibres are observed in the superficial layers of the cervical spinal cord and the caudal trigeminal nucleus, in the nucleus of the solitary tract, the nucleus of the facial nerve, the nucleus of the prepositus hypoglossi, the nucleus raphe pallidus, the medial vestibular nucleus, the interpedoncular nucleus and the substantia nigra. A moderate staining of fibres is observed in various nuclei including the ventral horn of the spinal cord and caudal trigeminal nucleus, the brainstem and midbrain reticular formation, the inferior olivary complex, the nucleus of the descending trigeminal tract and the periaqueductal grey. Met-enkephalin-containing perikarya are present in all the nuclei cited before, except in the inferior olivary complex. The densest aggregation of enkephalin-like perikarya is observed in the nucleus raphe magnus, nucleus raphe obscurus, nucleus raphe pallidus, nucleus reticularis gigantocellularis pars α and nucleus reticularis lateralis. The general distribution of enkephalin-containing structures in the cervical spinal cord, brainstem and midbrain of the cat appears very similar to that of the rat except in the substantia nigra where met-enkephalin cell bodies are found in the cat but not in the rat. In particular the pain-related nuclei present a similar distribution of the peptide in the two species; however, met-enkephalin-containing cell bodies are much more numerous in the cat than in the rat (notably in the reticular formation). Similar types of metenkephalin innervation occur in the dorsal and intermediate grey of the spinal cord and of the caudal trigeminal nucleus supporting further that the functional organizations of these regions are closely related.  相似文献   

18.
A less well-known feature of Parkinson disease is that up to 40% of patients experience distinct sensory disturbances, including hyperalgesia and chronic pain. There is a limited understanding of the neural mechanisms that generate these symptoms, however. This study explores the patterns of Fos expression (a well-known marker for changes in cell activity) in the spinal cord and periaqueductal grey matter (PaG), two major sensory (nociceptive) centers, of hemiparkinsonian rats. The medial forebrain bundle (mfb; major tract carrying dopaminergic nigrostriatal axons) was injected with either 6OHDA or saline (controls). A week later, some rats were subjected to mechanical stimulation (pinching) of the hindpaw for 2 h, whereas others received no stimulation. Thereafter, brains were processed using routine tyrosine hydroxylase (marker for dopaminergic cells) or Fos immunocytochemistry. In the PaG, there were many more Fos+ cells in the 6OHDA-lesioned than in the Control group, in both the stimulation and, in particular, the non-stimulation cases. In the spinal cord, there were also more Fos+ cells in the 6OHDA-lesioned than in the Control group, but in the stimulation cases only. Overall, the results show distinct changes in Fos expression in the spinal cord and PaG of 6OHDA-lesioned rats, suggesting a substrate for some of the abnormal sensory (nociceptive) circuits that may be evident in parkinsonian cases.  相似文献   

19.
Variation in the production of opioid receptors over a 24‐h period is considered to contribute to circadian alterations in neuropathic pain. In this study, we investigated the possible changes in the circadian rhythm of mRNA expression for µ‐opioid receptor (MOR), κ‐opioid receptor (KOR), and adrenaline α2a receptor (α2a) in the periaqueductal gray, frontal cortex, thalamus, and spinal cord following sciatic nerve ligation in mice. In sham‐operated mice, the latencies of hind paw‐withdrawal in response to thermal stimuli at 14:00 and 20:00 were significantly greater than that at 8:00 and the latency at 2:00 was significantly less than those at 14:00 and 20:00, indicating a “rest” period‐dominant circadian rhythm for thermal pain‐thresholds. In sciatic nerve‐ligated mice, the latencies of hind paw‐withdrawal in response to thermal stimuli at 14:00 and 20:00 were significantly less than that at 8:00, and the latency at 2:00 was significantly greater than those at 14:00 and 20:00. A correlative tendency between the time‐variation of pain latency and the time‐variation of MOR mRNA expression was observed in the periaqueductal gray of sham‐operated and sciatic nerve‐ligated mice. In contrast, neither mouse showed a strong circadian rhythm for the expressions of KOR and α2a mRNAs in any region. The present data suggest that changes in MOR mRNA expression in the periaqueductal gray may be synchronized with the circadian rhythm for the pain threshold for noxious thermal stimuli. In contrast, neuropathic pain in mice exhibited a negative circadian pattern for the expression of MOR, KOR, and α2a receptors in the frontal cortex, thalamus, and spinal cord. Synapse 67:216–223, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Descending control of persistent pain: inhibitory or facilitatory?   总被引:10,自引:0,他引:10  
The periaqueductal gray matter (PAG) and the nucleus raphe magnus and adjacent structures of the rostral ventromedial medulla (RVM), with their projections to the spinal dorsal horn, constitute the “efferent channel” of a pain-control system that “descends” from the brain onto the spinal cord. Considerable evidence has recently emerged regarding participation of this system in persistent pain conditions such as inflammation and neuropathy. Herein, this evidence is reviewed and organized to support the idea that persistent nociception simultaneously triggers descending facilitation and inhibition. In models of inflammation, descending inhibition predominates over facilitation in pain circuits with input from the inflamed tissue, and thus attenuates primary hyperalgesia, while descending facilitation predominates over inhibition in pain circuits with input from neighboring tissues, and thus facilitates secondary hyperalgesia. Both descending facilitation and inhibition mainly stem from RVM. The formalin-induced primary hyperalgesia, although considered a model for inflammation, is mainly facilitated from RVM. Also, formalin-induced secondary hyperalgesia is facilitated by RVM. Again, formalin triggers a concomitant but concealed descending inhibition. The (primary) hyperalgesia and allodynia of the neuropathic syndrome are also facilitated from RVM. Simultaneously, there is an inhibition of secondary neuronal pools that is partly supported from the PAG. Because in all these models of peripheral damage descending facilitation and inhibition are triggered simultaneously, it will be important to elucidate why inhibition predominates in some neuronal pools and facilitation in others. Therapies that enhance descending inhibition and/or attenuate descending facilitation are furthermore an important target for research in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号