首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotrophins are proteins that regulate neuronal survival, axonal growth, synaptic plasticity and neurotransmission. They are members of the neurotrophic factors family and include factors such as the nerve growth factor (NGF), the brain derived neurotrophic factor (BDNF), the neurotrophin-3 (NT-3), and the neurotrophin-4/5 (NT-4/5). These molecules bind to two types of receptors: i) tyrosine kinase receptors (TrkA, TrkB, TrkC) and ii) a common neurotrophin receptor (p75NTR). The two receptor types can either suppress or enhance each other's actions. Neurotrophins have a multifunctional role both in the central and peripheral nervous system. They have been suggested as axonal guidance molecules during the growth and regeneration of nerves. It has also been proven that they stimulate axonal growth by mediating the polymerization and accumulation of F-actin in growth cones and axon shafts. Neurotrophins, as other neurotrophic factors, have been shown that they reduce neuronal injury by exposure to excitotoxins, glucose deprivation, or ischemia. Furthermore, the nerve regeneration promoting effect of these growth factors is well documented for many different models of central or peripheral nervous system injury. Several studies have shown that exogenous administration of these factors has protective properties for injured neurons and stimulates axonal regeneration. Based on these properties, these molecules may be used as therapeutic agents for treating degenerative diseases and traumatic injuries of both the central and peripheral nervous system.  相似文献   

2.
3.
Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.  相似文献   

4.
Vascularization is an important factor in nerve graft survival and function. The specific molecular regulations and patterns of angiogenesis following peripheral nerve injury are in a broad complex of pathways. This review aims to summarize current knowledge on the role of vascularization in nerve regeneration, including the key regulation molecules, and mechanisms and patterns of revascularization after nerve injury. Angiogenesis, the maturation of pre-existing vessels into new areas, is stimulated through angiogenic factors such as vascular endothelial growth factor and precedes the repair of damaged nerves. Vascular endothelial growth factor administration to nerves has demonstrated to increase revascularization after injury in basic science research. In the clinical setting, vascularized nerve grafts could be used in the reconstruction of large segmental peripheral nerve injuries. Vascularized nerve grafts are postulated to accelerate revascularization and enhance nerve regeneration by providing an optimal nutritional environment, especially in scarred beds, and decrease fibroblast infiltration. This could improve functional recovery after nerve grafting, however, conclusive evidence of the superiority of vascularized nerve grafts is lacking in human studies. A well-designed randomized controlled trial comparing vascularized nerve grafts to non-vascularized nerve grafts involving patients with similar injuries, nerve graft repair and follow-up times is necessary to demonstrate the efficacy of vascularized nerve grafts. Due to technical challenges, composite transfer of a nerve graft along with its adipose tissue has been proposed to provide a healthy tissue bed. Basic science research has shown that a vascularized fascial flap containing adipose tissue and a vascular bundle improves revascularization through excreted angiogenic factors, provided by the stem cells in the adipose tissue as well as by the blood supply and environmental support. While it was previously believed that revascularization occurred from both nerve ends, recent studies propose that revascularization occurs primarily from the proximal nerve coaptation. Fascial flaps or vascularized nerve grafts have limited applicability and future directions could lead towards off-the-shelf alternatives to autografting, such as biodegradable nerve scaffolds which include capillary-like networks to enable vascularization and avoid graft necrosis and ischemia.  相似文献   

5.
Basic fibroblast growth factor (FGF-2) is involved in the development, maintenance, and survival of the nervous system. To study the physiological role of endogenous FGF-2 during peripheral nerve regeneration, we analyzed sciatic nerves of FGF-2-deleted mice by using morphometric, morphological, and immunocytochemical methods. Quantification of number and size of myelinated axons in intact sciatic nerves revealed no difference between wild-type and FGF-2 knock-out (ko) animals. One week after nerve crush, FGF-2 ko mice showed about five times more regenerated myelinated axons with increased myelin and axon diameter in comparison to wild-types close to the injury site. In addition, quantitative distribution of macrophages and collapsed myelin profiles suggested faster Wallerian degeneration in FGF-2-deleted mice close to the lesion site. Our results suggest that endogenous FGF-2 is crucially involved in the early phase of peripheral nerve regeneration possibly by regulation of Schwann cell differentiation.  相似文献   

6.
The regeneration of nerves of the peripheral nervous system after injuries is a complex process. This study presents a novel in vitro neurite regeneration concept to investigate the regeneration of neurons and their processes with different concentrations of neurotrophic factors. The core part of the concept is a transparent microfluidic neurite isolation (NI) device affixed on top of a microelectrode array (MEA), providing a fast and easy way to assess both the growth and the electrical activity of neurites. The NI‐MEA isolates neurites from the culture with microchannels that serve as guidance tubes, equipped with microelectrodes. Thus, the NI‐MEA allows neurite growth, as observed by microscopy, to be correlated with neurite electrical activity, as measured by electrophysiological recordings. To demonstrate proof of concept of neurite regeneration, we cultured cells from the superior cervical ganglion of postnatal mice under different concentrations of nerve growth factor (NGF). During the regeneration process, we observed an increase in the number of neurites entering the microchannels along with an increase in spike activity recorded by the microelectrodes in the microchannels. We also observed a concentration‐dependent effect of neurotrophic factor on the excitability of the growing neurites, with neurites bathed in 20 ng/ml NGF exhibiting enhanced early growth. Thus, our neurite regeneration concept with the NI‐MEA device allows further study of neurotrophic factors and reduces the requirement for in vivo experiments on the regeneration of peripheral nerves after injury. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
8.
Optic nerve injury leads to retinal ganglion cell apoptosis, thus preventing fiber regeneration. Peripheral nerve grafts are known to promote survival and regeneration in injured adult mammalian central nervous system, including optic nerve, but the mechanisms of their activity remain unclear. It is likely that they attenuate the apoptotic cascade triggered by axotomy in retinal ganglion cells. The aim of this work was to examine the role of the antiapoptotic gene bcl-2 in the optic nerve regeneration induced by such grafts. Experiments were carried out on bcl-2-deficient and wild-type mice. We have reported previously that predegeneration markedly enhances neurotrophic activity of peripheral nerve grafts, so we applied both predegenerated and non-predegenerated implants to the transected optic nerves. We studied the neurotrophic effects of bcl-2-deficient grafts on wild-type and bcl-2 knock-out optic nerves, as well as wild-type grafts on both strains of mouse optic nerves. After application of fluorescent dye to the end of the graft, we counted the stained retinal ganglion cells. Predegenerated wild-type grafts promoted survival and outgrowth of retinal ganglion cells axons in both types of mice. By contrast, non-predegenerated and predegenerated bcl-2-deficient grafts induced little or no regeneration in the optic nerves. These results indicate that the lack of bcl-2 gene does not deprive retinal ganglion cells of their regenerative potential. At the same time, we found that bcl-2 knock-out dispossesses peripheral nerves of their neurotrophic activity.  相似文献   

9.
Peripheral nerve regeneration is a complex process, with Wallerian degeneration the most elementary reaction and Schwann cells playing an important role. In recent years, stem cells have been widely used to repair injured peripheral nerves. The sources of these stem cells are widespread and their effectiveness in the treatment of peripheral nerve injury may lie in their ability to differentiate into Schwann cells, secrete neurotrophic factors, and assist in myelin formation. Stem cells have been used as seed cells in tissue-engineered nerve grafts. The understanding of stem cell homing, novel repair material, and the ability to mobilize endogenous stem cells to assist peripheral nerve regeneration constitute a research direction of great interest.  相似文献   

10.
Diffusible and substratum-bound molecules regulate development and regeneration of the peripheral nervous system. The understanding of physiological function of these factors could have an impact on the development of new therapeutic strategies to stimulate nerve regeneration across long gaps. Within the group of trophic factors, basic fibroblast growth factor (FGF-2) and its high-affinity receptors are expressed in the intact peripheral nervous system and regulated following nerve injury. After exogenous application, FGF-2 promotes neuronal survival and neurite outgrowth in vitro and in vivo. In this review, animal studies on the physiological role of the endogenous FGF-2 system and the regenerative capacity after exogenous FGF-2 administration are summarized. The concept of FGF-2 function is discussed in context with other growth factors that are also physiologically relevant in the peripheral nervous system. Studies of sciatic nerve axotomy in FGF-2- and FGF receptor (R) 3-deleted mice, respectively, strongly suggested that FGF-2 binding to FGFR3 is involved in injury-induced neuronal apoptosis. At the lesion site, inhibition of myelination and stimulation of Schwann cell proliferation by FGF-2 via FGFR1/2 is suggested from rat and mouse studies, whereas neurite formation is very likely enhanced via FGFR3 activation. Additionally to these demonstrated physiological functions of endogenous FGF-2, administration of FGF-2 isoforms in the rat model of nerve regeneration across long gaps revealed a role of the high molecular weight isoforms of FGF-2 on sensory recovery. Within the group of physiologically relevant trophic factors, the FGF-2 system seems to be crucially involved in the scenario of peripheral nerve development and regeneration.  相似文献   

11.
In the peripheral nervous system, regeneration of motor and sensory axons into chronically denervated distal nerve segments is impaired compared to regeneration into acutely denervated nerves. In order to find possible causes for this phenomenon we examined the changes in the expression pattern of the glial cell-line-derived neurotrophic factor (GDNF) family of growth factors and their receptors in chronically denervated rat sciatic nerves as a function of time with or without regeneration. Among the GDNF family of growth factors, only GDNF mRNA expression was rapidly upregulated in Schwann cells as early as 48 h after denervation. This upregulation peaked at 1 week and then declined to minimal levels by 6 months of denervation. The changes in the protein expression paralleled the changes in the expression of the GDNF mRNA. The mRNAs for receptors GFRalpha-1 and GFRalpha-2 were upregulated only after maximal GDNF upregulation and remained elevated as late as 6 months. There were no significant changes in the expression of GFRalpha-3 or the tyrosine kinase coreceptor, RET. When we examined the expression of GDNF in a delayed regeneration paradigm, there was no upregulation in the distal chronically denervated tibial nerve even when the freshly axotomized peroneal branch of the sciatic nerve was sutured to the distal tibial nerve. This study suggests that one of the reasons for impaired regeneration into chronically denervated peripheral nerves may be the inability of Schwann cells to maintain important trophic support for both motor and sensory neurons.  相似文献   

12.
Apolipoprotein E-knockout (apoE KO) mice have peripheral sensory nerve defects, reduced and delayed response to noxious thermal stimuli, abnormal morphology of unmyelinated fibers, and impaired blood-nerve and blood-brain barriers. In this study, we show that, compared to wild-type mice, peripheral nerves of apoE KO mice have impaired ability to respond to ischemia, as demonstrated by measurement of motor and sensory conduction velocity. In addition, mice lacking apoE exhibit a deficit of reinnervation of ischemic epidermis, evaluated by immunofluorescent staining for the pan-neuronal marker PGP 9.5. Also regional nerve blood flow, measured by laser Doppler, and intraneural angiogenesis after ischemia are significantly compromised in apoE-deficient mice. Finally, upregulation of the angiogenic cytokine vascular endothelial growth factor (VEGF), which physiologically occurs after ischemia in the peripheral nerve of wild-type mice, is severely impaired in apoE KO mice. Among the several neural defects that have already been described in mice lacking apoE, this is the first demonstration that functional recovery to ischemia is impaired in the peripheral nerves of these animals. This deficit is mirrored by the inability of upregulating VEGF and mounting an appropriate intraneural angiogenic response following injury. These findings provide new evidence of possible interdependent relationships between VEGF, angiogenesis, and nerve function and regeneration and may provide new important information on the role of apoE in the nervous system.  相似文献   

13.
Nerve growth factor (NGF) exhibits many biological activities, such as supply of nutrients, neuroprotection, and the generation and rehabilitation of injured nerves. The neuroprotective and neurotrophic qualities of NGF are generally recognized. NGF may enhance axonal regeneration and myelination of peripheral nerves, as well as cooperatively promote functional recovery of injured nerves and limbs. The clinical efficacy of NGF and its therapeutic potentials are reviewed here. This paper also reviews the latest NGF research developments for repairing injured peripheral nerve, thereby providing scientific evidence for the appropriate clinical application of NGF.  相似文献   

14.
The neuropilins, NP-1 and NP-2, are coreceptors for Sema3A and Sema3F, respectively, both of which are repulsive axonal guidance molecules. NP-1 and NP-2 are also coreceptors for vascular endothelial growth factor (VEGF). The neuropilins and their ligands are known to play prominent roles in axonal pathfinding, fasciculation, and blood vessel formation during peripheral nervous system (PNS) development. We confirmed a prior report (Exp. Neurol. 172 (2001) 398) that VEGF mRNA levels rise during Wallerian degeneration in the PNS and herein demonstrate that NP-1, NP-2, Sema3A, and Sema3F mRNA levels increase in peripheral nerves distal to a transection or crush injury. In a sciatic nerve crush model, in which axonal regeneration is robust, the highest levels of Sema3F mRNA below the injury site are in the epi- and perineurium. Our results suggest the possibility that the neuropilins and their semaphorin ligands serve to guide, rather than to impede, regenerating axons in the adult PNS.  相似文献   

15.
Höke A  Cheng C  Zochodne DW 《Neuroreport》2000,11(8):1651-1654
The glial cell line-derived neurotrophic factor (GDNF) family of growth factors may be involved in the regenerative support of neurons in the peripheral nervous system. In order to study the role of these growth factors and their receptors following rat peripheral nerve injury we examined the changes in their mRNA levels in the spinal cord, the dorsal root ganglia and the peripheral nerve trunk. Following transaction of the sciatic nerve GDNF mRNA was up-regulated rapidly in the denervated nerve distal to the cut along with the mRNA for one of its receptors, GFRalpha-1. GFRalpha-1 mRNA was also increased in the DRG ipsilateral to the nerve injury suggesting that GDNF may be involved in the trophic support of DRG sensory neurons. In contrast there were no analogous changes in the mRNA levels of neurturin, persephin and artemin following injury.  相似文献   

16.
Viral infection of the central nervous system elicits a myriad of cellular, vascular, and neuroimmune factors that contribute to acute, subacute, and chronic damage to the brain. In response to cellular damage, the host is capable of producing trophic factors that may protect neuronal, glial, and endothelial cell populations. Both neurotrophic and angiotrophic factors can also operate by modulating the neuroimmune response, which plays a central role in the pathogenesis of the neurodegenerative process. In this regard, crosstalk signaling among host cells, components of the neuroimmune response, and virus could influence cell fate by production of trophic factors that protect or rescue neurons vulnerable to viral damage. In this context, the main objective of this review is to provide an overview of evidence in support of the role of trophic factors in regulating the neuroimmune response in chronic viral infections of the central nervous system. Special emphasis is placed on the interaction of the human immunodeficiency virus (HIV) Tat protein with endothelial, astroglial, microglial, and neuronal cells, resulting in altered expression of vascular endothelial growth factor, fibroblast growth factor, interleukin-8, and regulation of calcium flux via CXCR2, which directly influences neuronal cell fitness.  相似文献   

17.
视神经由视网膜神经节细胞轴索组成,因其周围无许旺细胞,属于中枢神经,故损伤后不能再生。1985年So和Aguayo进行周围神经视网膜移植成功,彻底改变了视神经损伤后不能再生的观念。目前神经损伤修复的方法有以下几种:①采用神经营养因子,如神经生长因子、睫状神经营养因子、脑源性神经营养因子等,这些因子具有促进视网膜神经节细胞再生和修复的作用。②基因矫正治疗与基因调控治疗通过改变宿主基因的表达,减少疾病所产生的效应,减缓疾病病程进展或提供对疾病的保护。③神经干细胞移植与组织工程化许旺细胞移植。但这些治疗方法尚处于动物实验阶段,如何及时有效地减少节细胞的凋亡和提高节细胞的存活率,在此基础上进一步促进神经的再生与修复,至今还没有一个完善的方法。  相似文献   

18.
Acidic and basic fibroblast growth factors (aFGF and bFGF) are known to stimulate mitogenesis in a variety of non-neuronal cell types. Recent work has also established that FGFs can act as neurotrophic factors that promote the survival and regeneration in vitro of a variety of neurons. The present study investigates the distribution of aFGF and bFGF in vivo by using a mitogenic bioassay on AKR-2B cells coupled with Western-blot analysis to estimate the levels of aFGF and bFGF in different areas of the rat nervous system. Acidic FGF and bFGF from extracts of nervous tissue were found to differ considerably in their relative dependencies upon heparin to potentiate their mitogenic activities: the effect of aFGF was strongly dependent upon heparin, whereas the effect of bFGF was only slightly potentiated by heparin. Heparin was also found to stimulate differentially the mitogenic activity of extracts prepared from different areas of the nervous system, indicating that spinal cord, cortex, pituitary, and optic nerve contained different ratios of aFGF to bFGF, whereas sciatic nerve contained extremely high levels of only aFGF. These results were confirmed in Western-blot experiments, using antibodies specific for either aFGF or bFGF. Transection of nerves had opposing effects in sciatic and optic nerves: aFGF rapidly declined in the sciatic nerve distal to the cut, whereas bFGF increased slightly in the distal portion of the cut optic nerve. This differential effect of injury on FGF levels in central versus peripheral nerves may reflect the differential regenerative potential of these two types of nerves.  相似文献   

19.
Growth factors and their respective receptors are key regulators during development and for homeostasis of the nervous system. In addition, changes in growth factor function, availability or downstream signaling is involved in many neuropathological disorders like Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, stroke and brain tumours. Research of the recent years revealed that some growth factors, initially discovered as neural growth factors are also affecting blood vessels [e.g. nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF)]. Likewise, vascular growth factors, such as vascular endothelial growth factor (VEGF), which was previously described as an endothelial cell specific mitogen, also affect neural cells. The discovery of shared growth factors affecting the vascular and the nervous system is of relevance for potential therapies of vascular and neurological diseases. This review aims to give an overview about the growing field of common growth factors and receptors within the two different networks.  相似文献   

20.
Mecobalamin,a form of vitamin B12 containing a central metal element(cobalt),is one of the most important mediators of nervous system function.In the clinic,it is often used to accelerate recovery of peripheral nerves,but its molecular mechanism remains unclear.In the present study,we performed sciatic nerve crush injury in mice,followed by daily intraperitoneal administration of mecobalamin(65 μg/kg or 130 μg/kg) or saline(negative control).Walking track analysis,histomorphological examination,and quantitative real-time PCR showed that mecobalamin significantly improved functional recovery of the sciatic nerve,thickened the myelin sheath in myelinated nerve fibers,and increased the cross-sectional area of target muscle cells.Furthermore,mecobalamin upregulated m RNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury,and of neurotrophic factors(nerve growth factor,brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia.Our findings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号