首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Universal mismatch repair deficiency (dMMR) testing of colorectal cancer (CRC) is promoted as routine diagnostics to prescreen for Lynch syndrome. We evaluated the yield and experience of age-related molecular investigation for heritable and nonheritable causes of dMMR in CRC below age 70 to identify Lynch Syndrome. In a prospective cohort of 3602 newly diagnosed CRCs below age 70 from 19 hospitals, dMMR, MLH1 promoter hypermethylation, germline MMR gene and somatic MMR gene testing was assessed in daily practice. Yield was evaluated using data from the Dutch Pathology Registry (PALGA) and two regional genetic centers. Experiences of clinicians were evaluated through questionnaires. Participating clinicians were overwhelmingly positive about the clinical workflow. Pathologists routinely applied dMMR-testing in 84% CRCs and determined 10% was dMMR, largely due to somatic MLH1 hypermethylation (66%). Of those, 69% with dMMR CRC below age 70 without hypermethylation were referred for genetic testing, of which 55% was due to Lynch syndrome (hereditary) and 43% to somatic biallelic pathogenic MMR (nonhereditary). The prevalence of Lynch syndrome was 18% in CRC < 40, 1.7% in CRC age 40-64 and 0.7% in CRC age 65-69. Age 65-69 represents most cases with dMMR, in which dMMR due to somatic causes (13%) is 20 times more prevalent than Lynch syndrome. In conclusion, up to age 65 routine diagnostics of (non-)heritable causes of dMMR CRCs effectively identifies Lynch syndrome and reduces Lynch-like diagnoses. Above age 64, the effort to detect one Lynch syndrome patient in dMMR CRC is high and germline testing rarely needed.  相似文献   

2.
Lynch Syndrome is an autosomal dominant condition characterized by early onset colorectal cancer (CRC) and is associated with cancers of the gastrointestinal and reproductive tracts. Germline mutations in DNA mismatch repair (MMR) genes have been causally associated with cancers of Lynch Syndrome. We investigated the occurrence of prostate cancer (PCa) in families with a history of colorectal cancer to assess prostate cancer as a feature of the Lynch Syndrome spectrum. Family pedigrees containing at least one CRC case as well as those meeting guidelines for Lynch Syndrome were identified and tumors were requested from participants who underwent radical prostatectomy (RP). Selected families were analyzed for association with type of PCa and clinical characteristics of aggressive disease. Microsatellite Instability (MSI) analysis was preformed on available tumors and correlated to loss of expression in MMR genes by immunohistochemical (IHC) staining. 95 individuals were identified as members of potential Lynch Syndrome families who underwent RP and 35 tumors from 31 families were received for MSI analysis. Two tumors from two unrelated families with known MMR mutations were MSI-high and one additional case from a third family was MSI-low. The remainder of the prostate cancer cases demonstrated no evidence of MSI. PCa incidence in families enriched for hereditary PCa with a history of Lynch Syndrome cancers is not strongly suggestive of the presence of an MMR mutation. However prostate tumors in known MMR mutation carriers did display MSI and loss of gene expression suggesting that PCa may arise in Lynch Syndrome due to defective DNA mismatch repair.  相似文献   

3.
The risk of endometrial cancer (EC) subsequent to a diagnosis of colorectal cancer in women with a germline mutation in a mismatch repair gene [Lynch syndrome or hereditary non‐polyposis colon cancer (HNPCC)] is unknown. We estimated the risk of EC following a diagnosis of colorectal carcinoma (CRC) for women with Lynch syndrome. A retrospective cohort study was performed on women diagnosed with CRC with a germline mutation in a mismatch repair (MMR) gene (Lynch syndrome cases), and women with microsatellite stable (MSS) CRC who were not known to carry a germline mutation (non‐Lynch cases), identified from the Colon Cancer Family Registry. The incidence of EC following CRC was estimated and compared for women with and without Lynch syndrome, using adjusted hazards ratios calculated for time at risk among each group. A total of 112 women with Lynch syndrome and a previous diagnosis of CRC were compared with 908 women without Lynch and with a MSS CRC diagnosis. The estimated 10‐year cumulative risk of EC subsequent to CRC was 23.4% [95% confidence interval (CI): 15–36%] for Lynch syndrome women compared with 1.6% (95% CI: 0.7–3.8%) for non‐Lynch women. After adjusting for ascertainment, age at diagnosis and diagnosis of other cancers, risk of subsequent diagnosis with EC was elevated sixfold in women with Lynch syndrome compared with non‐Lynch women (HR 6.2; 95% CI 2.2–17.3; p = 0.001). Approximately one quarter of women diagnosed with Lynch syndrome‐associated CRC developed EC within 10 years. This supports the sentinel cancer concept and suggests that active and early management is important for these women.  相似文献   

4.
In one‐third of families fulfilling the Amsterdam criteria for hereditary nonpolyposis colorectal cancer/Lynch syndrome, and a majority of those not fulfilling these criteria point mutations in DNA mismatch repair (MMR) genes are not found. The role of large genomic rearrangements and germline epimutations in MLH1, MSH2 and MSH6 was evaluated in 2 such cohorts. All 45 index patients were mutation‐negative by genomic sequencing and testing for a prevalent population‐specific founder mutation, and selectively lacked MMR protein expression in tumor tissue. Eleven patients (“research cohort”) represented 11 mutation‐negative families among 81 verified or putative Lynch syndrome families from the nation‐wide Hereditary Colorectal Cancer Registry of Finland. Thirty‐four patients from 33 families (“clinic‐based cohort”) represented suspected Lynch syndrome patients tested for MMR gene mutations in a diagnostic laboratory during 2004–2007. Multiplex ligation‐dependent probe amplification (MLPA) and methylation‐specific (MS)‐MLPA were used to detect rearrangements and epimutations, respectively. Large genomic deletions occurred in 12/45 patients (27%), being present in 3/25 (12%), 9/16 (56%) and 0/4 (0%) among index patients lacking MLH1, MSH2 or MSH6 expression, respectively. Germline epimutations of MLH1, one of which coexisted with a genomic deletion, occurred in 2 patients (4%) and were accompanied by monoallelic expression in mRNA. Large genomic deletions (mainly MSH2) and germline epimutations (MLH1) together explain a significant fraction of point mutation‐negative families suspected of Lynch syndrome and are associated with characteristic clinical and family features. Our findings have important implications in the diagnosis and management of such families. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Early-onset (<50 years-old) nonpolyposis nonfamilial colorectal cancer (EO NP NF CRC) is a common clinical challenge. Although Lynch syndrome (LS) is associated with EO CRC, the frequency of this syndrome in the EO NF cases remains unknown. Besides, mismatch repair deficient (MMRd) CRCs with negative MMR gene testing have recently been described in up to 60% of cases and termed “Lynch-like syndrome” (LLS). Management and counseling decisions of these patients are complicated because of unconfirmed suspicions of hereditary cancer. To define the prevalence of MMR deficient CRCs, LS and LLS in patients with EO NP NF CRC, we recruited 102 patients with a first diagnosis of NP NF CRC ≤ 50 years old during 2003–2009 who underwent genetic counseling at our institution in Argentina. Tumor immunohistochemical (IHC) MMR for protein expression and microsatellite instability (MSI) status were evaluated, and in those with loss of MLH1 expression by IHC, somatic BRAF V600E mutation and both somatic and germline MLH1 methylation levels were studied. Tumors characterized as MMRd without somatic BRAF mutation nor MLH1 methylation were sent for germline analysis. Twenty one (20.6%) tumors were MMRd. Fourteen of 16 putative LS cases underwent germline testing: 6 pathogenic mutations were identified and 8 cases had no identifiable pathogenic mutations. The prevalence of LS and LLS in this cohort was 5.8% (6/102) and 7.8% (8/102), respectively. As a conclusion we found that 20% of patients with EO NP NF CRC have MMRd tumors, and at least half of these are likely to have LLS.  相似文献   

6.
The optimal strategy for identifying patients with Lynch syndrome among patients with newly diagnosed colorectal cancer (CRC) is still debated. Several predictive models (e.g., MMRpredict, PREMM1,2 and MMRpro) combining personal and familial data have recently been developed to quantify the risk that a given patient with CRC carries a Lynch syndrome-causing mutation. Their clinical applicability to patients with CRC from the general population requires evaluation. We studied a consecutive series of 214 patients with newly diagnosed CRC characterized for tumor microsatellite instability (MSI), somatic BRAF mutation, MLH1 promoter methylation and mismatch repair (MMR) gene germline mutation status. The performances of the models for identifying MMR mutation carriers (8/214, 3.7%) were evaluated and compared to the revised Bethesda guidelines and a molecular strategy based on MSI testing in all patients followed by the exclusion of MSI-positive sporadic cases from mutational testing by screening for BRAF mutation and MLH1 promoter methylation. The sensitivities of the three models, at the lowest thresholds proposed, were identical (75%), with similar numbers of probands eligible for further MSI testing (almost half the patients). In our dataset, the prediction models gave no better discrimination than the revised Bethesda guidelines. Both approaches failed to identify two of the eight mutation carriers (the same two patients, aged 67 and 81 years, both with no family history). Thus, like the revised Bethesda guidelines, predictive models did not identify all patients with Lynch syndrome in our series of consecutive CRC. Our results support systematic screening for MMR deficiency in all new CRC cases.  相似文献   

7.
Lynch syndrome is an autosomal dominant cancer predisposition syndrome caused by germline mutations in one of the mismatch repair (MMR) genes: MLH1, MSH2, MSH6 and PMS2. Clinically, Lynch syndrome is characterized by early onset (45 years) of colorectal cancer (CRC), as well as extra-colonic cancer. Male and female carriers of Lynch syndrome-associated mutations have different lifetime risks for CRC and in women endometrial cancer (EC) may be the most common tumor. Whenever Amsterdam criteria are not fulfilled, the currently recommended laboratory screening strategies involve microsatellite instability testing and immunohistochemistry staining of the tumor for the major MMR proteins. The aim of this study was to estimate the frequency of MMR deficiencies in women diagnosed with EC who are at-risk for Lynch syndrome. Thirty women diagnosed with EC under the age of 50 years and/or women with EC and a first degree relative diagnosed with a Lynch syndrome-associated tumor were included. To assess MMR deficiencies four methods were used: multiplex PCR, Single Strand Conformation Polymorphism, Immunohistochemistry and Methylation Specific–Multiplex Ligation-dependent Probe Amplification. Twelve (40%) patients with EC fulfilling one of the inclusion criteria had results indicative of MMR deficiency. The identification of 5 women with clear evidence of MMR deficiency and absence of either Amsterdam or Bethesda criteria among 10 diagnosed with EC under the age of 50 years reinforces previous suggestions by some authors that these women should be considered at risk and always screened for Lynch syndrome after informed consent.  相似文献   

8.
Single-gene germline mutations conferring a high lifetime risk of colorectal cancer (CRC) account for up to 6% of all CRC cases. The most widely studied monogenic colorectal cancer syndromes include familial adenomatous polyposis (FAP) and Lynch syndrome. However, additional syndromes continue to be defined and new predisposition genes are continuing to be identified. Most recently, MYH-associated polyposis (MAP) and an "atypical Lynch syndrome" related to the presence of MSH6 mutations have been linked to an increased risk of CRC. In this review, we summarize basic information related to these newly recognized gene mutations, including the accumulating data on the prevalence and penetrance of deleterious mutations, as well as the management options for identified carriers and their families. Recognizing these heritable syndromes is essential and predictive genetic testing will continue to transform the field of cancer risk assessment by offering the opportunity to focus on more precise risk management and cancer prevention.  相似文献   

9.
Microsatellite instability (MSI) is present in more than 90% of colorectal cancers of patients with Lynch syndrome, and is therefore a feasible marker for the disease. Mutations in MLH1, MSH2, MSH6 and PMS2, which are one of the main causes of deficient mismatch repair and subsequent MSI, have been linked to the disease. In order to establish the role of each of the 4 genes in Slovenian Lynch syndrome patients, we performed MSI analysis on 593 unselected CRC patients and subsequently searched for the presence of point mutations, larger genomic rearrangements and MLH1 promoter hypermethylation in patients with MSI-high tumours. We detected 43 (7.3%) patients with MSI-H tumours, of which 7 patients (1.3%) harboured germline defects: 2 in MLH1, 4 in MSH2, 1 in PMS2 and none in MSH6. Twenty-nine germline sequence variations of unknown significance and 17 deleterious somatic mutations were found. MLH1 promoter methylation was detected in 56% of patients without detected germline defects and in 1 (14%) suspected Lynch syndrome. Due to the minor role of germline MSH6 mutations, we adapted the Lynch syndrome detection strategy for the Slovenian population of CRC patients, whereby germline alterations should be first sought in MLH1 and MSH2 followed by a search for larger genomic rearrangements in these two genes. When no germline mutations are found tumors should be further tested for the presence of germline defects in PMS2 and MSH6. The choice about which gene should be tested first can be guided more accurately by the immunohistochemical analysis. Our study demonstrates that the incidence of MMR mutations in a population should be known prior to the application of one of several suggested strategies for detection of Lynch syndrome.  相似文献   

10.
We showed earlier that routine screening for microsatellite instability (MSI) and loss of mismatch repair (MMR) protein expression in colorectal cancer (CRC) led to the identification of previously unrecognized cases of Lynch syndrome (LS). We report here the results of screening for LS in Western Australia (WA) during 1994–2012. Immunohistochemistry (IHC) for loss of MMR protein expression was performed in routine pathology laboratories, while MSI was detected in a reference molecular pathology laboratory. Information on germline mutations in MMR genes was obtained from the state's single familial cancer registry. Prior to the introduction of routine laboratory‐based screening, an average of 2–3 cases of LS were diagnosed each year amongst WA CRC patients. Following the implementation of IHC and/or MSI screening for all younger (<60 years) CRC patients, this has increased to an average of 8 LS cases diagnosed annually. Based on our experience in WA, we propose three key elements for successful population‐based screening of LS. First, for all younger CRC patients, reflex IHC testing should be carried out in accredited pathology services with ongoing quality control. Second, a state‐ or region‐wide reference laboratory for MSI testing should be established to confirm abnormal or suspicious IHC test results and to exclude sporadic cases by carrying out BRAF mutation or MLH1 methylation testing. Finally, a state or regional LS coordinator is essential to ensure that all appropriate cases identified by laboratory testing are referred to and attend a Familial Cancer Clinic for follow‐up and germline testing.  相似文献   

11.

Background

Lynch syndrome (or HNPCC) is a colorectal cancer syndrome caused by germline mutations in either one of the DNA mismatch repair (MMR) genes hMLH1, hMSH2, hMSH6 or hPMS2. Mutations in hMLH1 and hMSH2 are most prevalent. Here we aimed to determine the cancer risk of MMR gene mutation carriers and, in addition, the efficacy of colonoscopy surveillance in Chinese Lynch syndrome family members with and without MMR gene mutations.

Methods

A Lynch syndrome family registry encompassing 106 families in Northern China was recently established. Detailed pedigree data for each family were collected and hMLH1 and hMSH2 gene mutation analyses were performed. Germ-line mutations were identified in probands from 42 of these families, and additional genetic analyses were performed in each member of these 42 families to identify mutation and non-mutation carriers. Among the family members included, 180 received colonoscopy and the remaining cases were followed without colonoscopy.

Results

Overall 54.8 % of the Lynch syndrome family members carried MMR gene mutations, and these mutation carriers exhibited significantly higher colorectal cancer and other Lynch syndrome-associated cancer risks as compared to non-mutation carriers. The cumulative risk for all Lynch syndrome-related cancers at age 70 was 93.8 % for both hMLH1 and hMSH2 mutation carriers, and 81.7 % and 93.1 % for colorectal cancer at this age, respectively. Whereas 43 of 102 (42.2 %) mutation carriers exhibited significant colonoscopy findings, including 10 colorectal cancers, none of 78 non-mutation carriers exhibited significant findings, and no cancers were detected. In addition, in the mutation carriers, colonoscopy surveillance led to the detection of more early stage cancers than in the non-surveillance group (70.0 % versus 36.5 %, p?<?0.01).

Conclusion

In Lynch syndrome family members, we recommend pre-symptomatic MMR gene mutation analysis in order to identify high risk individuals for colonoscopy surveillance.  相似文献   

12.
Lynch syndrome (LS), or hereditary non-polyposis colorectal cancer (HNPCC), is an autosomal dominant condition responsible for early onset cancer mostly in the colonrectum and endometrium as well as in other organ sites. Lynch syndrome is caused by germline mutations in mismatch repair genes, prevalently in hMSH2, hMLH1, and less frequently in hMSH6 and hPMS2. Twenty-nine non-related index cases with colorectal cancer (CRC) were collected from a region in southeast Italy (Apulia). Among this set of patients, fifteen fulfilled the Amsterdam criteria II. The presence of tumor microsatellite instability (MSI) was assessed in all index cases and 19 (15 AC+/4 AC-) were classified as MSI-H. Mutation analysis performed on all patients, identified 15 pathogenic mutations in hMLH1 and 4 in hMSH2. 4/15 mutations in hMLH1 and 2/4 hMSH2 mutations have not been previously reported. Three previously reported mutations were further investigated for the possibility of a common founder effect. Genetic counseling was offered to all probands and extended to 183 relatives after molecular testing and 85 (46%) mutation carriers were identified. Eighty mutation carriers underwent an accurate clinical and instrumental surveillance protocol. Our results confirm that the identification of LS patients based exclusively on family history may miss patients carrying germline mutations in the MMR genes. Moreover, our results demonstrated that molecular screening and subsequent instrumental surveillance are very effective in identifying CRCs at earlier stages and reducing the number of deaths from secondary cancers in HNPCC patients.  相似文献   

13.
Pathology of the hereditary colorectal carcinoma   总被引:10,自引:0,他引:10  
Positive familial history (first or second degree relative) for colorectal carcinoma (CRC) can be found in approximately 30% of all newly diagnosed cases, but less than 5% will be due to a defined genetic category of hereditary CRC. Pathologic examination of the biopsy or resection specimen can help in identification of unsuspected cases of certain forms of hereditary CRC due to the characteristic morphologic findings. Additional immunohistochemical and molecular studies can then provide a definitive diagnosis. The most common form of hereditary CRC is Lynch syndrome (hereditary non-polyposis colorectal cancer, HNPCC) which is characterized by proximally located tumors frequently showing mucinous and medullary type histologic features. The syndrome results from a germline mutation in genes for mismatch repair (MMR) proteins leading to insufficient DNA repair and development of tumors characterized by high levels of instability in short tandem repeat DNA sequences (microsatellites) or “microsatellite instability-high” (MSI-H). The presence of intra-epithelial lymphocytes is single most helpful morphologic feature in identification of CRC caused by deficiency in MMR proteins, for which MSI-H status is a good marker but morphologic features and MSI-H do not differentiate tumors caused by germline mutations in one of the MMR genes (Lynch syndrome) from sporadic CRC due to inactivation of MLH-1 through promoter methylation. Hereditary CRC may also arise in various familial polyposis syndromes which include familial adenomatous polyposis (FAP), attenuated FAP and other multiple adenomas syndromes as well as various hamartomatous polyposis syndromes. All of these rare conditions have characteristic clinical presentation and histopathologic features of polyps and most of them have defined genetic abnormality. Furthermore, due to the germline nature of mutations in these syndromes, various extracolonic manifestations may be the first sign of the disease and knowledge of such associations can greatly improve the quality of care for these patients. The role of pathologist is to recognize these characteristics and initiate appropriate follow up with clinicians and genetic counselors.  相似文献   

14.
Genetic diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) may have a significant impact on the clinical management of patients and their at-risk relatives. At present, clinical criteria represent the simplest and most useful method for the identification of HNPCC families and for the selection of candidates for genetic testing. However, reports of mismatch repair (MMR) gene mutations in families not fulfilling the minimal diagnostic criteria point out the necessity to identify additional clinical parameters suggestive of genetic predisposition to colorectal cancer (CRC) related to MMR defects. We thus investigated a series of 32 Italian putative HNPCC individuals selected on the basis of one of the following criteria: 1) family history of CRC and/or other extracolonic tumors; 2) early-onset CRC; and 3) presence of multiple primary malignancies in the same individual. These patients were investigated for the presence of MLH1 and MSH2 mutations by single-strand conformation polymorphism analysis. Pathogenetic truncating mutations were identified in 4 (12.5%) cases, 3 of them involving MSH2 and 1 MLH1. In addition, 2 missense MLH1 variants of uncertain significance were observed. All pathogenetic mutations were associated with early age (<40 years) at onset and proximal CRC location. Our results support the contention that constitutional MMR mutations can also occur in individuals without the classical HNPCC pattern. Moreover, evaluation of the clinical parameters associated with MMR mutations indicates that early onset combined with CRC location in the proximal colon can be definitely considered suggestive of MMR-related hereditary CRC and should be included among the guidelines for referring patients for genetic testing. Int. J. Cancer 75:835–839, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR) genes. MMR deficiency has long been regarded as a secondary event in the pathogenesis of Lynch syndrome colorectal cancers. Recently, this concept has been challenged by the discovery of MMR‐deficient crypt foci in the normal mucosa. We aimed to reconstruct colorectal carcinogenesis in Lynch syndrome by collecting molecular and histology evidence from Lynch syndrome adenomas and carcinomas. We determined the frequency of MMR deficiency in adenomas from Lynch syndrome mutation carriers by immunohistochemistry and by systematic literature analysis. To trace back the pathways of pathogenesis, histological growth patterns and mutational signatures were analyzed in Lynch syndrome colorectal cancers. Literature and immunohistochemistry analysis demonstrated MMR deficiency in 491 (76.7%) out of 640 adenomas (95% CI: 73.3% to 79.8%) from Lynch syndrome mutation carriers. Histologically normal MMR‐deficient crypts were found directly adjacent to dysplastic adenoma tissue, proving their role as tumor precursors in Lynch syndrome. Accordingly, mutation signature analysis in Lynch colorectal cancers revealed that KRAS and APC mutations commonly occur after the onset of MMR deficiency. Tumors lacking evidence of polypous growth frequently presented with CTNNB1 and TP53 mutations. Our findings demonstrate that Lynch syndrome colorectal cancers can develop through three pathways, with MMR deficiency commonly representing an early and possibly initiating event. This underlines that targeting MMR‐deficient cells by chemoprevention or vaccines against MMR deficiency‐induced frameshift peptide neoantigens holds promise for tumor prevention in Lynch syndrome.  相似文献   

17.
Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time‐consuming, clinical criteria and tumor‐tissue analysis are widely used as pre‐screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor‐tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability‐high (MSI‐H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p < 0.001). The highest frequencies were found in families fulfilling the Amsterdam Criteria (46.4%). Families with loss of MSH2 expression had higher mutation detection rates (69.5%) than families with loss of MLH1 expression (43.1%). MMR mutations were found significantly more often in families with at least one MSI‐H small‐bowel cancer (p < 0.001). No MMR mutations were found among patients under 40‐years‐old with only colorectal adenoma. Familial clustering of Lynch syndrome‐related tumors, early age of onset, and familial occurrence of small‐bowel cancer were clinically relevant predictors for Lynch syndrome.  相似文献   

18.
Colorectal cancers (CRCs) with microsatellite instability‐high (MSI+) but without detectable germline mutation or hypermethylation in DNA mismatch repair (MMR) genes can be classified as Lynch‐like syndrome (LLS). The underlying mechanism and clinical significances of LLS are largely unknown. We measured MSI and MMR protein expression in 4,765 consecutive CRC cases. Among these, MSI+ cases were further classified based on clinical parameters, germline sequencing of MMR genes or polymerase ε (POLE) and δ (POLD1) and promoter methylation analysis of MLH1 and MSH2. We found that MSI+ and MMR protein‐deficient CRCs comprised 6.3% (N = 302) of this cohort. On the basis of germline sequencing of 124 cases, we identified 54 LS with MMR germline mutation (LS‐MMR), 15 LS with EPCAM deletions (LS‐EPCAM) and 55 LLS patients. Of the 55 LLS patients, six (10.9%) had variants of unknown significance in the genes tested, and one patient had a novel somatic mutation (p.S459P) in POLE. In patients with biallelic deletions of EPCAM, all tumors and their matched normal mucosa showed promoter hypermethylation of MSH2. Finally, we found that patients with LLS and LS‐EPCAM shared clinical features that differed from LS‐MMR patients, including lower frequency of fulfillment of the revised Bethesda guidelines (83.6 and 86.7% vs. 98.1% for LS‐MMR) and older mean age at CRC diagnosis (52.6 and 52.7 years vs. 43.9 years for LS‐MMR). We identified somatic mutation in POLE as a rare underlying cause for MMR deficiency in LLS. The similarity between LLS and LS‐EPCAM suggests LLS as a subset of familial MSI+ CRC.  相似文献   

19.
In a proportion of patients presenting mismatch repair (MMR)‐deficient tumors, no germline MMR mutations are identified, the so‐called Lynch‐like syndrome (LLS). Recently, MMR‐deficient tumors have been associated with germline mutations in POLE and MUTYH or double somatic MMR events. Our aim was to elucidate the molecular basis of MSH2‐deficient LS‐suspected cases using a comprehensive analysis of colorectal cancer (CRC)‐associated genes at germline and somatic level. Fifty‐eight probands harboring MSH2‐deficient tumors were included. Germline mutational analysis of MSH2 (including EPCAM deletions) and MSH6 was performed. Pathogenicity of MSH2 variants was assessed by RNA analysis and multifactorial likelihood calculations. MSH2 cDNA and methylation of MSH2 and MSH6 promoters were studied. Matched blood and tumor DNA were analyzed using a customized next generation sequencing panel. Thirty‐five individuals were carriers of pathogenic or probably pathogenic variants in MSH2 and EPCAM. Five patients harbored 4 different MSH2 variants of unknown significance (VUS) and one had 2 novel MSH6 promoter VUS. Pathogenicity assessment allowed the reclassification of the 4 MSH2 VUS and 6 probably pathogenic variants as pathogenic mutations, enabling a total of 40 LS diagnostics. Predicted pathogenic germline variants in BUB1, SETD2, FAN1 and MUTYH were identified in 5 cases. Three patients had double somatic hits in MSH2 or MSH6, and another 2 had somatic alterations in other MMR genes and/or proofreading polymerases. In conclusion, our comprehensive strategy combining germline and somatic mutational status of CRC‐associated genes by means of a subexome panel allows the elucidation of up to 86% of MSH2‐deficient suspected LS tumors.  相似文献   

20.

Background

Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome, caused by germline mutations in MisMatch Repair (MMR) genes, particularly in MLH1, MSH2 and MSH6. Patients with LS seem to have a more favourable prognosis than those with sporadic CRC, although the prognostic impact of different mutation types is unknown.Aim of our study is to compare survival outcomes of different types of MMR mutations in patients with LS-related CRC.

Methods

302 CRC patients were prospectively selected on the basis of Amsterdam or Revised Bethesda criteria to undergo genetic testing: direct sequencing of DNA and MLPA were used to examine the entire MLH1, MSH2 and MSH6 coding sequence.Patients were classified as mutation-positive or negative according to the genetic testing result.

Results

A deleterious MMR mutation was found in 38/302 patients. Median overall survival (OS) was significantly higher in mutation-positive vs mutation-negative patients (102.6 vs 77.7 months, HR:0.63, 95%CI:0.46–0.89, p = 0.0083). Different types of mutation were significantly related with OS: missense or splicing-site mutations were associated with better OS compared with rearrangement, frameshift or non-sense mutations (132.5 vs 82.5 months, HR:0.46, 95%CI:0.16–0.82, p = 0.0153).

Conclusions

Our study confirms improved OS for LS-patients compared with mutation-negative CRC patients. In addition, not all mutations could be considered equal: the better prognosis in CRC patients with MMR pathogenic missense or splicing site mutation could be due to different functional activity of the encoded MMR protein. This matter should be investigated by use of functional assays in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号