首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the mechanisms of fixation disengagement and saccade initiation, we electrically stimulated the macaque frontal eye fields (FEF) while monkeys performed a visual fixation task. We tested the effect of introducing a temporal gap between fixation target offset and the onset of the electrical stimulus. We found that the duration of the gap had a pronounced effect on the probability of producing electrically evoked saccades at a given current level. The highest probability was found for gaps of 200 ms duration. There were also effects of gap duration on saccade latency and amplitude for most of the stimulation sites. The increase in saccade probability may be associated with lower current thresholds for evoking saccades.  相似文献   

2.
Saccadic and manual reactions to a peripherally presented target are facilitated by removing a central fixation stimulus shortly before a target onset (the gap effect). The present study examined the effects of removal of a visible and invisible fixation point on the saccadic gap effect and the manual gap effect. Participants were required to fixate a central fixation point and respond to a peripherally presented target as quickly and accurately as possible by making a saccade (Experiment 1) or pressing a corresponding key (Experiment 2). The fixation point was dichoptically presented, and visibility was manipulated by using binocular rivalry and continuous flash suppression technique. In both saccade and key-press tasks, removing the visible fixation strongly quickened the responses. Furthermore, the invisible fixation, which remained on the display but suppressed, significantly delayed the saccadic response. Contrarily, the invisible fixation had no effect on the manual task. These results indicate that partially different processes mediate the saccadic gap effect and the manual gap effect. In particular, unconscious processes might modulate an oculomotor-specific component of the saccadic gap effect, presumably via subcortical mechanisms.  相似文献   

3.
Horizontal saccadic reaction times (SRTs) have been extensively studied over the past 3 decades, concentrating on such topics as the gap effect, express saccades, training effects, and the role of fixation and attention. This study investigates some of these topics with regard to vertical saccades. The reaction times of vertical saccades of 13 subjects were measured using the gap and the overlap paradigms in the prosaccade task (saccade to the stimulus) and the antisaccade task (saccade in the direction opposite to the stimulus). In the gap paradigm, the initial fixation point (FP) was extinguished 200 ms before stimulus onset, while, in the overlap paradigm, the FP remained on during stimulus presentation. With the prosaccade overlap task, it was found that most subjects (10/13) — whether they were previously trained making horizontal saccades or naive — had significantly faster upward saccades compared with their downward saccades. One subject was faster in the downward direction and two were symmetrical. The introduction of the gap reduced the reaction times of the prosaccades, and express saccades were obtained in some naive and most trained subjects. This gap effect was larger for saccades made to the downward target. The strength of the updown asymmetry was more pronounced in the overlap as compared to the gap paradigm. With the antisaccade task, up-down asymmetries were much reduced. Express antisaccades were absent even with the gap paradigm, but reaction times were reduced as compared to the antisaccade overlap paradigm. There was a slight tendency for a larger gap effect of downward saccades. All subjects produced a certain number of erratic prosaccades in the antitaks, more with the gap than with the overlap paradigm. There was a significantly larger gap effect for the erratic prosaccades made to the downward, as compared to the upward, target, due to increased downward SRTs in the overlap paradigm. Three subjects trained in both the horizontal and the vertical direction showed faster SRTs and more express saccades in the horizontal directions as compared to the vertical. It is concluded that different parts of the visual field are differently organized with both directional and nondirectional components in saccade preparation.  相似文献   

4.
Saccadic eye movements to visual, auditory, and bimodal targets were measured in four adult cats. Bimodal targets were visual and auditory stimuli presented simultaneously at the same location. Three behavioral tasks were used: a fixation task and two saccadic tracking tasks (gap and overlap task). In the fixation task, a sensory stimulus was presented at a randomly selected location, and the saccade to fixate that stimulus was measured. In the gap and overlap tasks, a second target (hereafter called the saccade target) was presented after the cat had fixated the first target. In the gap task, the fixation target was switched off before the saccade target was turned on; in the overlap task, the saccade target was presented before the fixation target was switched off. All tasks required the cats to redirect their gaze toward the target (within a specified degree of accuracy) within 500 ms of target onset, and in all tasks target positions were varied randomly over five possible locations along the horizontal meridian within the cat's oculomotor range. In the gap task, a significantly greater proportion of saccadic reaction times (SRTs) were less than 125 ms, and mean SRTs were significantly shorter than in the fixation task. With visual targets, saccade latencies were significantly shorter in the gap task than in the overlap task, while, with bimodal targets, saccade latencies were similar in the gap and overlap tasks. On the fixation task, SRTs to auditory targets were longer than those to either visual or bimodal targets, but on the gap task, SRTs to auditory targets were shorter than those to visual or bimodal targets. Thus, SRTs reflected an interaction between target modality and task. Because target locations were unpredictable, these results demonstrate that cats, as well as primates, can produce very short latency goal-directed saccades.  相似文献   

5.
Summary Saslow (1967) and Fischer and Ramsperger (1984) found that saccadic reaction time (SRT) depends on the interval between the fixation point offset and the target onset. Using a continuously visible fixation point, we asked whether a similar function would be obtained if subjects attended to a peripherally viewed point extinguished at variable intervals before or after the target onset. The interval was varied between -500ms (i.e., attention stimulus offset after saccade target onset = overlap trials) and 500ms (i.e., attention stimulus offset before saccade target onset = gap trials). The results show a constant mean SRT of about 240 ms for overlap trials, and a U-shaped function with a minimum of 140 ms, at a gap duration of 200 ms, for gap trials. These findings suggest that saccadic latencies do not depend on the cessation of fixation per se, but rather on the disengagement of attention from any location in the visual field. The time required for subjects to disengage their attention is approximately 100 ms. This disengaged state of attention — during which short latency (express) saccades can be made — can be sustained only for a gap duration of 300 ms. At longer gap durations mean SRTs increase again.  相似文献   

6.
During fast, saccadic eye movements visual perception is suppressed. This saccadic suppression prevents erroneous and distracting motion percepts resulting from saccade induced retinal slip. Although saccadic suppression occurs over a substantial time interval around the saccade, there is no “perceptual gap” during saccades. The mechanisms underlying this temporal perceptual filling-in are unknown. When subjects are asked to perform temporal interval judgements of stimuli presented at the time of saccades, the time interval following the termination of the saccade appears longer than subsequent intervals of identical length. This illusion is known as “chronostasis”, because a clock presented at the saccade target seemingly stops for a moment. We test whether chronostasis is a global mechanism that may compensate for the temporal gap associated with saccadic suppression. We show that a clock positioned halfway between the initial fixation point and the saccade target does not exhibit prolongation of the interval following the saccade. The characteristical distortion of temporal perception occurred only in the case of a clock being located at the saccade target. This result suggests a local, object-specific mechanism underlying the stopped clock illusion that might originate from a shift in attention immediately preceding the eye movement.  相似文献   

7.
Recent studies have shown that saccadic inward adaptation (i.e., the shortening of saccade amplitude) and saccadic outward adaptation (i.e., the lengthening of saccade amplitude) rely on partially different neuronal mechanisms. There is increasing evidence that these differences are based on differences at the target registration or planning stages since outward but not inward adaptation transfers to hand-pointing and perceptual localization of flashed targets. Furthermore, the transfer of reactive saccade adaptation to long-duration overlap and scanning saccades is stronger after saccadic outward adaptation than that after saccadic inward adaptation, suggesting that modulated target registration stages during outward adaptation are increasingly used in the execution of saccades when the saccade target is visually available for a longer time. The difference in target presentation duration between reactive and scanning saccades is also linked to a difference in perceptual localization of different targets. Flashed targets are mislocalized after inward adaptation of reactive and scanning saccades but targets that are presented for a longer time (stationary targets) are mislocalized stronger after scanning than after reactive saccades. This link between perceptual localization and adaptation specificity suggests that mislocalization of stationary bars should be higher after outward than that after inward adaptation of reactive saccades. In the present study we test this prediction. We show that the relative amount of mislocalization of stationary versus flashed bars is higher after outward than that after inward adaptation of reactive saccades. Furthermore, during fixation stationary and flashed bars were mislocalized after outward but not after inward adaptation. Thus, our results give further evidence for different adaptation mechanisms between inward and outward adaptation and harmonize some recent research.  相似文献   

8.
Summary Human subjects were asked to execute a saccade from a central fixation point to a peripheral target at the time of its onset. When the fixation point is turned off some time ( 200 ms) before target onset, such that there is a gap where subjects see nothing, the distribution of their saccadic reaction times is bimodal with one narrow peak around 100 ms (express saccades) and another peak around 150 ms (regular saccades) measured from the onset of the target. Express saccades have been described earlier for the monkey.  相似文献   

9.
According to evolutionary accounts, emotions originated to prepare an organism for action (Darwin 1872; Frijda 1986). To investigate this putative relationship between emotion and action, we examined the effect of an emotional stimulus on oculomotor actions controlled by the superior colliculus (SC), which has connections with subcortical structures involved in the perceptual prioritization of emotion, such as the amygdala through the pulvinar. The pulvinar connects the amygdala to cells in the SC responsible for the speed of saccade execution, while not affecting the spatial component of the saccade. We tested the effect of emotion on both temporal and spatial signatures of oculomotor functioning using a gap-distractor paradigm. Changes in spatial programming were examined through saccadic curvature in response to a remote distractor stimulus, while changes in temporal execution were examined using a fixation gap manipulation. We show that following the presentation of a task-irrelevant fearful face, the temporal but not the spatial component of the saccade generation system was affected.  相似文献   

10.
1. In the rostral pole of the monkey superior colliculus (SC) a subset of neurons (fixation cells) discharge tonically when a monkey actively fixates a target spot and pause during the execution of saccadic eye movements. 2. To test whether these fixation cells are necessary for the control of visual fixation and saccade suppression, we artificially inhibited them with a local injection of muscimol, an agonist of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). After injection of muscimol into the rostral pole of one SC, the monkey was less able to suppress the initiation of saccades. Many unwanted visually guided saccades were initiated less than 100 ms after onset of a peripheral visual stimulus and therefore fell into the range of express saccades. 3. We propose that fixation cells in the rostral SC form part of a fixation system that facilitates active visual fixation and suppresses the initiation of unwanted saccadic eye movements. Express saccades can only occur when activity in this fixation system is reduced.  相似文献   

11.
 Recent neurophysiological studies of the saccadic ocular motor system have lent support to the hypothesis that this system uses a motor error signal in retinotopic coordinates to direct saccades to both visual and auditory targets. With visual targets, the coordinates of the sensory and motor error signals will be identical unless the eyes move between the time of target presentation and the time of saccade onset. However, targets from other modalities must undergo different sensory-motor transformations to access the same motor error map. Because auditory targets are initially localized in head-centered coordinates, analyzing the metrics of saccades from different starting positions allows a determination of whether the coordinates of the motor signals are those of the sensory system. We studied six human subjects who made saccades to visual or auditory targets from a central fixation point or from one at 10° to the right or left of the midline of the head. Although the latencies of saccades to visual targets increased as stimulus eccentricity increased, the latencies of saccades to auditory targets decreased as stimulus eccentricity increased. The longest auditory latencies were for the smallest values of motor error (the difference between target position and fixation eye position) or desired saccade size, regardless of the position of the auditory target relative to the head or the amplitude of the executed saccade. Similarly, differences in initial eye position did not affect the accuracy of saccades of the same desired size. When saccadic error was plotted as a function of motor error, the curves obtained at the different fixation positions overlapped completely. Thus, saccadic programs in the central nervous system compensated for eye position regardless of the modality of the saccade target, supporting the hypothesis that the saccadic ocular motor system uses motor error signals to direct saccades to auditory targets. Received: 8 September 1995 / Accepted: 22 November 1996  相似文献   

12.
Latencies of eye movements to peripheral targets are reduced when there is a short delay (typically 200 ms) between the offset of a central visual fixation point and the target onset. This has been termed the gap effect. In addition, some subjects, usually with practice, exhibit a separate population of very short latency saccades, called express saccades. Both these phenomena have been attributed to disengagement of visual attention when the fixation point is extinguished. A competing theory of the gap effect attributes it to disengagement of oculomotor fixation during the temporal gap. It is known that auditory targets are effective in eliciting saccadic eye movements, and also that covert attention operates in the auditory modality. If the gap effect and express saccades are due to disengagement of spatial attention, both should persist in the auditory modality. However, fixation of gaze is largely under visual control. If the gap effect results from disengagement of fixation, then at least a reduced effect should be seen in the auditory modality. Human subjects performed the gap task and a control task in the dark, using auditory fixation points and saccadic targets, on five successive days. Despite this practice, express saccades were not observed. There was a reliable gap effect, but the reduction in saccadic latency was only 17 ms, compared with 32 ms for the same subjects in the visual modality. This suggests that about half the gap effect is due to disengagement of visual fixation. The remainder was not due to non-specific warning effects and could be attributed to offset of the auditory fixation stimulus. Received: 1 March 1996 / Accepted: 11 July 1997  相似文献   

13.
Covert attention modulates saccadic performance, e.g., the abrupt onset of a task-irrelevant visual stimulus grabs attention as measured by a decrease in saccadic reaction time (SRT). The attentional advantage bestowed by the task-irrelevant stimulus is short-lived: SRT is actually longer ~200 ms after the onset of a stimulus than it is when no stimulus appears, known as inhibition of return. The mechanism by which attention modulates saccadic reaction is not well-understood. Here, we propose two possible mechanisms: by selective routing of the visuomotor signal through different pathways (routing hypothesis) or by general modulation of the speed of visuomotor transformation (shifting hypothesis). To test them, we designed a cue gap paradigm in which a 100-ms gap was introduced between the fixation point disappearance and the target appearance to the conventional cued visual reaction time paradigm. The cue manipulated the location of covert attention, and the gap interval resulted in a bimodal distribution of SRT, with an early mode (express saccade) and a late mode (regular saccade). The routing hypothesis predicts changes in the proportion of express saccades vs. regular saccades, whereas the shifting hypothesis predicts a shift of SRT distribution. The addition of the cue had no effect on mean reaction time of express and regular saccades, but it changed the relative proportion of two modes. These results demonstrate that the covert attention modification of the mean SRT is largely attributed to selective routing between visuomotor pathways rather than general modulation of the speed of visuomotor transformation.  相似文献   

14.
Subjects were required to make a saccade to a target appearing randomly 4° to the left or right of the current fixation position (1280 trials per experiment). Location cues were used to direct visual attention and start saccade preparation to one of the two locations before target onset. When the cue indicated the target location (valid trials), the generation of express saccades (visually guided saccades with latencies around 100 ms) was strongly facilitated. When the opposite location was cued (invalid trials), express saccades were abolished and replaced by a population of mainly fast-regular saccades (latencies around 150 ms). This was found with a peripheral cue independently of whether the fixation point was removed before target onset (gap condition; experiment 1) or remained on throughout the trial (overlap condition; experiment 2). The same pattern also was observed with a central cue that did not involve any visual stimulation at a peripheral location (experiment 3). In the case where the primary saccade was executed in response to the cue and the target appeared at the opposite location, continuous amplitude transition functions were observed: starting at about 60–70 ms from target onset onward, the amplitude of the cue-elicited saccades continuously decreased from 4° to values below 1°. The results are explained by a fixation-gating model, according to which the antagonism between fixation and saccade activity gives rise to multimodal distributions of saccade latencies. It is argued that allocation of visual attention and saccade preparation to one location entails a successive disengagement of the fixation system controlling saccade preparation within the hemifield to which the saccade is prepared and a partial engagement of the opposite fixation system.  相似文献   

15.
Huntington’s disease (HD), a progressive neurological disorder involving degeneration in basal ganglia structures, leads to abnormal control of saccadic eye movements. We investigated whether saccadic impairments in HD (N = 9) correlated with clinical disease severity to determine the relationship between saccadic control and basal ganglia pathology. HD patients and age/sex-matched controls performed various eye movement tasks that required the execution or suppression of automatic or voluntary saccades. In the “immediate” saccade tasks, subjects were instructed to look either toward (pro-saccade) or away from (anti-saccade) a peripheral stimulus. In the “delayed” saccade tasks (pro-/anti-saccades; delayed memory-guided sequential saccades), subjects were instructed to wait for a central fixation point to disappear before initiating saccades towards or away from a peripheral stimulus that had appeared previously. In all tasks, mean saccadic reaction time was longer and more variable amongst the HD patients. On immediate anti-saccade trials, the occurrence of direction errors (pro-saccades initiated toward stimulus) was higher in the HD patients. In the delayed tasks, timing errors (eye movements made prior to the go signal) were also greater in the HD patients. The increased variability in saccadic reaction times and occurrence of errors (both timing and direction errors) were highly correlated with disease severity, as assessed with the Unified Huntington’s Disease Rating Scale, suggesting that saccadic impairments worsen as the disease progresses. Thus, performance on voluntary saccade paradigms provides a sensitive indicator of disease progression in HD. A. Peltsch and A. Hoffman contributed equally.  相似文献   

16.
When a temporal gap is introduced between the offset of the central fixation point and the appearance of a new target, saccadic reaction time is reduced (gap effect) and a special population of extremely fast saccades occurs (express saccades). It has been hypothesized that the gap triggers a readiness signal, which is responsible for the reduced saccadic reaction times. Here we recorded event-related potentials during the gap to in vestigate the central processes associated with the gener ation of fast regular saccades and express saccades. Prior to the execution of fast regular saccades, subjects pro duced a slow negative shift, with a maximum at frontal and central channels that started 40 ms after fixation offset. This widespread negativity is similar to a readiness potential. Anticipatory saccades were preceded by an increased frontal and parietal negativity. Prior to express saccades, a frontal negativity was observed, which started 135 ms after the disappearance of the fixation point. It is assumed that the frontal negativity prior to express saccades corresponds to the fixation-disengagement dis charge described in the frontal eye field of monkeys. Therefore, we hypothesize that fast regular saccades are the result of an increased readiness signal, while express saccades are the result of specific preparatory processes.  相似文献   

17.
Attention-deficit hyperactivity disorder (ADHD) is characterized by the overt symptoms of impulsiveness, hyperactivity, and inattention. A frontostriatal pathophysiology has been hypothesized to produce these symptoms and lead to reduced ability to inhibit unnecessary or inappropriate behavioral responses. Oculomotor tasks can be designed to probe the ability of subjects to generate or inhibit reflexive and voluntary responses. Because regions of the frontal cortex and basal ganglia have been identified in the control of voluntary responses and saccadic suppression, we hypothesized that children and adults diagnosed with ADHD may have specific difficulties in oculomotor tasks requiring the suppression of reflexive or unwanted saccadic eye movements. To test this hypothesis, we measured eye movement performance in pro- and anti-saccade tasks of 114 ADHD and 180 control participants ranging in age from 6 to 59 yr. In the pro-saccade task, participants were instructed to look from a central fixation point toward an eccentric visual target. In the anti-saccade task, stimulus presentation was identical, but participants were instructed to suppress the saccade to the stimulus and instead look from the central fixation point to the side opposite the target. The state of fixation was manipulated by presenting the target either when the central fixation point was illuminated (overlap condition) or at some time after it disappeared (gap condition). In the pro-saccade task, ADHD participants had longer reaction times, greater intra-subject variance, and their saccades had reduced peak velocities and increased durations. In the anti-saccade task, ADHD participants had greater difficulty suppressing reflexive pro-saccades toward the eccentric target, increased reaction times for correct anti-saccades, and greater intra-subject variance. In a third task requiring prolonged fixation, ADHD participants generated more intrusive saccades during periods when they were required to maintain steady fixation. The results suggest that ADHD participants have reduced ability to suppress unwanted saccades and control their fixation behavior voluntarily, a finding that is consistent with a fronto-striatal pathophysiology. The findings are discussed in the context of recent neurophysiological data from nonhuman primates that have identified important control signals for saccade suppression that emanate from frontostriatal circuits.  相似文献   

18.
In this study, the execution of delayed saccades in 15 DSM-III-R-schizophrenic patients and 15 normal subjects was investigated. While looking at a central fixation cross, a peripheral target was randomly presented at 10° eccentricity. Subjects were instructed to saccade to the target when the fixation cross was switched off after 500 ms. Two experiments were conducted: (a) a delayed-saccade task and, (b) a memoryguided saccade task, that is, the peripheral target was switched off together with the fixation cross. In the delayed-saccade task, amplitudes of regular saccades did not differ between schizophrenic patients and normals. In the memory-guided saccade task, schizophrenic subjects showed marked hypometric saccades. Incorrect delayed saccades (while the fixation cross was on) were also hypometric in schizophrenics, but not in normal controls. The final eye position, i.e., the position reached after the execution of correction saccades, however, did not differ between patients and controls. This means that schizophrenics show a deficit in the programming of primary saccades, if the fixation point and the peripheral target are (a) both visually presented or (b) both memorized. The results support the hypothesis that these saccades are the result of an averaging effect between the fixation point and the peripheral target. It is further hypothesized that these deficits might be explained by a lack of prefrontal inhibition of ocular fixation areas.  相似文献   

19.
Reaction times of the eye and the hand of the monkey in a visual reach task   总被引:1,自引:0,他引:1  
Two monkeys were trained to execute saccadic eye movements and reach movements with the hand from a central fixation point to a peripheral target. Reaction times for both movements were compared on a trial-by-trial basis. If the fixation point was extinguished before the target appeared (gap condition), extremely short latency saccades (85 ms) (express saccades) were obtained, that were followed by short latency reach movements (250 ms), but there was no correlation between them on a trial-by-trial basis. If the fixation point remained visible (overlap condition), very short (100 ms) and rather long (220 ms) latency saccades were observed. Long saccadic latencies correlated strongly with the reach reaction times. Short latency saccades were followed by reach movements of reaction times longer than those observed after express saccades in the gap condition; there was no correlation between them. All reaction times varied systematically with practice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号