首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The ‘pro-opiocortin’ fragments, β-lipotropin, β-endorphin, ACTH and α-MSH, were estimated in discrete areas of rat and human brain and pituitaries by means of radioimmunoassay in combination with gelfiltration. These peptides exihibited parallel patterns of distribution, but with β-endorphin and α-MSH predominant in the brain of rat and man, and, in contrast, their respective precursors, β-LPH and ACTH predominant in the adenohypophysis of rat and man. These data may be indicative of important differences in post-translational processing of ‘pro-opiocortin’ between these contrasting tissues.  相似文献   

2.
Following the intracerebroventricular administration of α-endorphin, β-endorphin and (des-tyrosine1)-γ-endorphin in a dose of 100 ng, the α-MPT-induced catecholamine disappearance was found to be altered in discrete regions of the rat brain. In the regions in which α-endorphin exerted an effect, it without exception caused a decrease in catecholamine disappearance. Thus, in rats treated with α-endorphin the disappearance of noradrenaline was decreased in the medial septal nucleus, dorsomedial nucleus, central amygdaloid nucleus, subiculum, the ventral part of the nucleus reticularis medullae oblongatae and the A1 region, and that of dopamine in the caudate nucleus, globus pallidus, medial septal nucleus, nucleus interstitialis striae terminalis, paraventricular nucleus, zona incerta and central amygdaloids nucleus. β-endorphin was found to decrease noradrenaline disappearance in the ventral part of the nucleus reticularis medullae oblongatae, dopamine disappearance in the lateral septal nucleus and the disappearance of both amines in the rostral part of the nucleus tractus solitarii. Dopamine disappearance was increased in the medial septal nucleus and the zona incerta following β-endorphin treatment. Following treatment with (des-tyrosine1)-γ-endorphin, noradrenaline disappearance was enhanced in the anterior hypothalamic nucleus, whereas dopamine disappearance was increased in the paraventricular nucleus, the zona incerta and the rostral part of the nucleus tractus solitarii. In addition to this the latter peptide also caused a decreased noradrenaline disappearance in the periventricular thalamus and the A7 region. The results fit well with the suggestion that endorphins act as modulators of catecholamine neurotransmission in particular brain regions. The pattern of effects of the endorphins differ from that previously observed following intracerebroventricular administration of methionine-enkephalin. This is in keeping with the notion that the enkephalin containing network in the brain and that containing β-LPH represent two independent systems with distinct differences in their projections to various brain regions.  相似文献   

3.
Interactions between brain α2- and β-adrenoceptors are of interest in physiological (aging) and pathological (major depression) processes involving both receptors. In this study, total β-adrenoceptors and β1/2-subtypes were quantitated in postmortem human brains to investigate their relationships with α2A-adrenoceptors and specific G proteins during the process of aging and in brains of suicide victims. Analysis of [3H]CGP12177 binding, in the presence of CGP20712A (β1-antagonist), indicated that the predominant β-adrenoceptor in the frontal cortex is the β1-subtype (65–75%). The density of total β- (r=−0.60, n=44) or β1-adrenoceptors (r=−0.78, n=22), but not the β2-subtype, declined with aging (3–80 years). The density of total β- or β1-adrenoceptors, but not the β2-subtype, correlated with the number of α2-adrenoceptors quantitated in the same brains with the agonist [3H]UK14304 (r=0.71–0.81) or the antagonist [3H]RX821002 (r=0.61–0.66). Interestingly, the ratios α2/β- or α21-adrenoceptors did not correlate with the age of the subject at death, indicating that the proportion of α2/β-adrenoceptors in brain remains rather constant during the process of aging. The density of β-adrenoceptors correlated with the immunodensity of Gαs (r=0.55) and Gβ (r=0.61) proteins, and that of α2-adrenoceptors with those of Gαi1/2 (r=0.88) and Gβ (r=0.65). In brains of suicides, compared to controls, the ratio between α2- and β- or β1-adrenoceptors (α2-full agonist sites/β-sites) was greater (1.3- to 2.0-fold; P<0.05). The results demonstrate a close interdependence between brain α2- and β-adrenoceptors during aging, and in brains of suicides. The quantitation of the α2A/β-adrenoceptor ratio could represent a relevant neurochemical index in the study of brain pathologies in which both receptors are involved.  相似文献   

4.
Exogenous pyrogens, e.g., bacterial lipopolysaccharides (LPS), are thought to stimulate macrophages to release endogenous pyrogens, e.g., TNFα, IL-1 β, and IL-6, which act in the hypothalamus to produce fever. We studied the effect of different α1 and α2-adrenoceptor subtype antagonists, applied intraperitoneally, on the febrile response induced by LPS in rabbits. Evidence was obtained that prazosin, an α1 and α2B/2C-adrenoceptor antagonist; WB-4101, an α1 and α2A-adrenoceptor antagonist; CH-38083, a highly selective α2-adrenoceptor antagonist (α2: α1 > 2000); BRL-44408, an α2A-adrenoceptor antagonist; and ARC-239, an α2B/2C and also α1-adrenoceptor antagonist, blocked the increase of colonic temperature of the rabbit produced by 2 μg/kg LPS administered intravenously without being able in themselves to affect colonic temperature. In addition, prazosin, WB-4101 and CH-38083 antagonized the fall in skin temperature that occurred at the time when the colonic temperature was rising in control animals injected with LPS. All these results suggest that norepinephrine, through stimulation of both α1andα22Aandα2B/2C) adrenoceptor subtypes, is involved in producing fever in response to bacterial LPS.  相似文献   

5.
The prion protein (PrP) and the amyloid β (Aβ) precursor protein (APP) are two normal proteins constitutively synthesised in human brain. An altered form of PrP accumulates in Creutzfeldt–Jakob disease, while Aβ is involved in the pathogenesis of Alzheimer's disease. Synthetic fragments of both proteins, PrP106–126 and β25–35 (β25–35), have been demonstrated to induce neurodegeneration and microglia activation. This study was undertaken to compare PrP106–126 and β25–35 capability of activating human resting microglial cells. Our results show that both peptides are able to induce microglial activation and to elicit an increase in [Ca2+]i levels in cells loaded with calcium-green 1. Inhibitors of L-type voltage-sensitive calcium channels (verapamil, nifedipine and diltiazem) prevented the increase in [Ca2+]i concentration as observed after treatment with PrP106–126 and β25–35, thus indicating a transmembrane calcium influx through these channels. In addition, verapamil abolished the proliferative effect of both PrP106–126 and β25–35.  相似文献   

6.
Bilateral lesion of the ascending noradrenergic fibers in the dorsal bundle of adult Wistar rats with 4 μg 6-hydroxydopamine caused extensive depletion of norepinephrine in all forebrain areas, but led to a 54% increase in norepinephrine levels in the cerebellum. β-Adrenergic receptor binding of [3Hdihydroalprenolol was significantly increased in all forebrain areas depleted of norepinephrine except hypothalamus. The increase in [3Hdihydroalprenolol binding was due to 62% and 34% increases in the number of β-receptor sites in the frontal cerebral cortex and hippocampus respectively. Binding of [3HWB-4101 toα1-adrenergic receptors after dorsal bundle lesion was augmented generally to a lesser extent than β-receptor binding, with significantly increased numbers of sites only in the frontal cortex (74%), thalamus (20%) and septum. Bothα1-andβ-receptor binding sites were reduced in number by 25–28% in the cerebellum of dorsal bundle-lesioned rats, whereas intraventricular administration of 6-hydroxydopamine to adult rats, which depletes norepinephrine in the cerebellum by 96%, increased cerebellarα1-andβ-receptor binding by 33–40%. Binding of [3Hclonidine to forebrainα2-adrenergic receptors was significantly elevated in the frontal cortex, but reduced in the amygdala and septum, after dorsal bundle lesion.  相似文献   

7.
Cytokines produced by infiltrating hematogenous cells or by glial cells activated during the course of central nervous system disease or trauma are implicated as mediators of tissue injury. In this study, we have assessed the extent and mechanism of injury of human-derived CNS oligodendrocytes and neurons in vitro mediated by the cytokines tumor necrosis factor α and β and compared these with the tumor necrosis factor independent effects mediated by activated CD4+ T-cells. We found that activated CD4+ T-cells, but not tumor necrosis factor α or β, could induce significant release of lactate dehydrogenase, a measure of cell membrane lysis, from oligodendrocytes within 24 hr. Neither induced DNA fragmentation as measured using a fluorescence nick-end labelling technique. After a more prolonged time period (96 hr), tumor necrosis factor α did induce nuclear fragmentation changes in a significant proportion of oligodendrocytes without increased lactate dehydrogenase release. The extent of DNA fragmentation was comparable to that induced by serum deprivation. Tumor necrosis factor β effects were even more pronounced. In contrast to oligodendrocytes, the extent of DNA fragmentation, assessed by propidium iodide staining, induced in neurons by tumor necrosis factor α was less than that induced by serum deprivation. In-situ hybridization studies of human adult glial cells in culture indicated that astrocytes, as well as microglia, can express tumor necrosis factor α mRNA.  相似文献   

8.
Inhibition by a recently isolated neurotoxic amino acid, β-N-oxalyl-l-α, β-diaminopropionic acid, (l-BOAA), of stimulated phosphoinositide hydrolysis was studied in rat brain cerebral cortical slices.l-BOAA inhibited the norepinephrine-stimulated response but did not affect hydrolysis induced by 55 mM K+, carbachol in the presence of 20 mM K+. The inhibition was concentration-dependent with anIC50 of 300 μM. This inhibition was insensitive to the excitatory amino acid antagonists, γ-glutamylglycine, glutamic acid diethyl ether, CNQX, AP-4, AP-7, or kynurenate. Thus, we propose that thel-BOAA-mediated inhibition of the norepinephrine-stimulated response was due to an interaction at a novel site, which may also be sensitive to quisqualate (see discussion). The mechanism of the inhibition is still unknown but was not prevented by inhibition of phospholipase A2 or polyamine synthesis and it was not affected by blockade of chloride channels. However, the presence of 20 mM K+ completely blocked the inhibitory effect ofl-BOAA on norepinephrine-stimulated phosphoinositide hydrolysis.  相似文献   

9.
The interaction betweenα2- and β-adrenergic receptors was investigated in rat cerebral cortical membranes. Clonidine inhibition of [3H]dihydroalprenolol ([3H]DHA) binding resulted in biphasic competition curves with a mean Hill coefficient of 0.45. The addition of 1 μM yohimbine caused a rightward shift of the first portion of the clonidine inhibition curve. In the presence of 1 μM clonidine, the maximum concentration which did not inhibit [3H]DHA binding, inhibition curves of [3H]DHA binding by isoproterenol shifted to the right. A mean Hill coefficient increased from a control value of 0.63 to 0.76. Computer modeling analysis revealed that 1 μM clonidine decreased a β-adrenergic high-affinity state from 28% to 13%. However, the addition of 1 μM yohimbine completely prevented the clonidine-induced reduction in the β-adrenergic high-affinity state. In the presence of 200 μM GTP, the effect of clonidine was not observed. In addition,Kd andBmax values for[3H]p-aminoclonidine ([3H]PAC) binding were not significantly changed by the addition of 100 nM isoproterenol, the maximum concentration which did not inhibit [3H]PAC binding. Moreover, isoproterenol inhibition of [3H]PAC binding resulted in steep competition curves with a mean Hill coefficient of 0.97. The addition of 1 μM alprenolol did not affect the isoproterenol inhibition curve. These data demonstrated that clonidine caused a decrease in agonist and antagonist affinity for β-adrenergic receptors, while isoproterenol did not modulate the binding characteristics ofα2-adrenergic receptors. Furthermore, these results suggest that regulation betweenα2- and β-adrenergic receptors is not bidirectional, but is instead unidirectional fromα2-adrenergic receptors to β-adrenergic receptors.  相似文献   

10.
The agonist specificity pattern of the β-adrenergic adenylate cyclase in glial primary cultures was not typical of either β1- or β2-adrenergic receptors. The dose-response curves for adrenaline did not correspond to simple mass action kinetics and their computer analysis suggests the presence of both β1- and β2-adrenergic-sensitive adenylate cyclase (58 ± 17% and 42 ± 17% respectively).Similar properties of β1- and β2-adrenergic-sensitive adenylate cyclases were found by computer analysis of the dose-response curves for isoprenaline in the presence of a constant concentration of practolol (a selective β1 antagonist) ( 55 ± 10% and 45 ± 10% of β1- and β2-sensitive adenylate cyclase respectively).The curves for displacement of [3H]dihydroalprenolol by practolol confirm these results.For purpose of comparison, the β-adrenergic receptors of meningeal cells in cultures were subjected to similar analysis. The results clearly showed that these cells exclusively contained β2-adrenergic receptors.  相似文献   

11.
The regional and subcellular distribution of immunoreactive α-melanocyte stimulating hormone (α-MSH1) in the post mortem adult human brain was investigated. α-MSHi was highly concentrated in medial basal hypothalamic tissue (1.02 ng/mg protein). Lower levels of α-MSHi were present in the optic chiasm and mammillary bodies, 0.08 and 0.11 ng/mg protein, respectively. The concentrations of α-MSHi in cerebellum and frontal cerebral cortex were 1/1,000th that of the medial basal hypothalamus. When medial basal hypothalamic homogenates were subjected to discontinuous or continuous sucrose density gradients, α-MSHi was found to be associated primarily with subcellular particles which resembled isolated nerve terminals, i.e., synaptosomes. Low to undetectable amounts of α-MSHi were found in the cytosol or the myelin/microsome fraction of the gradients. The results of these studies are consistent with the view that α-MSH is a neuronal peptide in the human brain.  相似文献   

12.
β2-glycoprotein-I (β2GPI) is a phospholipid-binding plasma protein that consists of five homologous domains. Domain V is distinguished from others by bearing a positively charged lysine cluster and hydrophobic extra C-terminal loop. β2GPI has been known as a natural anticoagulant regulator. β2GPI exerts anticoagulant activity by inhibition of phospholipid-dependent coagulation reactions such as prothrombinase, tenase, and factor XII activation. It also binds factor XI and inhibits its activation. On the other hand, β2GPI inhibits anticoagulant activity of activated protein C. According to the data from knockout mice, β2GPI may contribute to thrombin generation in vivo. Phospholipid-bound β2GPI is one of the major target antigens for antiphospholipid antibodies present in patients with antiphospholipid syndrome (APS). Binding of pathogenic anti-β2GPI antibodies increases the affinity of β2GPI to the cell surface and disrupts the coagulation/fibrinolysis balance on the cell surface. These pathogenic antibodies activate endothelial cells via signal transduction events in the presence of β2GPI. Impaired fibrinolysis has been reported in patients with APS. Using a newly developed chromogenic assay, we demonstrated lower activity of intrinsic fibrinolysis in euglobulin fractions from APS patients. Addition of monoclonal anti-β2GPI antibodies with β2GPI also decreased fibrinolytic activity in this assay system. β2GPI is proteolytically cleaved by plasmin in domain V (nicked β2GPI) and becomes unable to bind to phospholipids, reducing antigenicity against antiphospholipid antibodies. This cleavage occurs in patients with increased fibrinolysis turnover. Nicked β2GPI binds to plasminogen and suppresses plasmin generation in the presence of fibrin, plasminogen, and tissue plasminogen activator (tPA). Thus, nicked β2GPI plays a role in the extrinsic fibrinolysis via a negative feedback pathway loop.  相似文献   

13.
Clonidine (10−6, 10−7 M) evokes the release of β endorphin-like immunoreactivity (β-END-LI) from cell cultures of anterior (pars distalis) but not neurointermediate (pars nervosa plus pars intermedia) lobe of the rat pituitary. This drug-induced secretion is blocked by α-adrenergic (phenoxybenzamine, yohimbine; 10−5 M) but not β-adrenergic (propranolol, 10−5 M) antagonism. Gel filtration (Sephadex G-50) reveals that β-END-LI released from anterior lobe cells consists of 2 major forms of immunoreactivity which coelute with β-lipotropin or β-endorphin standards. Conversely, β-END-LI released spontaneously from neurointermediate lobe cells almost entirely corresponds to β-endorphin. The data show that α-adrenergic stimulation by clonidine releases β-END-LI selectively from cells of anterior but not neurointermediate lobe in vitro and suggests that the clonidine-induced release of pituitary β-END-LI we have observed in vivo occurs in part by direct action on the corticotrophs of the pars distalis.  相似文献   

14.
The effects on retrieval of a one-trial learning inhibitory avoidance response of β-endorphin, α-endorphin, and γ-endorphin, given prior to test have been studied in rats. β-Endorphin (β-LPH61–91) in a relatively low dose (1.5 μg sc. or 50 ng icv.) facilitated inhibitory avoidance behavior, while a higher dose (10 μg sc. or 100 ng icv.) caused bimodal changes (facilitation in 50% of the animals and attenuation in another 40%. Peripheral injection of γ-endorphin attenuated inhibitory avoidance behaviour in a dose-dependent manner. The C-terminus of β-endorphin (β-LPH78–91) was ineffective. α-Endorphin facilitated inhibitory avoidance behavior in a dose-dependent manner. Naltrexone pretreatment antagonized the bimodal effect of β-endorphin: following pretreatment with the opiate antagonist the low latency component disappeared, but the facilitatory effect of the neuropeptide remained the same.It is suggested that β-endorphin carries more than one bit of behavioral information. Inherent activities either related or unrelated to naltrexone-sensitive opiate receptors as well as biotransformation into α- and γ-endorphin may contribute to the multiple behavioral effects of this neuropeptide.  相似文献   

15.
The stimulation of adenylate cyclase by dopamine and various β-adrenergic agonists has been investigated in homogenates from 3 areas of cat brain: the cerebral cortex, cerebellum and hippocampus. The purpose of the study was to determine whether the β-adrenergic receptors coupled to adenylate cyclase could be classified as either β1 and β2 subtypes in the different regions studied.The stimulation of adenylate cyclase by the β-adrenergic agonist, (−)isoproterenol (5 × 10−6M), was completely blocked by the specific β-adrenergic antagonist, (−)alprenolol (10−5 M), but not by the dopaminergic antagonist, fluphenazine (10−5 M), whereas the stimulation of adenylate cyclase by (−)epinephrine (10−4 M) was blocked to varying extents by these two drugs in each of the 3 regions studied. The (−)epinephrine effect was always blocked in the combined presence of (−)alprenolol and fluphenazine. The adenylate cyclase stimulation by (−)epinephrine which is not blocked by (−)alprenolol was due to interaction of (−)epinephrine with a dopaminergic-sensitive adenylate cyclase which has been characterized in cerebral cortex, hippocampus and cerebellum.Regional differences in the affinity of β-adrenergic-sensitive adenylate cyclase for various agonists were investigated in the presence of fluphenazine (10−5 M). In the cerebellum the potency order was (±)protokylol> (±)hydroxybenzylisoproterenol> (±)isoproterenol> (−)epinephrine> (±)salbutamol> (−)norepinephrine, indicating the presence of a β2-adrenergic receptor. In the cerebral cortex the potency order was (−)isoproterenol> (±)protokylol> (±)hydroxybenzylisoproterenol> (−)epinephrine= (−)norepinephrine((±)salbutamol being inactive). A similar pattern was found in the hippocampus indicating the presence of a β1-adrenergic receptor in these two regions. (±)Salbutamol was a partial agonist in the cerebellum and a competitive antagonist in the cerebral cortex.The ratio of the antagonist potencies of (±)practolol and (±)butoxamine preferential β1- and β2-adrenergic antagonists respectively, to block the stimulation of adenylate cyclase was 25 in the cerebellum, compared to 0.5 in the cerebral cortex and 1.6 in the hippocampus. These results confirm the presence of a β2 subtype of receptor coupled to adenylate cyclase in the former and β1 subtypes in the latter two regions. The comparison between the affinities of a series of β-adrenergic agonists and antagonists for the β-adrenergic receptors coupled with an adenylate cyclase in cerebral cortex and cerebellum with their affinities for well characterized β2-adrenergic receptors in lung and β1-adrenergic receptor in heart substantiated this conclusion.  相似文献   

16.
Binding of {3H}-dihydroalprenolol to human platelet lysates is inhibited by (±)-propranolol and (±)-butoxamine, but less effectively by (±) practolol. (−)-Isoprenaline causes no significant inhibition of binding where stimulation of adenylate cyclase can be shown. Binding of {3H}-acetobutolol is also inhibited by (±)-propranolol. “Specific” binding of {3H}-dihydroalprenolol and {3H}-acetobutolol defined by (±) propranolol shows a non-classical saturation curve. 50% maximal binding is observed in the range 15 – 25 mM. The extent of “specific” binding is 2-fold greater for {3H}-dihydroalprenolol. Similar and rapid rates of binding of {3H}-dihydroalprenolol are observed at 4°C and 20°C. No stereoselectivity is observed for inhibition of {3H}-dihydroalprenolol binding by (+) and (−)-propranolol. Binding of {3H}-dihydroalprenolol and {3H}-acetobutolol may relate to the lipophilic character of these radioligands and does not represent interaction with β-adrenoceptors.  相似文献   

17.
The125I-labeled iodohydroxybenzylpindolol (IHYP) binding to β-receptors on brain microvessels is inhibited by isoproterenol, epinephrine and norepinephrine, with Ki values of 2 × 10−7M, 2.5 × 10−6M and 1.2 × 10−5M, respectively. A modified Scatchard analysis of the inhibitory effects of practolol, metroprolol and zinterol on IHYP binding has shown that the proportion of β2-receptors in our preparation is about 80% of the total β-adrenergic receptor population. Our data indicate that the β-adrenergic receptors located on cerebral microvessels are of both β1 and β2 types, with a predominance of the β2 type.  相似文献   

18.
The effects of 3 cannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC), 11-OH-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC) and cannabinol (CBD) on the binding of [3H]dihydroalprenolol ([3H]DHA) to mouse brain β-adrenergic receptors were determined. In vitro, Δ9-THC and 11-OH-Δ9-THC increased the specific binding of [3H]DHA. The increased specific binding of [3H]DHA was due to an increase in receptor affinity as indicated by a decrease in the dissociation constant (Kd). CBD had no effect on binding. Chronic administration of Δ9-THC in vivo caused a decrease in the number of [3H]DHA binding sites with no change in Kd.  相似文献   

19.
Mediobasal hypothalamus tissue (MBH) from adult male rats was incubated in Krebs-Ringer bicarbonate medium (KRB). KRB was changed at 15 min intervals and the concentration of immunoreactive β-endorphin (β-ENDi) in the medium was measured by radioimmunoassay. Incubation of MBH tissue in normal KRB resulted in a constant release rate of β-ENDi of approximately 1% of the tissue content per h. KRB containing 45 mM K+ causes a two fold increase in the release rate of β-ENDi which was Ca2+ dependent. Dopamine (0.01–1.0 μM) inhibits both the spontaneous and the K+-stimulated release of β-ENDi in a dose related manner. The dopamine receptor blocking agent haloperidol prevents this inhibitory effect of dopamine. The selective D-1 receptor agonist SKF 38393 does not affect the release rate of β-ENDi; whereas the selective D-2 receptor agonist LY 141865 inhibits both the spontaneous and K+-stimulated release of β-ENDi. The effects of LY 141865 can be blocked by (−)-sulpiride, a selective D-2 receptor antagonist. Norepinephrine only weakly inhibits the K+-stimulated release of β-ENDi, and effect that can be blocked by haloperidol but not by the α-adrenoceptor blocker phentolamine. At concentrations tested (0.01–1.0 μM), isoproterenol, 5-hydroxytryptamine, carbachol and 8-Br-cAMP (1.0 μM) do not affect β-ENDi release. It is concluded that dopamine can inhibit the release of β-ENDi from hypothalamic neurons via a D-2 receptor mechanism.  相似文献   

20.
The effect of intracerebroventricularly (i.c.v.) administered α-melanocyte-stimulating hormone (MSH) and γ2-MSH on hypothalamic blood flow autoregulation was studied in anesthetized rats at different levels of standardized arterial hypotension. Autoregulation was impaired upon i.c.v. administration of 5 γ g/kg γ2-MSH while α-MSH caused no change.. Since this effect of γ2-MSH wa identical to that produced by i.c.v. naloxone in the same model, γ2-MSH may be a functional antagonist of central opioid mechanisms participating in the control of cerebral blood flow autoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号