首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization.  相似文献   

2.
We report the development of an immunoassay for the titration of antibody to the CD4-binding site (CD4BS) of the human immunodeficiency virus type 1 (HIV-1) surface glycoprotein gp120. This assay is a competitive enzyme-linked immunosorbent assay in which serum antibodies compete with labeled F105, a human monoclonal antibody whose corresponding epitope overlaps the conformation-dependent CD4BS, for binding to purified recombinant gp120 coated on a solid phase. Ninety-nine percent (109 of 110) of HIV-1-positive French patients and 91% (51 of 56) of HIV-1-positive African patients had CD4BS antibodies, indicating that the conformational CD4BS epitope is well conserved among different subtypes of HIV-1. Titers of CD4BS antibodies according to clinical status appeared to be not statistically different. A longitudinal study in 21 seroconverters showed that, for the majority of individuals, CD4BS antibodies appeared early and persisted at relatively high titers for several years. None of 21 HIV-2-seropositive patients had CD4BS antibodies in our assay, suggesting that the antibodies produced during HIV-2 infection are not cross-reactive with the CD4BS of HIV-1 gp120.  相似文献   

3.
Summary Glycosylation is necessary for HIV-1 gp120 to attain a functional conformation, and individual N-linked glycans of gp120 are important, but not essential, for replication of HIV-1 in cell culture. We have constructed a mutant HIV-1 infectious clone lacking a signal for N-linked glycosylation in the V1-loop of HIV-1 gp120. Lack of an N-linked glycan was verified by a mobility enhancement of mutant gp120 in SDS-gel electrophoresis. The mutated virus showed no differences in either gp120 content per infectious unit or infectivity, indicating that the N-linked glycan was neither essential nor affecting viral infectivity in cell culture. We found that the mutated virus lacking an N-linked glycan in the V1-loop of gp120 was more resistant to neutralization by monoclonal antibodies to the V3-loop and neutralization by soluble recombinant CD4 (sCD4). Both viruses were equally well neutralized by ConA and a conformation dependent human antibody IAM-2G12. This suggests that the N-linked glycan in the V1-loop modulates the three-dimensional conformation of gp120, without changing the overall functional integrity of the molecule.  相似文献   

4.
Visciano ML  Tuen M  Gorny MK  Hioe CE 《Virology》2008,372(2):409-420
The binding of antibodies to the CD4-binding site (CD4bs) of the HIV-1 envelope glycoprotein gp120 has been shown to induce gp120 to undergo conformational changes that can expose and/or shield specific epitopes on gp120. Here, we study alterations in the antigenicity and immunogenicity of gp120 when complexed with human monoclonal antibodies (mAbs) specific for the CD4bs of gp120. The data showed that gp120 bound by anti-CD4bs mAbs had enhanced reactivity with mAbs to the V3 and N-terminal regions, but not with mAb to the C terminus. Moreover, mice immunized with the gp120/anti-CD4bs mAb complexes produced higher titers of gp120-specific serum IgG and IgA than mice immunized with uncomplexed gp120 or other gp120/mAb complexes. Notably, the enhanced antibody production was directed against V3 and correlated with better exposure of V3 on the gp120/anti-CD4bs mAb complexes. The higher antibody reactivity was evident against the homologous V3(LAI) peptide, but not against heterologous V3 peptides. Potent neutralization activity against HIV-1(LAI) was also observed in the sera from mice immunized with gp120/anti-CD4bs mAb complexes, although the sera exhibited poor neutralizing activities against other viruses tested. These results indicate that the anti-CD4bs antibodies alter the antigenicity and immunogenicity of gp120, leading to enhanced production of anti-gp120 antibodies directed particularly against the V3 region.  相似文献   

5.
We examined sera from 160 HIV-infected individuals for antibodies reactive to HIV-1 gp160 epitopes defined by seven synthetic peptides. Seropositive individuals were placed into three groups based upon levels of circulating CD4+ cells. These groups consisted of individuals with (1) more than 400 CD4+ cells, (2) 200–400 CD4+ cells, and (3) fewer than 200 CD4+ cells/mm3. The percentage of sera containing antibodies reactive with two immunodominant gp160 epitopes (a.a. 304–321 and 600–611) was unchanged between groups, regardless of CD4 cell numbers. The percentage of sera containing antibodies reactive with weakly immunogenic gp160 epitopes, such as those defined by peptides 425–448 and 846–860, declined in the groups as CD4 values decreased. Our results suggest that the patterns of antibody reactivity to gp160 epitopes change as CD4 levels decline. A narrowing of the humoral immune response to epitopes on the envelope of HIV-1 appears to occur with disease progression.  相似文献   

6.
We have characterized the discontinuous epitopes recognized by two rat and three human neutralizing monoclonal antibodies (mAb) by examining the effect of single amino acid changes in conserved residues of gp120 on mAb recognition. A human mAb derived from an infected individual, 448D, and two rat mAbs, 39.13g and 39.3b, respectively, derived by immunization with native recombinant gp120, recognize similar epitopes. Recognition of the envelope glycoproteins by these mAbs was affected by changes in gp120 amino acid residues 88, 113, 117, 257, 368, or 370. The gp120 amino acids 257, 368, and 370 have previously been reported to be important for CD4 binding, which is consistent with the ability of these mAbs to block the gp120-CD4 interaction. Residues 88, 113, and 117 are not thought to be important for CD4 binding, suggesting that the antibody epitopes overlap, but are distinct from, the CD4 binding region. We also found that some alterations in gp120 residues 88, 117, 368, or 421 reduced the ability of polyclonal sera from HIV-1-infected individuals to inhibit the interaction of the mutant gp120 glycoproteins with soluble CD4. Thus, changes in the HIV-1 gp120 glycoprotein that minimally affect the receptor binding may allow escape from neutralizing antibodies directed against the CD4 binding region.  相似文献   

7.
Infection by the human immunodeficiency virus type 1 (HIV-1) is initiated through interaction of its exterior envelope glycoprotein gp120 with the CD4 receptor on target cells. To address the possible role of N-glycosylation of HIV-1 gp120 in binding CD4, we mutated different conserved N-glycosylation site Asn-residues in the vicinity of the putative CD4 binding site, as single mutations or in combinations. Authentic and mutant gp120 proteins were produced using the baculovirus expression system. All mutant proteins were produced and secreted at similar levels and could be immunoprecipitated with an HIV(+)-serum. Furthermore, all glycosylation mutants retained the full capacity to bind CD4 except for a triple mutant which showed reduced binding. Different gp120 mutant genes were then introduced in an infectious proviral DNA clone. Upon transfection of MT-2 cells, the authentic HIV-1 clone induced maximal virus production after 6 days. In the case of the triple glycosylation mutant, comparable virus production was first reached after a delay of about 12 days. Moreover, in contrast to native HIV, the mutant virus induced no typical multinucleated giant cells. These results suggest that the attached carbohydrates around the CD4-binding site of gp120, may contribute to the generation of this protein domain required for high affinity receptor interaction.  相似文献   

8.
The effects of exposure to HIV-gp120 on proliferation and cytokine production by T cell lines were investigated. T cell lines were generated by stimulation of peripheral blood mononuclear cells from several healthy donors with cross-linked anti-CD3 antibodies and IL-2. These T cell lines exhibited the characteristics of Th1 cells, producing IL-2 and interferon-gamma (IFN-γ), but not IL-4, on stimulation with anti-CD3 antibodies. In the presence of gp120, stimulation with anti-CD3 antibodies was inhibited in terms of both proliferative responses and the secretion of IL-2 and IFN-γ. Similar effects were observed when a T cell line was stimulated in the presence of a synthetic peptide representing the CD4-binding region of gp120. Neither gp120 nor the CD4-binding region peptide had any effect on IL-4 production by the T cell lines. Stimulation through the CD28 pathway partially restored both the proliferative effect and cytokine production by T cell lines in response to anti-CD3 antibodies in the presence of gp120. Anti-CD28 antibodies also partially restored cytokine production when purified CD4+ T cells from a T cell line were stimulated with anti-CD3 antibodies in the presence of gp120. Anti-gp120 antibodies partially or completely reversed the inhibitory effects of gp120 on T cell proliferation. These results indicate that stimulation through the CD28 pathway may restore defective CD4+ T cell responses in HIV-infected individuals.  相似文献   

9.
The envelope glycoprotein of HIV-1 is the principal target for entry inhibitors. The use of soluble CD4 has been found to be impractical as most clinical isolates are resistant to neutralization at feasible concentrations. CG10 is one of a small group of monoclonal antibodies specific to CD4-induced epitopes, which are structurally associated with the chemokine receptor-binding site and are capable of blocking the interaction of gp120 with its obligatory co-receptor. We have reasoned that fusing the single chain Fv of CG10 with CD4 can lead to increased HIV-1 neutralization activity and that this effect could be further enhanced by engrafting this chimeric construct onto an IgG Fc. Here we report the cloning of the genes encoding the variable regions of CG10 heavy and light chains and demonstrate that when attached to human IgG1 Fc, the single chain Fv of CG10 retains the binding properties of the original mouse antibody. Fusing CG10 single chain Fv with the gp120-binding portion of CD4 on a human IgG1 Fc backbone results in stronger binding of gp120 of different tropisms and in enhanced neutralization of laboratory-adapted strains and most, but not all, clade B and clade C isolates tested. Our findings underscore the potential use of CD4-based fusion proteins in the design of HIV immuno-therapeutics.  相似文献   

10.
Sera, from HIV-1 and HIV-2 seropositive individuals, were tested for the presence of antibodies able to inhibit the binding (BI) of HIV-IIIB gp 160 (produced in mammalian cells using a vaccinia expression system) to the extracellular portion of the CD4 receptor. A competition enzyme immunoassay (EIA) with soluble CD4 (sCD4) was used. BI antibodies were highly prevalent among HIV-1 seropositives but not in HIV-2 infected individuals. Attempts to localize the binding site for these BI antibodies on the primary sequence of gp 120 by using synthetic peptides encompassing the putative CD4 binding site on gp 120 (aa 397-439) were not successful. This study did not reveal a significant correlation between the presence of BI antibodies and disease evolution. BI antibody titres correlated less well with anti-gp 160 titres (r = 0.51, P less than or equal to 0.011) than with neutralizing antibody (NA) titres using either the isolates HIV-SF2 (SF2) (r = 0.77, P less than or equal to 0.000) and HIV-MN (MN) (r = 0.61, P less than or equal to 0.002) or the isolate HIV-IIIB (HX10) (r = 0.89, P less than or equal to 0.000) of which the gp 160 for the assays was derived. An HIV-IIIB neutralizing serum, elicited in a rabbit by immunization with a 17-mer synthetic peptide derived from the third variable domain (V3) of gp 120, did bind gp 160 without inhibiting the subsequent attachment of sCD4 to gp 160.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Recombinant gp120 of the HIV-1(IIIB) isolate (BH10 clone) has been mutated to form the PR12 protein with the first 74 C-terminal amino acids and the V1, V2 and V3 hypervariable loops deleted. A variety of studies have shown that the CD4 binding domain (CD4bd) is very well exposed in PR12 in contrast to rgp120(LAI). Using PR12 for selection of human monoclonal antibodies (MAbs) from HIV-infected individuals, five MAbs were generated with specificities to the epitopes overlapping the CD4bd (1570A,1570C,1570D,1595 and 1599). The three MAbs, 1570A, C and D, generated from one HIV-infected individual, represent one MAb as determined by sequence analysis of the V(H)3 region. Since the epitopes overlapping the CD4bd exhibit variability among HIV-1 clades, the specificity of anti-CD4bd MAbs were distinguished by differing patterns of binding to recombinant envelope proteins derived from clade A, B, C, D and E viruses. The PR12-selected MAbs were also compared with a panel of gp120-selected anti-CD4bd MAbs and showed a different range of specificities. MAb 1599 is clade B specific, MAb 1595 reacts with the A, B and D clades, while MAb 1570 recognises the most conserved epitope, as it binds to all proteins. The results show that the exposure of different epitopes in the CD4bd of the PR12 protein allows this protein to serve as an immunogen and to induce anti-CD4bd antibodies.  相似文献   

12.
The external domains of the HIV-1 envelope glycoprotein (gp120 and the gp41 ectodomain, collectively known as gp140) contain all known viral neutralization epitopes. Various strategies have been used to create soluble trimers of the envelope to mimic the structure of the native viral protein, including mutation of the gp120-gp41 cleavage site, introduction of disulfide bonds, and fusion to heterologous trimerization motifs. We compared the effects on quaternary structure, antigenicity, and immunogenicity of three such motifs: T4 fibritin, a GCN4 variant, and the Escherichia coli aspartate transcarbamoylase catalytic subunit. Fusion of each motif to the C-terminus of a noncleavable JRCSF gp140(-) envelope protein led to enhanced trimerization but had limited effects on the antigenic profile and CD4-binding ability of the trimers. Immunization of rabbits provided no evidence that the trimerized gp140(-) constructs induced significantly improved neutralizing antibodies to several HIV-1 pseudoviruses, compared to gp140 lacking a trimerization motif. However, modest differences in both binding specificity and neutralizing antibody responses were observed among the various immunogens.  相似文献   

13.
Hu Q  Mahmood N  Shattock RJ 《Virology》2007,368(1):145-154
HIV-1 uses glycans on gp120 to occlude its highly immunogenic epitopes. To better elucidate escape mechanisms of HIV-1 from carbohydrate-binding agents (CBA) and to understand the impact of CBA-escape on viral immune evasion, we generated and examined the biological properties of HIV-1 resistant to cyanovirin-N (CV-N) or cross-resistant to additional CBAs. Genotypic and phenotypic characterization of resistant env clones indicated that 3-5 high-mannose residues from 289 to 448 in the C2-C4 region of gp120 were mutated and correlated with the resistance levels. The specificity and minimal requirements of deglycosylation for CV-N resistance were further assessed by mutagenesis study. The sensitivity of resistant variants to a range of CBAs, immunoglobulins, sera and monoclonal antibodies (MAb) were investigated. For the first time, our data have collectively defined the high-mannose residues on gp120 affecting CV-N activity, and demonstrated that CBA-escape HIV-1 has increased sensitivity to immunoglobulins and sera from HIV patients, and particularly to V3 loop-directed MAbs. Our study provides a proof-of-concept that targeting HIV-1 glycan shields may represent a novel antiviral strategy.  相似文献   

14.
Antibodies to the CD4-binding site (CD4bs) of HIV-1 envelope gp120 have been shown to inhibit MHC class II presentation of this antigen, but the mechanism is not fully understood. To define the key determinants contributing to the inhibitory activity of these antibodies, a panel of anti-CD4bs monoclonal antibodies with different affinities was studied and compared to antibodies specific for the chemokine receptor-binding site or other gp120 regions. Anti-CD4bs antibodies that completely obstruct gp120 presentation exhibit three common properties: relatively high affinity for gp120, acid-stable interaction with gp120, and the capacity to slow the kinetics of gp120 proteolytic processing. None of these antibodies prevents gp120 internalization into APC. Notably, the broadly virus-neutralizing anti-CD4bs IgG1b12 does not block gp120 presentation as strongly, because although IgG1b12 has a relatively high affinity, it dissociates from gp120 more readily at acidic pH and only moderately retards gp120 proteolysis. Other anti-gp120 antibodies, regardless of their affinities, do not affect gp120 presentation. Hence, high-affinity anti-CD4bs antibodies that do not dissociate from gp120 at endolysosomal pH obstruct gp120 processing and prevent MHC class II presentation of this antigen. The presence of such antibodies could contribute to the dearth of anti-gp120 T helper responses in chronically HIV-1-infected patients.  相似文献   

15.
We have previously isolated nucleic acid ligands (aptamers) that bind the surface envelope glycoprotein, gp120, of HIV-1, and neutralize infection of diverse sub-types of virus. Our earlier studies have identified the overall structure of one of these aptamers, B40, and have indicated that it binds to gp120 in a manner that competes with that of the HIV-1 coreceptor, CCR5, and select “CD4i” antibodies with epitopes overlapping this region. Here, we sought to map the B40 binding site on gp120 more precisely by analysing its interaction with a panel of alanine substitution mutants of gp120. Furthermore, we tested our hypothesis concerning the structure of the 40 nucleotide functional core of the aptamer by the solid-phase synthesis of truncated and chemically modified derivatives. The results confirm our structural predictions and demonstrate that aptamer B40 neutralizes a diverse range of HIV-1 isolates as a result of binding to relatively conserved residues on gp120 at the heart of the CCR5-binding site. These structural insights may provide the basis for the development of potential anti-viral agents with high specificity and robustness.  相似文献   

16.
A R Neurath  N Strick  S Jiang 《Virology》1992,188(1):1-13
Synthetic peptides and anti-peptide antibodies have been widely used as probes to map B- and T-cell epitopes on proteins. Such probes also have the potential to delineate contact sites involved generally in protein-protein interactions or in association of domains within a protein. We applied peptide/anti-peptide probes to define: (1) regions on the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins gp120 and gp41 involved in the association between these two glycoproteins; and (2) sites on gp120/gp41, essential for the association of HIV-1 with the CD4 cell receptor. Results of this examination suggested the following: (1) two segments on gp120, encompassing residues (102-126) and (425-452), contribute to the binding site for CD4 and are expected to be juxtaposed in the folded gp120 chain; (2) portions of immunodominant gp120 and gp41 epitopes, encompassing residues (303-338) and (579-611), respectively, appeared to be involved in the gp120-gp41 association, as suggested by direct binding studies and by the limited accessibility of these epitopes on HIV-1 virions: other portions of gp120 also appeared to contribute to the association between these two glycoproteins; (3) there is a partial overlap between gp41 and CD4 binding sites on gp120; (4) the fusion domain and a segment (637-666) of gp41 are not accessible to antibodies after oligomerization of gp41; and 5) the gp120-gp41 association was blocked by aurintricarboxylic acid, suggesting the possibility of developing antiviral compounds interfering with HIV-1 assembly.  相似文献   

17.
Huang X  Jin W  Hu K  Luo S  Du T  Griffin GE  Shattock RJ  Hu Q 《Virology》2012,423(1):97-106
Glycosylation plays important roles in gp120 structure and HIV-1 immune evasion. In the current study, we introduced deglycosylations into the 24 N-linked glycosylation sites of a R5 env MWS2 cloned from semen and systematically analyzed the impact on infectivity, antigenicity, immunogenicity and sensitivity to entry inhibitors. We found that mutants N156-T158A, N197-S199A, N262-S264A and N410-T412A conferred decreased infectivity and enhanced sensitivity to a series of antibodies and entry inhibitors. When mice were immunized with the DNA of wild-type or mutated gp160, gp140 or gp120; N156-T158A, N262-S264A and N410-T412A were more effective in inducing neutralizing activity against wild-type MWS2 as well as heterologous IIIB and CH811 Envs. In general, gp160 and gp140 induced higher neutralizing activity compared with gp120. Our study demonstrates for the first time that removal of individual glycan N156, N262 or N410 proximal to CD4-binding region impairs viral infectivity and results in enhanced capability to induce neutralizing activity.  相似文献   

18.
19.
Human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins interact with CD4 and chemokine receptors on T cells to deliver signals that trigger either activation, anergy, or apoptosis. However, the molecular mechanisms driving these responses remain poorly understood. In this study we demonstrate that apoptosis is induced upon HIV-1 envelope binding to the chemokine receptor CXCR4. Cells expressing a mutant form of CXCR4 with a C-terminal deletion were also sensitive to HIV-1 envelope-mediated apoptosis, indicating that the cytoplasmic tail of CXCR4 is not required to induce the apoptotic pathway. The specificity of this process was analyzed using several inhibitors of gp120-CD4-CXCR4 interaction. Monoclonal antibodies directed against the gp120-binding site on CD4 (ST4) and against CXCR4 (MAB173) prevented the apoptotic signal in a dose-dependent manner. The cell death program was also inhibited by SDF-1alpha, the natural ligand of CXCR4, and by suramin, a G protein inhibitor that binds with a high affinity to the V3 loop of HIV-1 gp120 envelope protein. These results highlight the role played by gp120-binding on CXCR4 to trigger programmed cell death. Next, we investigated the intracellular signal involved in gp120-induced apoptosis. This cell death program was insensitive to pertussis toxin and did not involve activation of the stress- and apoptosis-related MAP kinases p38(MAPK) and SAPK/JNK but was inhibited by a broad spectrum caspase inhibitor (z-VAD.fmk) and a relatively selective inhibitor of caspase 3 (z-DEVD.fmk). Altogether, our results demonstrate that HIV induces a caspase-dependent apoptotic signaling pathway through CXCR4.  相似文献   

20.
Anti-idiotypic antibodies (Ab2) binding to the antigen-combining site of other antibodies may functionally and even structurally mimic antigen. Ab2 to antibodies directed against the lymphocyte CD4 receptor for human immunodeficiency virus type 1 (HIV-1) may mimic the receptor and therefore inhibit viral infectivity. We have produced Ab2 against monoclonal anti-CD4 receptor antibodies (Ab1). The Ab1 strongly inhibit HIV-1 binding to the receptor. Six monoclonal rat Ab2 and two polyclonal rabbit Ab2 were produced against the Ab1 MT151 and nine monoclonal Ab2 against the Ab1 OKT4A. These Ab2 bound only to Ab1 and not to a panel of nine unrelated murine monoclonal antibodies (MAbs). The Ab2 completely inhibited the binding of the homologous Ab1 to CD4-positive target cells, and recombinant soluble CD4 inhibited binding of Ab2 to Ab1. Thus, the Ab2 seemed to mimic the Ab1-binding site of the CD4 receptor, although the results of inhibition assays did not exclude steric hindrance of antibody-combining sites. However, none of the 17 Ab2 bound to gp120 of HIV-1 envelope or inhibited syncytia formation between cells infected and uninfected with HIV-1. These results suggest that the Ab2 do not mimic the HIV-1 binding site of the CD4 receptor. They further suggest that the Ab1 may not bind within the virus-binding site of the CD4 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号