首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To analyze developmental abnormalities related to neural migration in the NZB/BINJ mouse, the pattern of cerebellar foliation and neural position were compared with that of a normal mouse (C57BL/6J). Three abnormalities of cerebellar foliation--(1) lobe isolated from other cerebellar lobes, (2) lobes imbalanced in relative amounts or ratio of granular cell layer and molecular layer, (3) lobes in which some Purkinje cells and the molecular layer was embedded in the granular cell layer--were observed in NZB/BINJ mice. These morphological abnormalities were not limited to a specific lobe. On the other hand, abnormalities of neural position were observed in both granule and Purkinje cells. The pattern of ectopically-situated granule cells, in general, could be divided into 3 types: (1) large cell clusters extending from granular cell layer to the pia mater or middle part of the molecular layer, (2) clusters of various sizes scattered within the white matter and (3) clusters formed by combination of granule cells extending from two opposed granular cell layers to the molecular layer. The pattern of ectopically-situated Purkinje cells could be divided into 4 types: (1) ectopia of a group of cells from one part of the Purkinje cell layer, (2) ectopia of a single Purkinje cell observed in the molecular layer, (3) single Purkinje cell scattered within the white matter accompanied by clusters of ectopic granule cells and (4) ectopic Purkinje cells embedded in the granular cell layer. The abnormalities in position of both granule cells and Purkinje cells was not limited to a particular cerebellar lobe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Antibodies reactive with neuronal tissue are present in the sera of the murine models of systemic lupus erythematosus (SLE). Access of these antibodies to the central nervous system is an important prerequisite to the hypothesis that these antibodies affect neuronal function. In this study, we isolated antibodies from neutral and acid washes of brain parenchyma of NZB/W F1 mice. Antibody could be eluted from the brains of NZB/W F1 but not control mice. The immunoglobulin was predominantly IgG1; the binding characteristics of the brain eluted antibody were narrower than those of antibody from sera and eluted from visceral organ.  相似文献   

3.
Corbera S  Escera C  Artigas J 《Neuroreport》2006,17(10):1051-1055
A mismatch negativity event-related potential protocol was administered to dyslexic children and their respective controls to test whether a specific auditory deficit concerning phonetic processing or a lower level auditory processing deficit was present in developmental dyslexia. Three different contrast conditions were explored, including nonphonological sounds, contrasted in pitch and duration, and phonemes. Mismatch negativity amplitudes differed significantly between groups in the duration condition, whereas no differences were found in the frequency and phoneme conditions. Moreover, the dyslexic children had delayed mismatch negativity latencies in the three contrast conditions. Our results suggest a deficit in low-level auditory discrimination in dyslexic children, in particular when detecting stimulus duration, and support the rapid auditory processing theory of dyslexia.  相似文献   

4.
Age-related hearing loss (ARHL) is a neurodegenerative disorder characterized by a gradual decrease in hearing sensitivity. Previous electrophysiological and behavioral studies have demonstrated that the CBA/CaJ mouse strain is an appropriate model for the late-onset hearing loss found in humans. However, few studies have characterized hearing in these mice behaviorally using longitudinal methodologies. The goal of this research was to utilize a longitudinal design and operant conditioning procedures with positive reinforcement to construct audiograms and temporal integration functions in aging CBA/CaJ mice. In the first experiment, thresholds were collected for 8, 16, 24, 42, and 64 kHz pure tones in 30 male and 35 female CBA/CaJ mice. Similar to humans, mice had higher thresholds for high frequency tones than for low frequency pure tones across the lifespan. Female mice had better hearing acuity than males after 645 days of age. In the second experiment, temporal integration functions were constructed for 18 male and 18 female mice for 16 and 64 kHz tones varying in duration. Mice showed an increase in thresholds for tones shorter than 200 ms, reaching peak performance at shorter durations than other rodent species. Overall, CBA/CaJ mice experience ARHL for pure tones of different frequencies and durations, making them a good model for studies on hearing loss. These findings highlight the importance of using a wide range of stimuli and a longitudinal design when comparing presbycusis across different species.  相似文献   

5.
Neurological symptoms are often found in patients with systemic lupus erythematosus, an autoimmune disease. We found an enhanced aggression in young autoimmune-prone NZB mice before expression of autoimmune hemolytic anemia, which was accompanied by an increase in neural activity in the accessory olfactory bulb. The performance of aggressive behavior was correlated with serum IgM level. These results indicate that IgM class autoantibodies could be implicated in brain dysfunction without apparent pathological changes of autoimmune disease.  相似文献   

6.
Peiffer AM  Rosen GD  Fitch RH 《Neuroreport》2002,13(17):2277-2280
Prior research with rodent models, performed predominantly in males, has demonstrated a significant association between focal neocortical malformations (e.g. ectopias and microgyria) and rate-specific auditory processing deficits. In the current study and consistent with prior findings, we report that ectopic male BXSB/MpJ mice exhibit impairments in detecting a two-tone oddball stimulus at short but not long inter-stimulus interval durations when compared to non-ectopic male littermates. However, ectopic female littermates showed no rapid auditory processing deficit when compared to non-ectopic females on this same task. Current results add growing support to: (1) an association between focal cortical malformations and impaired auditory processing in males; and (2) the existence of sex differences in the behavioral consequences of focal cortical malformations.  相似文献   

7.
Normal hearing listeners exploit the formant transition (FT) detection to identify place of articulation for stop consonants. Neuro-imaging studies revealed that short FT induced less cortical activation than long FT. To determine the ability of hearing impaired listeners to distinguish short and long formant transitions (FT) from vowels of the same duration, 84 mild to severe hearing impaired listeners and 5 normal hearing listeners were asked to detect 10 synthesized stimuli with long (200 ms) or short (40 ms) FT among 30 stimuli of the same duration without FT. Hearing impaired listeners were tested with and without hearing aids. The effect of the difficulty of the task (short/long FT) was analysed as a function of the hearing loss with and without hearing aids. Normal hearing listeners were able to detect every FT (short and long). For hearing impaired listeners, the detection of long FT was better than that of short ones irrespective of their degree of hearing loss. The use of hearing aids improved detection of both kinds of FT; however, the detection of long FT remained much better than the detection of the short ones. The length of FT modified the ability of hearing impaired patients to detect FT. Short FT had access to less cortical processing than long FT and cochlea damages enhanced this specific deficit in short FT brain processing. These findings help to understand the limit of deafness rehabilitation in the time domain and should be taken into account in future devices development.  相似文献   

8.
Ghrelin receptors are expressed by key components of the arousal system. Exogenous ghrelin induces behavioral activation, promotes wakefulness and stimulates eating. We hypothesized that ghrelin-sensitive mechanisms play a role in the arousal system. To test this, we investigated the responsiveness of ghrelin receptor knockout (KO) mice to two natural wake-promoting stimuli. Additionally, we assessed the integrity of their homeostatic sleep-promoting system using sleep deprivation. There was no significant difference in the spontaneous sleep-wake activity between ghrelin receptor KO and wild-type (WT) mice. WT mice mounted robust arousal responses to a novel environment and food deprivation. Wakefulness increased for 6 h after cage change accompanied by increases in body temperature and locomotor activity. Ghrelin receptor KO mice completely lacked the wake and body temperature responses to new environment. When subjected to 48 h food deprivation, WT mice showed marked increases in their waking time during the dark periods of both days. Ghrelin receptor KO mice failed to mount an arousal response on the first night and wake increases were attenuated on the second day. The responsiveness to sleep deprivation did not differ between the two genotypes. These results indicate that the ghrelin-receptive mechanisms play an essential role in the function of the arousal system but not in homeostatic sleep-promoting mechanisms.  相似文献   

9.
Previous research with adult animal models links the presence of cortical neuromigrational anomalies (i.e., microgyria similar to that found in brains of dyslexics) with rapid auditory processing (RAP) impairments. RAP impairments are in turn found in children with specific language impairment (SLI) and also in individuals with dyslexia. Gap detection, a simple measure of auditory temporal acuity, appears to be impaired in children with SLI but not in dyslexic adults, even though both groups exhibit impaired processing on more complex, rapid auditory tasks. In the current study, juvenile rats with bilateral microgyria, but not their adult counterparts, exhibited impaired detection of short duration silent gaps in white noise when compared to age-matched sham littermates. Results lend further support to: (1) an association between neuromigrational anomalies and RAP impairments; and (2) the validity of an animal model of RAP impairments associated with language disturbances in humans. Current results also support the view that auditory processing disturbances associated with cortical malformations may be evident early in development at a relatively "low" level (e.g., simple gap detection), but may require "higher-order" auditory discrimination tasks (e.g., tone sequences, phonemic discriminations) to be elicited later in life.  相似文献   

10.
Impaired detection of silent interval change in schizophrenia   总被引:1,自引:0,他引:1  
Todd J 《Neuroreport》2006,17(8):785-789
The reliably observed reduction in the mismatch negativity response to a change in sound duration in schizophrenia patients may be related to more widespread temporal processing impairments associated with the disorder. This study explored whether individuals with schizophrenia would show electrophysiological evidence of automatic deficits in the ability to detect changes in a regularly repeating interval between two tones. The established pattern was a repeating sequence of a pair of 50-ms tones with a 50-ms silent interval between them. In 8% of pairs, the silent interval between tones was increased to 125 ms. Significant differences in the response to the deviant tone pair in the patient group were consistent with impaired representation of the temporal relationship between sounds.  相似文献   

11.
12.
Muscle fibrosis is a prominent pathological feature that directly causes muscle dysfunction in Duchenne muscular dystrophy (DMD). The DMD mouse models, mdx mice and mdx mice with haploinsufficiency of the utrophin gene (mdx/utrn(+/-) ), display progressive diaphragm fibrosis. We performed unrestrained whole-body plethysmography (WBP) in mdx and mdx/utrn(+/-) mice, and compared them with wild-type controls. Respiratory function gauged by respiratory frequency, tidal volume, minute volume, peak inspiratory flow, and peak expiratory flow was significantly impaired in the mdx mice. Consistent with more severe diaphragm fibrosis in the mdx/utrn(+/-) mice, respiratory impairment was worse than in mdx mice at 6 months. WBP is useful for monitoring in vivo respiratory function of mdx and mdx/utrn(+/-) mice, and it may serve as an outcome measurement for therapies that target diaphragm fibrosis. The mdx/utrn(+/-) mouse model may be better than the mdx model for testing antifibrotic therapies, especially at the severe stage.  相似文献   

13.
PURPOSE: A recent report demonstrated impaired auditory detection and discrimination in schizophrenia patients. It is suggested that a deficit in attention resulted in flatter slopes of the psychometric functions. Here, we investigated whether these patients showed a similar deficit in another sensory modality. Specifically, we examined a subset of the schizophrenia patients in a visual task involving motion detection. METHODS: A total of 13 schizophrenia patients and 14 normal controls detected the presence of a group of random dots moving in a coherent direction among other dots moving in random directions. Signal intensity varied from trial to trial. Detection sensitivity and bias were computed using signal detection theory. RESULTS: The schizophrenia patients were less sensitive in detecting motion stimuli, compared to normal subjects. The decrement in sensitivity varies with signal-to-noise ratio. The two groups did not differ in response bias. CONCLUSION: Schizophrenics were impaired in visual, as well as in auditory, attention, in accordance with the idea that attention impairment may represent a core deficit in schizophrenia.  相似文献   

14.
DNER is a transmembrane protein carrying extracellular EGF repeats and is strongly expressed in Purkinje cells (PCs) in the cerebellum. Current study indicated that DNER functions as a new Notch ligand and mediates the functional communication via cell-cell interaction. By producing and analyzing knockout mice lacking DNER, we demonstrate its essential roles in functional and morphological maturation of the cerebellum. The knockout mice exhibited motor discoordination in the fixed bar and rota-rod tests. The cerebellum from the knockout mice showed significant retardation in morphogenesis and persistent abnormality in fissure organization. Histochemical and electrophysiological analyses detected that PCs retained multiple innervations from climbing fibers (CFs) in the mutant cerebellum. Synaptic transmission from parallel fibers (PFs) or CFs to PCs was apparently normal, while glutamate clearance at the PF-PC synapses was significantly impaired in the mutant mice. Moreover, the protein level of GLAST, the glutamate transporter predominantly expressed in Bergmann glia (BG), was reduced in the mutant cerebellum. Our results indicate that DNER takes part in stimulation of BG maturation via intercellular communication and is essential for precise cerebellar development.  相似文献   

15.
Astrocyte activation is a ubiquitous hallmark of the damaged brain and has been suggested to play an important regulatory role in the activation, survival, and regeneration of adjacent neurons, microglia, and oligodendrocytes. Little is known, however, about the endogenous signals that lead to this activation of astrocytes. Here we examined the regulation of interleukin 6 (IL6), a proinflammatory cytokine, its receptors, and the effects of IL6-deficiency in a model of traumatic central nervous system injury in the axotomized mouse facial motor nucleus. Facial nerve transection led to a massive but transient upregulation of IL6 mRNA in the disconnected motor nucleus, while IL6-receptor subunits were constitutively expressed on motoneurons and astrocytes. Absence of IL6 in genetically IL6-deficient mice led to massive reduction in the number of activated GFAP-positive astrocytes, a more moderate decrease in microglial activation and proliferation, and an increase in the late neuronal response to axotomy. These results emphasize the role of IL6 in the global regulation of neurons, astrocytes, and microglia and their activation in the injured nervous system. GLIA 19:227–233, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Oxidative stress plays an important role in the pathogenesis of Alzheimer's disease. To determine which mechanisms cause the origin of oxidative damage, we analyzed enzymatic antioxidant defense (Cu/Zn-superoxide dismutase Cu/Zn-SOD, glutathione peroxidase GPx and glutathione reductase GR) and lipid peroxidation products malondialdehyde MDA and 4-hydroxynonenal HNE in two different APP transgenic mouse models at 3-4 and 12-15 months of age. No changes in any parameter were observed in brains from PDGF-APP695(SDL) mice, which have low levels of Abeta and no plaque load. In contrast, Thy1-APP751(SL) mice show high Abeta accumulation with aging and plaques from an age of 6 months. In brains of these mice, HNE levels were increased at 3 months (female transgenic mice) and at 12 months (both gender), that is, before and after plaque deposition, and the activity of Cu/Zn-SOD was reduced. Interestingly, beta-amyloidogenic cleavage of APP was increased in female Thy1-APP751(SL) mice, which also showed increased HNE levels with simultaneously reduced Cu/Zn-SOD activity earlier than male Thy1-APP751(SL) mice. Our results demonstrate that impaired Cu/Zn-SOD activity contributes to oxidative damage in Thy1-APP751(SL) transgenic mice, and these findings are closely linked to increased beta-amyloidogenic cleavage of APP.  相似文献   

17.
An event-related potential called mismatch negativity is known to exhibit physiological evidence of sensory memory. Mismatch negativity is believed to represent complicated neuronal mechanisms in a variety of animals and in humans. We employed the auditory oddball paradigm varying sound durations and observed two types of duration mismatch negativity in anesthetized guinea pigs. One was a duration mismatch negativity whose increase in peak amplitude occurred immediately after onset of the stimulus difference in a decrement oddball paradigm. The other exhibited a peak amplitude increase closer to the offset of the longer stimulus in an increment oddball paradigm. These results demonstrated a mechanism to percept the difference of duration change and revealed the importance of the end of a stimulus for this perception.  相似文献   

18.
Factor XIII that stabilizes fibrin clots in the final stages of blood coagulation also participates in wound healing, as can be inferred from a delay in wound repair in some patients with inherited FXIII deficiency. In this study we evaluated the effect of FXIII on wound healing in FXIII-deficient mice. Three groups of mice (n = 10) were employed: control group, FXIII-deficient group and FXIII-deficient group treated with FXIII concentrate. Excisional wounds were left unsutured and undressed, and mice were followed for eleven days. FXIII-deficient mice exhibited impaired wound healing as has been demonstrated by 15%, 27% and 27% decrease in percentage of wound closure on day 4, 8 and 11, respectively. On day 11 complete healing was observed in control (100% closure), 73.23% in FXIII-deficient and 90.06% in FXIII deficient/FXIII-treated groups (p = 0.007 by ANOVA and p = 0.001 by t-test between control and FXIII-deficient groups). Scoring system representing maturation rate of the wounds showed that the scores for the control, FXIII-deficient and FXIII deficient/FXIII treated groups were 94.9 +/- 4.7, 61.5 +/- 14.5 and 94.5 +/- 6.4, respectively (p < 0.001 by ANOVA). Histological analysis of the lesions performed at day 11 disclosed delayed reepithelization and necrotized fissure in FXIII-deficient mice and normal healing in FXIII-deficient/FXIII-treated mice. The findings of this study confirm that in FXIII-deficient mice wound healing is delayed and the cellular and tissue defects can be corrected by treatment with FXIII, providing evidence for the essential role of FXIII in wound repair and remodeling.  相似文献   

19.
Impaired performance of skeletal muscle in alpha-glucosidase knockout mice   总被引:1,自引:0,他引:1  
Glycogen storage disease type II (GSD II) is an inherited progressive muscle disease in which lack of functional acid alpha-glucosidase (AGLU) results in lysosomal accumulation of glycogen. We report on the impact of a null mutation of the acid alpha-glucosidase gene (AGLU(-/-)) in mice on the force production capabilities, contractile mass, oxidative capacity, energy status, morphology, and desmin content of skeletal muscle. Muscle function was assessed in halothane-anesthetized animals, using a recently designed murine isometric dynamometer. Maximal torque production during single tetanic contraction was 50% lower in the knockout mice than in wild type. Loss of developed torque was found to be disproportionate to the 20% loss in muscle mass. During a series of supramaximal contraction, fatigue, expressed as percentile decline of developed torque, did not differ between AGLU(-/-) mice and age-matched controls. Muscle oxidative capacity, energy status, and protein content (normalized to either dry or wet weight) were not changed in knockout mice compared to control. Alterations in muscle cell morphology were clearly visible. Desmin content was increased, whereas alpha-actinin was not. As the decline in muscle mass is insufficient to explain the degree in decline of mechanical performance, we hypothesize that the large clusters of noncontractile material present in the cytoplasm hamper longitudinal force transmission, and hence muscle contractile function. The increase in muscular desmin content is most likely reflecting adaptations to altered intracellular force transmission.  相似文献   

20.
BACKGROUND: One of the cardinal features of schizotypal personality disorder (SPD) is language abnormalities. The focus of this study was to determine whether or not there are also processing abnormalities of pure tones differing in pitch and duration in SPD. METHODS: Thirteen neuroleptic-na?ve male subjects met full criteria for SPD and were group-matched on age and parental socio-economic status to 13 comparison subjects. Verbal learning was measured with the California Verbal Learning Test. Heschl's gyrus volumes were measured using structural MRI. Whole-brain fMRI activation patterns in an auditory task of listening to tones including pitch and duration deviants were compared between SPD and control subjects. In a second and separate ROI analysis we found that peak activation in superior temporal gyrus (STG), Brodmann Areas 41 and 42, was correlated with verbal learning and clinical measures derived from the SCID-II interview. RESULTS: In the region of the STG, SPD subjects demonstrated more activation to pitch deviants bilaterally (p<0.001); and to duration deviants in the left hemisphere (p=0.005) (two-sample t). SPD subjects also showed more bilateral parietal cortex activation to duration deviants. In no region did comparison subjects activate more than SPD subjects in either experiment. Exploratory correlations for SPD subjects suggest a relationship between peak activation on the right for deviant tones in the pitch experiment with odd speech and impaired verbal learning. There was no difference between groups on Heschl's gyrus volume. CONCLUSIONS: These data suggest that SPD subjects have inefficient or hyper-responsive processing of pure tones both in terms of pitch and duration deviance that is not attributable to smaller Heschl's gyrus volumes. Finally, these auditory processing abnormalities may have significance for the odd speech heard in some SPD subjects and downstream language and verbal learning deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号