首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fanconi anemia polypeptide FACC is localized to the cytoplasm.   总被引:16,自引:1,他引:15       下载免费PDF全文
Fanconi anemia (FA) is an autosomal recessive disease characterized by congenital anomalies, aplastic anemia, and chromosomal instability. A cDNA encoding the FA complementation group C (FACC) polypeptide was recently cloned [Strathdee, C. A., Gavish, H., Shannon, W. R. & Buchwald, M. (1992) Nature (London) 356, 763-767]. To further characterize this polypeptide, we generated a rabbit polyclonal antiserum against its carboxyl terminus. We used this antiserum to analyze the FACC polypeptide from normal or mutant (FA) lymphoblast cell lines. By immunoprecipitation, the wild-type FACC was a 60-kDa protein, consistent with its predicted molecular mass. FA group C cell lines expressed full-length FACC, truncated FACC, or no detectable FACC polypeptide. In addition, the antiserum specifically immunoprecipitated a 50-kDa and a 150-kDa FACC-related protein (FRP-50 and FRP-150). Unexpectedly, cell fractionation and immunofluorescence studies demonstrated that the FACC polypeptide localizes to the cytoplasm. In conclusion, we have generated an antiserum specific for the human FACC polypeptide. The antiserum should be useful for screening FA cells for mutant FACC polypeptides and for identifying and cloning FACC-related proteins.  相似文献   

2.
Fanconi anemia (FA) is a rare autosomal recessive disease, characterized by bone marrow failure and cancer predisposition. So far, 8 complementation groups have been identified, although mutations in FANCA account for the disease in the majority of FA patients. In this study we characterized the hematopoietic phenotype of a Fanca knockout mouse model and corrected the main phenotypic characteristics of the bone marrow (BM) progenitors using retroviral vectors. The hematopoiesis of these animals was characterized by a modest though significant thrombocytopenia, consistent with reduced numbers of BM megakaryocyte progenitors. As observed in other FA models, the hematopoietic progenitors from Fanca(-/-) mice were highly sensitive to mitomycin C (MMC). In addition, we observed for the first time in a FA mouse model a marked in vitro growth defect of Fanca(-/-) progenitors, either when total BM or when purified Lin(-)Sca-1(+) cells were subjected to in vitro stimulation. Liquid cultures of Fanca(-/-) BM that were stimulated with stem cell factor plus interleukin-11 produced low numbers of granulocyte macrophage colony-forming units, contained a high proportion of apoptotic cells, and generated a decreased proportion of granulocyte versus macrophage cells, compared to normal BM cultures. Aiming to correct the phenotype of Fanca(-/-) progenitors, purified Lin(-)Sca-1(+) cells were transduced with retroviral vectors encoding the enhanced green fluorescent protein (EGFP) gene and human FANCA genes. Lin(-)Sca-1(+) cells from Fanca(-/-) mice were transduced with an efficiency similar to that of samples from wild-type mice. More significantly, transductions with FANCA vectors corrected both the MMC hypersensitivity as well as the impaired ex vivo expansion ability that characterized the BM progenitors of Fanca(-/-) mice.  相似文献   

3.
Phenotypic correction of Fanconi anemia group C knockout mice   总被引:3,自引:4,他引:3       下载免费PDF全文
Gush KA  Fu KL  Grompe M  Walsh CE 《Blood》2000,95(2):700-704
Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc -/- nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for testing novel therapeutic strategies. We have exploited the inherent hypersensitivity of fancc -/- hematopoietic cells to assay for phenotypic correction following transfer of the FANCC complementary DNA (cDNA) into bone marrow cells. Murine fancc -/- bone marrow cells were transduced with the use of retrovirus carrying the human fancc cDNA and injected into lethally irradiated recipients. Mitomycin C (MMC) dosing, known to induce pancytopenia, was used to challenge the transplanted animals. Phenotypic correction was determined by assessment of peripheral blood counts. Mice that received cells transduced with virus carrying the wild-type gene maintained normal blood counts following MMC administration. All nullizygous control animals receiving MMC exhibited pancytopenia shortly before death. Clonogenic assay and polymerase chain reaction analysis confirmed gene transfer of progenitor cells. These results indicate that selective pressure promotes in vivo enrichment of fancc-transduced hematopoietic stem/progenitor cells. In addition, MMC resistance coupled with detection of the transgene in secondary recipients suggests transduction and phenotypic correction of long-term repopulating stem cells. (Blood. 2000;95:700-704)  相似文献   

4.
Features of chromosomal aberrations, hypersensitivity to DNA crosslinking agents, and predisposition to malignancy have suggested a fundamental anomaly of DNA repair in Fanconi anemia. The function of the recently isolated FACC (Fanconi anemia group C complementing) gene for a subset of this disorder is not yet known. The notion that FACC plays a direct role in DNA repair would predict that the polypeptide should reside in the nucleus. In this study, a polyclonal antiserum raised against FACC was used to determine the subcellular location of the polypeptide. Immunofluorescence and subcellular fractionation studies of human cell lines as well as COS-7 cells transiently expressing human FACC showed that the protein was localized primarily to the cytoplasm under steady-state conditions, transit through the cell cycle, and exposure to crosslinking or cytotoxic agents. However, placement of a nuclear localization signal from the simian virus 40 large tumor antigen at the amino terminus of FACC directed the hybrid protein to the nuclei of transfected COS-7 cells. These observations suggest an indirect role for FACC in regulating DNA repair in this group of Fanconi anemia.  相似文献   

5.
Galimi F  Noll M  Kanazawa Y  Lax T  Chen C  Grompe M  Verma IM 《Blood》2002,100(8):2732-2736
Fanconi anemia (FA) is an inherited cancer susceptibility syndrome caused by mutations in a DNA repair pathway including at least 6 genes (FANCA, FANCC, FANCD2, FANCE, FANCF, and FANCG). The clinical course of the disease is dominated by progressive, life-threatening bone marrow failure and high incidence of acute myelogenous leukemia and solid tumors. Allogeneic bone marrow transplantation (BMT) is a therapeutic option but requires HLA-matched donors. Gene therapy holds great promise for FA, but previous attempts to use retroviral vectors in humans have proven ineffective given the impaired proliferation potential of human FA hematopoietic progenitors (HPCs). In this work, we show that using lentiviral vectors efficient genetic correction can be achieved in quiescent hematopoietic progenitors from Fanca(-/-) and Fancc(-/-) mice. Long-term repopulating HPCs were transduced by a single exposure of unfractionated bone marrow mononuclear cells to lentivectors carrying the normal gene. Notably, no cell purification or cytokine prestimulation was necessary. Resistance to DNA- damaging agents was fully restored by lentiviral transduction, allowing for in vivo selection of the corrected cells with nonablative doses of cyclophosphamide. This study strongly supports the use of lentiviral vectors for FA gene therapy in humans.  相似文献   

6.
Primary skin fibroblast cell lines from patients with Fanconi anemia were cotransfected with UV-irradiated pSV2neo plasmids and high molecular weight DNA from normal human cells. Restoration of a normal cellular resistance to mitomycin C (MMC) was observed provided that a Fanconi anemia cell line is selected for DNA-mediated transformation (neo gene) and that at least two successive rounds of transfection are performed. Cells were selected by taking advantage of the higher proliferation rate and plating efficiency of the MMC resistant transformants. As estimated from reconstruction experiments, the frequency of transfer of MMC resistance lies between 1 and 30 X 10(-7). The MMC resistance phenotype was maintained for at least 10 generations following transfection. Evidence for DNA-mediated transformation also includes the recovery of a normal pattern of DNA semiconservative synthesis after treatment with 8-methoxypsoralen and 365-nm UV irradiation, and the presence of exogenous pSV2neo DNA sequences was shown by Southern blot analysis. The acquired MMC resistance is probably due to the presence of DNA from normal cells. Indeed, sensitivity to MMC was maintained when Fanconi anemia cells were cotransfected with the UV-irradiated pSV2neo plasmid mixed with their own DNA or with yeast or salmon sperm DNA. These negative results also render unlikely the selection of spontaneous MMC resistant revertants in transfection of Fanconi anemia cells with normal DNA. These experiments establish the prerequisites for the isolation of the gene(s) involved in the response to DNA crosslinking lesions in human cells.  相似文献   

7.
8.
OBJECTIVE: Fanconi anemia (FA) is an autosomal-recessive cancer susceptibility syndrome with seven complementation groups. Six of the FA genes have been cloned (corresponding to subtypes A, C, D2, E, F, and G) and the encoded proteins interact in a common pathway. Patient-derived mutations in FA genes have been helpful in delineating functional domains of FA proteins. The purpose of this work was to subtype FA patient-derived cell lines in our repository and to identify FA gene mutations. METHODS: We subtyped 62 FA patients as type A, G, C, or non-ACG by using a combination of retroviral gene transfer and immunoblot analysis. Among these FA patients, we identified six FA-G patients for further analysis. We used a strategy involving amplification of FANCG/XRCC9 exons and direct sequencing to identify novel FANCG mutations in cell lines derived from these FA-G patients. We functionally analyzed FANCG mutant alleles by transducing the corresponding cDNAs into a known FA-G indicator cell line and scoring correction of MMC sensitivity. RESULTS: Our results demonstrate a wide range of mutations in the FANCG gene (splice, nonsense, and missense mutations). Based on this mutational screen, a carboxy terminal functional domain of the FANCG protein appears to be required for complementation of FA-G cells and for normal assembly of the FANCA/FANCG/FANCC protein complex. CONCLUSION: The identification of patient-derived mutant alleles of FA genes can provide important insights to the function of FA proteins. FA subtyping is also a necessary precondition for gene therapy.  相似文献   

9.
Fanconi's anaemia (FA) is characterized by increased spontaneous and induced chromosome fragility. This has been widely regarded to be due to a defect in DNA crosslink repair, because of the sensitivity of cells to known DNA crosslinking agents such as mitomycin C (MMC) and diepoxybutane (DEB). Although Fanconi cells are also sensitive to molecular oxygen, and may be protected by antioxidants, this has generally been considered to be a secondary phenomenon. However, it has recently been demonstrated that the FAC protein, coded for by the Fanconi anaemia gene for complementation group C, is strictly cytoplasmic and does not enter the nucleus even after DNA damage, which seems inconsistent with a role in DNA repair.
We have studied the effects of MMC and oxygen on apoptotic cell death in FA group C (FA-C) and normal lymphoblastoid cell lines. Hyperoxia alone failed to induce apoptosis in either FA-C or normal cells. At ambient oxygen, MMC is known to generate oxygen free radicals, whereas decreased oxygen tension facilitates the metabolic activation of MMC for DNA crosslinking. We therefore studied the effects of MMC at 20% and 5% oxygen to favour oxygen radical generation or DNA crosslinking respectively. FA-C cells showed increased sensitivity compared to normal cells for the induction of apoptosis by MMC at 20% oxygen. When cells were treated with MMC at 5% oxygen we found no increased sensitivity of Fanconi cells to MMC when compared to normal cells. These results imply a role for oxygen free radicals, but not for DNA crosslinking, in the sensitivity of FA cells to MMC.  相似文献   

10.
Fanconi anemia (FA) is an autosomal recessive disorder characterized by birth defects, increased incidence of malignancy, and progressive bone marrow failure. Bone marrow transplantation is therapeutic and, therefore, FA is a candidate disease for hematopoietic gene therapy. The frequent finding of somatic mosaicism in blood of FA patients has raised the question of whether wild-type bone marrow may have a selective growth advantage. To test this hypothesis, a cohort radio-ablated wild-type mice were transplanted with a 1:1 mixture of FA group C knockout (FACKO) and wild-type bone marrow. Analysis of peripheral blood at 1 month posttransplantation showed only a moderate advantage for wild-type cells, but upon serial transplantation, clear selection was observed. Next, a cohort of FACKO mice received a transplant of wild-type marrow cells without prior radio-ablation. No wild-type cells were detected in peripheral blood after transplantation, but a single injection of mitomycin C (MMC) resulted in an increase to greater than 25% of wild-type DNA. Serial transplantation showed that the selection occurred at the level of hematopoietic stem cells. No systemic side effects were observed. Our results show that in vivo selection for wild-type hematopoietic stem cells occurs in FA and that it is enhanced by MMC administration.  相似文献   

11.
A novel diagnostic screen for defects in the Fanconi anemia pathway   总被引:2,自引:4,他引:2  
Fanconi anemia (FA) is an autosomal recessive chromosomal instability syndrome characterized by congenital abnormalities, progressive bone marrow failure, and cancer predisposition. Although patients with FA are candidates for bone marrow transplantation or gene therapy, their phenotypic heterogeneity can delay or obscure diagnosis. The current diagnostic test for FA consists of cytogenetic quantitation of chromosomal breakage in response to diepoxybutane (DEB) or mitomycin C (MMC). Recent studies have elucidated a biochemical pathway for Fanconi anemia that culminates in the monoubiquitination of the FANCD2 protein. In the current study, we develop a new rapid diagnostic and subtyping FA assay amenable for screening broad populations at risk of FA. Primary lymphocytes were assayed for FANCD2 monoubiquitination by immunoblot. The absence of the monoubiquitinated FANCD2 isoform correlated with the diagnosis of FA by DEB testing in 11 known patients with FA, 37 patients referred for possible FA, and 29 healthy control subjects. Monoubiquitination of FANCD2 was normal in other bone marrow failure syndromes and chromosomal breakage syndromes. A combination of retroviral gene transfer and FANCD2 immunoblotting provides a rapid subtyping assay for patients newly diagnosed with FA. These new FA screening assays would allow efficient testing of broad populations at risk.  相似文献   

12.
Fanconi anemia (FA) is a complex recessive genetic disease that causes bone marrow failure in children. The mechanism by which the gene for FA group C (Fancc) impinges on the normal hematopoietic program is unknown. Here we demonstrate that the bone marrow from Fancc-/- mice have reduced ability for primary and secondary long-term reconstitution of myeloablated recipients compared to wild-type or heterozygous mice, indicating that the Fancc gene product is required for the maintenance of normal numbers of hematopoietic stem cells. Long-term and secondary transplant studies suggested that there also were qualitative changes in their developmental potential. Consistent with the reduction in reconstitution, flow cytometric analysis of the primitive subfractions of hematopoietic cells obtained from the bone marrow of Fancc -/- mice demonstrated that they contained 40 to 70% fewer lineage-negative (Lin-)Thy1.2-/lowScal(+) c-Kit(+)CD34+ cells compared to controls. In contrast, the number of Lin Thy1.2-/ lowScal(+)c-Kit CD34(-)cells was comparable to that of wild-type mice. The differential behavior of Lin(-)Thy1.2-/lowScal+c-Kit+CD34+ and Lin(-)Thy1.2-/lowScal(+)c-Kit CD34 subfractions also was observed in mice treated with the DNA cross-linking agent mitomycin C(MMC). Fancc-/- mice treated with MMC had an 92% reduction of CD34 cells as compared to Fancc+/+ mice. The number of CD34 cells only was reduced about 20%. These results suggest that the Fancc gene may act at a stage of primitive hematopoietic cell development identified by CD34 expression.  相似文献   

13.
Cumming  RC; Liu  JM; Youssoufian  H; Buchwald  M 《Blood》1996,88(12):4558-4567
Fanconi anemia (FA) is a genetically heterogeneous, inherited blood disorder characterized by bone marrow failure, congenital malformations, and a predisposition to leukemias. Because FA cells are hypersensitive to DNA cross-linking agents and have chromosomal instability, FA has been viewed as a disorder of DNA repair. However, the exact cellular defect in FA cells has not been identified. Sequence analysis of the gene defective in group C patients (FAC) has shown no significant homologies to other known genes. The FAC protein has been localized to the cytoplasm, indicating that FAC may either play an indirect role in DNA repair or is involved in a different cellular pathway. Recent evidence has indicated that FA cells may be predisposed to apoptosis, especially after treatment with DNA cross-linking agents. The demonstration that genes can suppress apoptosis has been accomplished by overexpression of such genes in growth factor-dependent cell lines that die by apoptosis after factor withdrawal. Using retroviral-mediated gene transfer, we present evidence that expression of FAC in the hematopoietic factor-dependent progenitor cell lines 32D and MO7e can suppress apoptosis induced by growth factor withdrawal. Flow cytometry and morphologic analysis of propidium iodide stained cells showed significantly lower levels of apoptosis in FAC-retroviral transduced cells after growth factor deprivation. Expression of FAC in both cell lines promoted increased viability rather than proliferation, which is consistent with other apoptosis-inhibiting genes such as Bcl- 2. These findings imply that FAC may act as a mediator of an apoptotic pathway initiated by growth factor withdrawal. Furthermore, the congenital malformations and hematologic abnormalities characterizing FA may be related to an increased predisposition of FA progenitor cells to undergo apoptosis, particularly in the absence of extracellular signals.  相似文献   

14.
Li X  Plett PA  Yang Y  Hong P  Freie B  Srour EF  Orschell CM  Clapp DW  Haneline LS 《Blood》2003,102(6):2081-2084
The pathogenesis of bone marrow failure in Fanconi anemia is poorly understood. Suggested mechanisms include enhanced apoptosis secondary to DNA damage and altered inhibitory cytokine signaling. Recent data determined that disrupted cell cycle control of hematopoietic stem and/or progenitor cells disrupts normal hematopoiesis with increased hematopoietic stem cell cycling resulting in diminished function and increased sensitivity to cell cycle-specific apoptotic stimuli. Here, we used Fanconi anemia complementation type C-deficient (Fancc-/-) mice to demonstrate that Fancc-/- phenotypically defined cell populations enriched for hematopoietic stem and progenitor cells exhibit increased cycling. In addition, we established that the defect in cell cycle regulation is not a compensatory mechanism from enhanced apoptosis occurring in vivo. Collectively, these data provide a previously unrecognized phenotype in Fancc-/- hematopoietic stem/progenitor cells, which may contribute to the progressive bone marrow failure in Fanconi anemia.  相似文献   

15.
OBJECTIVE: The aim of this study was to develop a rapid laboratory procedure that is capable of subtyping Fanconi anemia (FA) complementation groups FA-A, FA-C, FA-G, and FA-nonACG patients from a small amount of peripheral blood. MATERIALS AND METHODS: For this test, primary peripheral blood-derived FA T cells were transduced with oncoretroviral vectors that expressed FANCA, FANCC, or FANCG cDNA. We achieved a high efficiency of gene transfer into primary FA T cells by using the fibronectin fragment CH296 during transduction. Transduced cells were analyzed for correction of the characteristic DNA cross-linker hypersensitivity by cell survival or by metaphase analyses. RESULTS: Retroviral vectors containing the cDNA for FA-A, FA-C, and FA-G, the most frequent complementation groups in North America, allowed rapid identification of the defective gene by complementation of primary T cells from 12 FA patients. CONCLUSION: Phenotypic correction of FA T cells using retroviral vectors can be used successfully to determine the FA complementation group immediately after diagnosis of the disease.  相似文献   

16.
The Fanconi anemia (FA) group C gene product (FANCC) functions to protect cells from cytotoxic and genotoxic effects of cross-linking agents. FANCC is also required for optimal activation of STAT1 in response to cytokine and growth factors and for suppressing cytokine-induced apoptosis by modulating the activity of double-stranded RNA-dependent protein kinase. Because not all FANCC mutations affect STAT1 activation, the hypothesis was considered that cross-linker resistance function of FANCC depends on structural elements that differ from those required for the cytokine signaling functions of FANCC. Structure-function studies were designed to test this notion. Six separate alanine-substituted mutations were generated in 3 highly conserved motifs of FANCC. All mutants complemented mitomycin C (MMC) hypersensitive phenotype of FA-C cells and corrected aberrant posttranslational activation of FANCD2 in FA-C mutant cells. However, 2 of the mutants, S249A and E251A, failed to correct defective STAT1 activation. FA-C lymphoblasts carrying these 2 mutants demonstrated a defect in recruitment of STAT1 to the interferon gamma (IFN-gamma) receptor and GST-fusion proteins bearing S249A and E251A mutations were less efficient binding partners for STAT1 in stimulated lymphoblasts. These same mutations failed to complement the characteristic hypersensitive apoptotic responses of FA-C cells to tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma. Cells bearing a naturally occurring FANCC mutation (322delG) that preserves this conserved region showed normal STAT1 activation but remained hypersensitive to MMC. The conclusion is that a central highly conserved domain of FANCC is required for functional interaction with STAT1 and that structural elements required for STAT1-related functions differ from those required for genotoxic responses to cross-linking agents. Preservation of signaling capacity of cells bearing the del322G mutation may account for the reduced severity and later onset of bone marrow failure associated with this mutation.  相似文献   

17.
A number of DNA repair proteins also play roles in telomere metabolism. To investigate whether the accelerated telomere shortening reported in Fanconi anemia (FA) hematopoietic cells relates to a direct role of the FA pathway in telomere maintenance, we have analyzed telomere dynamics in Fancg-deficient mouse and human cells. We show here that both hematopoietic (stem and differentiated bone marrow cells, B and T lymphocytes) and nonhematopoietic (germ cells, mouse embryonic fibroblasts [MEFs]) Fancg(-/-) mouse cells display normal telomere length, normal telomerase activity, and normal chromosome end-capping, even in the presence of extensive clastogen-induced cytogenetic instability (mitomycin C [MMC], gamma-radiation). In addition, telomerase-deficient MEFs with humanlike telomere length and decreased Fancg expression (G5 Terc(-/-)/Fancg shRNA3 MEFs) display normal telomere maintenance. Finally, early-passage primary fibroblasts from patients with FA of complementation group G as well as primary human cells with reduced FANCG expression (FANCG shRNA IMR90 cells) show no signs of telomere dysfunction. Our observations indicate that accelerated telomere shortening in patients with FA is not due to a role of FANCG at telomeres but instead may be secondary to the disease. These findings suggest that telomerase-based therapies could be useful prophylactic agents in FA aplastic anemia by preserving their telomere reserve in the context of the disease.  相似文献   

18.
Kupfer  GM; D'Andrea  AD 《Blood》1996,88(3):1019-1025
Fanconi anemia (FA) is an autosomal recessive disease marked by developmental defects, bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA cross-linking and alkylating agents and accumulate in the G2 phase of the cell cycle in response to these agents. FA cells also display genomic instability, suggesting a possible defect in the p53 pathway. To test the effect of heterologous expression of FAC cDNA on drug-induced cytotoxicity, G2 accumulation, and p53 induction in FA cells, we compared two isogenic FA cell lines: HSC536N (mock), a FA type C cell line sensitive to mitomycin C (MMC), and the same cell line transfected (corrected) with wild-type FAC cDNA (HSC536N [+FAC]). HSC536N (+FAC) cells showed a 30-fold increase in resistance to MMC concentration. Similarly, increases in resistance were observed following exposure to cisplatin, carboplatin, and cyclophosphamide. In addition, HSC536N (+FAC) cells showed a twofold lower G2 accumulation following MMC treatment. To analyze the possible interaction of FAC with the p53 pathway, we analyzed p53 induction in mock and corrected cell lines following exposure to MMC. HSC536N (mock) cells induced p53 at lower MMC concentrations than HSC536N (corrected). Caffeine, a known G2 checkpoint inhibitor, not only inhibited G2 accumulation seen in both cell lines but also caused the resistant HSC536N (+FAC) to become as sensitive to MMC as HSC536N (mock) cell line. We conclude that the FAC protein has a specific cytoprotective effect and may function as a cell cycle regulator of the G2 phase of the cell cycle.  相似文献   

19.
20.
Kruyt  FA; Dijkmans  LM; van den Berg  TK; Joenje  H 《Blood》1996,87(3):938-948
Hypersensitivity to cross-linking agents such as mitomycin C (MMC) is characteristic of cells from patients suffering from the inherited bone marrow failure syndrome. Fanconi anemia (FA). Here, we link MMC hypersensitivity of Epstein-Barr virus (EBV)-immortalized FA lymphoblasts to a high susceptibility for apoptosis and p53 activation. In MMC-treated FA cells belonging to complementation group C (FA-C), apoptosis followed cell cycle arrest in the G2 phase. In stably transfected FA-C cells, plasmid-driven expression of the wild-type cytoplasmic FAC protein relieved MMC-dependent G2 arrest and suppressed p53 activation. However, in both FA and non-FA lymphoblasts, p53 seemed not to be instrumental in the induction of MMC-dependent apoptosis, since overexpression of a dominant-negative p53 mutant failed to affect cell survival. In addition, no differences in the level of Bcl-2 expression, an inhibitor of apoptosis, were detected between FA and non- FA cells either in the absence or presence of MMC. Our findings suggest that FAC and the other putative FA gene products may function in a yet to be identified p53-independent apoptosis pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号