首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine if the increased cortical bone porosity induced by intermittently administered parathyroid hormone (PTH) reduces bone strength significantly. Mature ovary-intact New Zealand white rabbits were treated with once daily injections of vehicle, or PTH(1-34), LY333334, at 10 or 40 μg/kg/day for 140 days. Geometry of the femoral midshaft was measured to evaluate changes in the cross-sectional moment of inertia (CSMI). Cortical porosity was measured in the midshaft of the tibia by dividing cortical area into three zones based on equal divisions of cortical diameter: near endocortical (Zone I), near intermediate (Zone II), and near periosteal (Zone III) regions. Total cortical porosity significantly increased after PTH treatment from 1.4% in the controls to 6.3% in the higher dose group, but the location of the new porosities was not randomly distributed. In the controls, porosity of Zones I and II (both 1.7%) was almost twice as much as that of Zone III (0.9%). In the lower dose group, cortical porosity of Zone I (5.5%) and II (1.8%) was greater than in Zone III (0.9%), but these differences were not statistically significant. In the higher dose group, cortical porosity of Zone I (11.5%) and II (6.1%) significantly increased compared with Zone III (1.4%) (P < 0.0005). Histomorphometric measurements showed that bone formation rate on both periosteal and endocortical surfaces increased, resulting in increased bone area and cortical area in the higher dose group. A model was developed to evaluate the effect of the changes in geometry and porosity on CSMI in the different zones. This simulation model indicated that CSMI in the higher dose group was significantly greater than in the other two groups, despite the increased porosity. We speculate the reason to be that porosity increased near the endocortical surface, where its mechanical effect is small. This increase was more than offset by apposition of new bone on the periosteal surface. These data suggest that (1) PTH increases cortical porosity in a dose-dependent manner, primarily near endocortical surfaces; (2) because of this nonhomogeneous distribution, the mechanical effect of increased porosity is small; (3) the increased cortical porosity associated with PTH treatment is more than offset by periosteal apposition of new bone, causing an overall increase in the bending rigidity of cortical bone; and (4) these changes cannot be accurately evaluated using noninvasive methods of bone densitometry, which cannot account for the location of bone gain and bone loss. Received: 20 May 1999 / Accepted: 10 January 2000  相似文献   

2.
Cortical porosity in patients with hyperparathyroidism has raised the concern that intermittent parathyroid hormone (PTH) given to treat osteoporotic patients may weaken cortical bone by increasing its porosity. We hypothesized that treatment of ovariectomized (OVX) cynomolgus monkeys for up to 18 months with recombinant human PTH(1-34) [hPTH(1-34)] LY333334 would significantly increase porosity in the midshaft of the humerus but would not have a significant effect on the strength or stiffness of the humerus. We also hypothesized that withdrawal of PTH for 6 months after a 12-month treatment period would return porosity to control OVX values. OVX female cynomolgus monkeys were given once daily subcutaneous (sc) injections of recombinant hPTH(1-34) LY333334 at 1.0 microg/kg (PTH1), 5.0 microg/kg (PTH5), or 0.1 ml/kg per day of phosphate-buffered saline (OVX). Sham OVX animals (sham) were also given vehicle. After 12 months, PTH treatment was withdrawn from half of the monkeys in each treatment group (PTH1-W and PTH5-W), and they were treated for the remaining 6 months with vehicle. Double calcein labels were given before death at 18 months. After death, static and dynamic histomorphometric measurements were made intracortically and on periosteal and endocortical surfaces of sections from the middiaphysis of the left humerus. Bone mechanical properties were measured in the right humeral middiaphysis. PTH dose dependently increased intracortical porosity. However, the increased porosity did not have a significant detrimental effect on the mechanical properties of the bone. Most porosity was concentrated near the endocortical surface where its mechanical effect is small. In PTH5 monkeys, cortical area (Ct.Ar) and cortical thickness (Ct.Th) increased because of a significantly increased endocortical mineralizing surface. After withdrawal of treatment, porosity in PTH1-W animals declined to sham values, but porosity in PTH5-W animals remained significantly elevated compared with OVX and sham. We conclude that intermittently administered PTH(1-34) increases intracortical porosity in a dose-dependent manner but does not reduce the strength or stiffness of cortical bone.  相似文献   

3.
Fox J  Miller MA  Newman MK  Recker RR  Turner CH  Smith SY 《BONE》2007,41(3):321-330
Treatment with parathyroid hormone 1-84 (PTH) or teriparatide increases osteonal remodeling and decreases bone mineral density (BMD) at cortical (Ct) bone sites but may also increase bone size. Decreases in BMD and increases in size exert opposing effects on bone strength. In adult ovariectomized (OVX) rhesus monkeys, we assessed the effects of daily PTH treatment (5, 10 or 25 microg/kg) for 16 months on BMD at the radial, tibial and femoral diaphyses, and on biomechanical properties (3-point bending) of radial cortical bone and the femoral diaphysis. PTH treatment did not affect areal BMD measured by dual-energy X-ray absorptiometry at the tibial diaphysis but caused a rapid, dose-related decrease at the distal radial diaphysis. Peripheral quantitative computed tomography at the radial and femoral diaphyses confirmed a significant PTH dose-related decrease in volumetric Ct.BMD caused primarily by increased cortical area. Significant increases in cortical thickness were the result of nonsignificant increases in periosteal length and decreases in endocortical length. Histomorphometry revealed increased endocortical bone formation at the tibial diaphysis and rib, higher Haversian remodeling at the rib and increased cortical porosity at the rib and tibia. Biomechanical testing at the femoral diaphysis showed that PTH treatment had no effect on peak load, but significantly decreased stiffness and increased work-to-failure (the energy required to break the bone). Similar changes occurred in radial cortical beams but only stiffness was changed significantly. Thus, PTH treatment of OVX rhesus monkeys decreased BMD and stiffness of cortical bone but did not affect peak load, likely because of increased bone size. However, PTH treatment increased the energy required to break the femur making it more resistant to fracture.  相似文献   

4.
We examined the time course effects of continuous PTH on cortical bone and mechanical properties. PTH increased cortical bone turnover and induced intracortical porosity with no deleterious effect on bone strength. Withdrawal of PTH increased maximum torque to failure and stiffness with no change in energy absorbed. INTRODUCTION: The skeletal response of cortical bone to parathyroid hormone (PTH) is complex and species dependent. Intermittent administration of PTH to rats increases periosteal and endocortical bone formation but has no known effects on intracortical bone turnover. The effects of continuous PTH on cortical bone are not clearly established. MATERIALS AND METHODS: Eighty-four 6-month-old female Sprague-Dawley rats were divided into three control, six PTH, and two PTH withdrawal (WD) groups. They were subcutaneously implanted with osmotic pumps loaded with vehicle or 40 microg/kg BW/day human PTH(1-34) for 1, 3, 5, 7, 14, and 28 days. After 7 days, PTH was withdrawn from two groups of animals for 7 (7d-PTH/7d-WD) and 21 days (7d-PTH/21d-WD). Histomorphometry was performed on periosteal and endocortical surfaces of the tibial diaphysis in all groups. microCT of tibias and mechanical testing by torsion of femora were performed on 28d-PTH and 7d-PTH/21d-WD animals. RESULTS AND CONCLUSIONS: Continuous PTH increased periosteal and endocortical bone formation, endocortical osteoclast perimeter, and cortical porosity in a time-dependent manner, but did not change the mechanical properties of the femur, possibly because of addition of new bone onto periosteal and endocortical surfaces. Additionally, withdrawal of PTH restored normal cortical porosity and increased maximum torque to failure and stiffness. We conclude that continuous administration of PTH increased cortical porosity in rats without having a detrimental effect on bone mechanical properties.  相似文献   

5.
Mashiba T  Burr DB  Turner CH  Sato M  Cain RL  Hock JM 《BONE》2001,28(5):538-547
We have previously shown that parathyroid hormone (PTH) increases cortical bone mass and mechanical strength of female rabbits after 140 days of treatment. However, cortical porosity was also shown to increase. If cortical porosity increases prior to the change in geometry, there may be a transient decrease in cortical bone strength that could make the bone more susceptible to fracture in the early phase of treatment. The purpose of this study is to examine the effects of PTH on the remodeling dynamics and mechanical properties of cortical bone in rabbits, which exhibit haversian remodeling, during the first remodeling cycle after the initiation of treatment. Fifty 9-month-old intact female New Zealand white rabbits were randomized into five groups. A baseline control group was killed at the start of the experiment. The two PTH-treated groups were given human PTH(1-34) at 10 microg/kg daily subcutaneously for 35 (P35) or 70 (P70) days. Two respective age-matched control groups (V35, V70) were injected with vehicle. Histomorphometry of the cortical bone in the tibial midshaft showed that, although intracortical activation frequency was significantly increased by PTH at 35 days, there was no significant increase of cortical porosity in the first remodeling cycle (70 days). Moreover, stimulation of cortical surface bone formation in the treated animals led to significantly greater cortical area and greater bone strength in both P35 and P70. We conclude that, although intracortical remodeling increases within the first remodeling period (70 days) in animals treated with 10 microg/kg PTH, the greater cortical area due to acceleration of bone formation on cortical surfaces increases cortical bone strength. There is no mechanical risk during the first remodeling cycle associated with intermittent PTH treatment in animals with normal bone mass.  相似文献   

6.
The transient effects of prostaglandin E2 (PGE2) on cancellous and cortical bone in iliac crests and mid-tibial shafts of nine intact young adult dogs were evaluated following 31 days of treatment. Histomorphometric bone changes were characterized from in vivo fluorescent double-labeled undecalcified bone specimens. PGE2 caused an increase in cancellous bone remodeling evidence by increased in activation frequency; increased percent eroded and formation surfaces; increased mineral apposition and bone formation rates; and shortened resorption, formation, and total bone remodeling periods. Activated cancellous bone remodeling did not lead to decreased cancellous bone mass, indicating an imbalance between bone resorption and formation in favor of formation (activation----resorption----stimulated formation; A----R----F increases) at remodeling sites. The PGE2 treatment activated bone modeling in the formation mode (activation----formation; A----F) at the periosteal and endocortical surfaces and increased activation frequency of intracortical bone remodeling in the tibial shaft. Increased modeling activation converted quiescent bone surfaces to formation surfaces with stimulated osteoblastic activity (i.e., increased percent labeled periosteal and endocortical surfaces, mineral apposition rates, and woven and lamellar trabecular bone formation) leading to 9- to 26-fold increases in newly formed bone mass in subperiosteal, subendosteal, and marrow regions, compared to controls. However, increased intracortical bone remodelling elevated remodeling space (i.e., increased cortical porosity), producing a bone loss that partially offsets the bone gain. The combined events lead to a positive bone balance in PGE2-treated cortical bone, compared to a negative bone balance in control bones. Collectively our data suggest that in vivo PGE2 is a powerful activator of cancellous and cortical bone formation, which may be able to build a peak bone mass to prevent and/or correct the skeletal defects to cure osteoporosis.  相似文献   

7.
Using bone histomorphometry, we found that a 1-month treatment with PTH(1-34) [hPTH(1-34)] stimulated new bone formation on cancellous, endocortical, and periosteal bone surfaces. Enhanced bone formation was associated with an increase in osteoblast apoptosis. INTRODUCTION: The precise mechanisms by which hPTH(1-34) increases bone mass and improves bone structure are unclear. Using bone histomorphometry, we studied the early effects of treating postmenopausal women with osteoporosis with hPTH(1-34). MATERIALS AND METHODS: Tetracycline-labeled iliac crest bone biopsies were obtained from 27 postmenopausal women with osteoporosis who were treated for 1 month with hPTH(1-34), 50 microg daily subcutaneously. The results were compared with tetracycline-labeled biopsies from a representative control group of 13 postmenopausal women with osteoporosis. RESULTS: The bone formation rate on the cancellous and endocortical surfaces was higher in hPTH(1-34)-treated women than in control women by factors of 4.5 and 5.0, respectively. We also showed a 4-fold increase in bone formation rate on the periosteal surface, suggesting that hPTH(1-34) has the potential to increase bone diameter in humans. On the cancellous and endocortical surfaces, the increased bone formation rate was primarily caused by stimulation of formation in ongoing remodeling units, with a modest amount of increased formation on previously quiescent surfaces. hPTH(1-34)-stimulated bone formation was associated with an increase in osteoblast apoptosis, which may reflect enhanced turnover of the osteoblast population and may contribute to the anabolic action of hPTH(1-34). CONCLUSIONS: These findings provide new insight into the cellular basis by which hPTH(1-34) improves cancellous and cortical bone architecture and geometry in patients with osteoporosis.  相似文献   

8.
Parathyroid hormone (PTH) is thought to increase trabecular bone mass in postmenopausal women by stimulating osteoblast function. A similar action may contribute to estrogen's protective effect on the skeleton, which we have explored in female mice, in which estrogen induces an exaggerated osteogenic response. In the present investigation, we used this model to determine whether an interaction exists between stimulatory effects of PTH and estrogen on osteoblast function in cancellous bone. An initial dose response study was performed where PTH (hPTH, 1-38) was administered to ten-week-old intact female mice by daily sc injection for 28 days, at doses of 1, 10, 100 microg/kg. In a subsequent study, intact female mice were given PTH and/or 17beta-estradiol (E2) 10 and 40 microg/kg/day respectively. Femoral BMD was assessed by peripheral DXA (PIXImus), and histomorphometry was performed to analyse changes in cancellous and cortical bone. PTH caused a small gain in femoral BMD, and increased the extent of periosteal bone formation surfaces, but had relatively little effect on other skeletal parameters when given alone. As previously found, E2 produced a large increase in femoral BMD, stimulated cancellous and endocortical bone formation, but inhibited periosteal bone formation. In mice treated with combination therapy, a greater increase in femoral BMD was observed compared to that following treatment with either agent alone. No differences in indices of cancellous bone were found between animals treated with E2 compared to the combination group. However, cortical area and periosteal bone formation rate were significantly greater in the latter group. We conclude that PTH and E2 exert an additive effect on bone mass in long bones of female mice, possibly reflecting an ability of PTH to oppose E2-induced suppression of periosteal bone formation.  相似文献   

9.
Iida-Klein A  Lu SS  Cosman F  Lindsay R  Dempster DW 《BONE》2007,40(2):391-398
Previously, we demonstrated that the human parathyroid hormone (1-34) fragment (hPTH(1-34)) increased bone strength in proportion to its effects on BMD and cortical bone structure in the murine femur by comparing cyclic vs. daily administration of hPTH(1-34). Both cyclic and daily regimens increased vertebral BMD similarly at 7 weeks. Here, we have examined the effects of daily and cyclic PTH regimens on bone structure and cellular activity by static and dynamic histomorphometry. Twenty-week-old, intact female C57BL/J6 mice were treated with the following regimens (n=7 for each group): daily injection with vehicle for 7 weeks [control]; daily injection with hPTH(1-34) (40 microg/kg/day) for 7 weeks [daily PTH]; and daily injection with hPTH(1-34) (40 microg/kg/day) and vehicle alternating weekly for 7 weeks [cyclic PTH]. At days 9 and 10, and 2 and 3 prior to euthanasia, calcein (10 mg/kg) was injected subcutaneously. At the end of study, the lumbar vertebrae 1-3 and the left femora were excised, cleaned, and processed for histomorphometry. In the lumbar vertebrae, daily and cyclic PTH regimens significantly increased cancellous bone volume (BV/TV), trabecular number, trabecular osteoclast and osteoblast perimeters, trabecular mineral apposition rate (MAR) and bone formation rate (BFR), and periosteal MAR and BFR compared to control, with no significant difference between the two PTH-treated groups. Increased trabecular tunneling was observed in both PTH-treated groups. Both regimens tended to increase vertebral cortical bone formation parameters with the effects at the periosteum site being more marked than those at the endosteum site, resulting in a significant increase in cortical width. In the femur, the effects of cyclic PTH on BV/TV, trabecular width and number, trabecular and endocortical osteoblast and osteoclast perimeters, cortical width, and trabecular and periosteal BFR were less marked than those of daily PTH. A cyclic PTH regimen was as effective as a daily regimen in improving cancellous and cortical bone microarchitecture and cellular activity in the murine vertebra.  相似文献   

10.
Tian XY  Zhang Q  Zhao R  Setterberg RB  Zeng QQ  Iturria SJ  Ma YF  Jee WS 《BONE》2008,42(5):914-920
The present study examined the effects of continuous and intermittent PGE2 administration on the cancellous and cortical bone of lumbar vertebral bodies (LVB) in female rats. Six-month-old Sprague–Dawley female rats were divided into 6 groups with 2 control groups and 1 or 3 mg PGE2/kg given either continuously or intermittently for 21 days. Histomorphometric analyses were performed on the cancellous and cortical bone of the fourth and fifth LVBs. Continuous PGE2 exposure led to bone catabolism while intermittent administration led to bone anabolism. Both routes of administration stimulated bone remodeling, but the continuous PGE2 stimulated more than the intermittent route to expose more basic multicellular units (BMUs) to the negative bone balance. The continuous PGE2 caused cancellous bone loss by stimulating bone resorption greater than formation (i.e., negative bone balance) and shortening the formation period. It caused more cortical bone loss than gain, the magnitude of the negative endocortical bone balance and increased intracortical porosity bone loss was greater than for periosteal bone gain. The anabolic effects of intermittent PGE2 resulted from cancellous bone gain by positive bone balance from stimulated bone formation and shortened resorption period; while cortical bone gain occurred from endocortical bone gain exceeding the decrease in periosteal bone and increased intracortical bone loss. Lastly, a scheme to take advantage of the marked PGE2 stimulation of lumbar periosteal apposition in strengthening bone by converting it to an anabolic agent was proposed.  相似文献   

11.
Glucocorticoids (GC) are used for the treatment of a wide spectrum of diseases because of their potent anti-inflammatory and immunosuppressive effects, and they are serious and common causes of secondary osteoporosis. Administration of intermittent parathyroid hormone (PTH) may induce formation of new bone and may counteract the bone loss induced by GC treatment. Effects of simultaneous PTH and GC treatment were investigated on bone biomechanics, static and dynamic histomorphometry, and bone metabolism. Twenty-seven-month-old female rats were divided randomly into the following groups: baseline, vehicle, PTH, GC, and PTH + GC. PTH (1-34) 25 mug/kg and GC (methylprednisolone) 2.5 mg/kg were injected subcutaneously each day for a treatment period of 8 weeks. The rats were labeled with fluorochromes 3 times during the experiment. Bone sections were studied by fluorescence microscopy. The PTH injections resulted in a 5-fold increase in cancellous bone volume. At the proximal tibia, PTH induced a pronounced formation of new cancellous bone which originated from the endocortical bone surfaces and from thin trabeculae. Formation and modeling of connections between trabeculae were observed. Similar but less pronounced structural changes were seen in the PTH + GC group. The compressive strength of the cancellous bone was increased by 6-fold in the PTH group compared with the vehicle group. GC partially inhibited the increase in compressive strength induced by PTH. Concerning cortical bone, PTH induced a pronounced increase in the endocortical bone formation rate (BFR) and a smaller increase in periosteal BFR. The combination of PTH + GC resulted in a partial inhibition of the PTH-induced increase in bone formation. Serum-osteocalcin was increased by 65% in the PTH group and reduced by 39% in the GC group. The pronounced anabolic effect of PTH injections on the endocortical and trabecular bone surfaces and less pronounced anabolic effect on periosteal surfaces were partially inhibited, but not prevented, by simultaneous GC treatment in old rats. Both cortical and cancellous bone possessed full mechanical competence after treatment with PTH + GC.  相似文献   

12.
Manabe T  Mori S  Mashiba T  Kaji Y  Iwata K  Komatsubara S  Seki A  Sun YX  Yamamoto T 《BONE》2007,40(6):1475-1482
Several studies in rats have demonstrated that parathyroid hormone accelerates fracture healing by increasing callus formation or stimulating callus remodeling. However the effect of PTH on fracture healing has not been tested using large animals with Haversian remodeling system. Using cynomolgus monkey that has intracortical remodeling similar to humans, we examined whether intermittent treatment with human parathyroid hormone [hPTH(1–34)] accelerates the fracture healing process, especially callus remodeling, and restores geometrical shapes and mechanical properties of osteotomized bone.

Seventeen female cynomolgus monkeys aged 18–19 years were allocated into three groups: control (CNT, n = 6), low-dose PTH (0.75 μg/kg; PTH-L, n = 6), and high-dose PTH (7.5 μg/kg; PTH-H, n = 5) groups. In all animals, twice a week subcutaneous injection was given for 3 weeks. Then fracture was produced surgically by transversely cutting the midshaft of the right femur and fixing with stainless plate. After fracture, intermittent PTH treatment was continued until sacrifice at 26 weeks after surgery. The femora were assessed by soft X-ray, three-point bending mechanical test, histomorphometry, and degree of mineralization in bone (DMB) measurement. Soft X-ray showed that complete bone union occurred in all groups, regardless of treatment. Ultimate stress and elastic modulus in fractured femur were significantly higher in PTH-H than in CNT. Total area and percent bone area of the femur were significantly lower in both PTH-L and PTH-H than in CNT. Callus porosity decreased dose-dependently following PTH treatment. Mean DMB of callus was significantly higher in PTH-H than in CNT or PTH-L. These results suggested that PTH decreased callus size and accelerated callus maturation in the fractured femora.

PTH accelerates the natural fracture healing process by shrinking callus size and increasing degree of mineralization of the fracture callus, thereby restoring intrinsic material properties of osteotomized femur shaft in cynomolgus monkeys although there were no significant differences among the groups for structural parameters.  相似文献   


13.
Intermittent administration of parathyroid hormone (PTH) induces bone remodeling and renewed bone modeling, resulting in net bone gain. beta-blockers improve trabecular bone architecture in young ovariectomized mice by preventing the inhibition of bone formation and stimulation of bone resorption induced by the adrenergic system. To test the hypothesis that PTH and beta-blockers may exert synergistic effects on the skeleton, 15-week-old ovariectomized mice were either given oral propranolol (PRO) or left untreated for 8 weeks, adding daily hPTH(1-34) (80 microg/kg/day) or vehicle (VEH) during the last 4 weeks. The skeletal response was evaluated using pDXA, microCT, histomorphometry and biochemical markers. PRO significantly attenuated loss of bone mineral density (BMD) at whole body (WB) (-0.1% in PRO vs. -2.4% in VEH, P < 0.05), but not at spine or femur 4 weeks after OVX. Thereafter, PTH increased BMD at all sites in both PRO- and VEH-treated mice (+6.7% to +14%, P < 0.05 to P < 0.0001 vs. VEH). Over 8 weeks, sequential-combined treatment of PRO and PTH significantly improved BMD over PTH alone at WB (+9.1% vs. +4.4% over baseline, respectively, P < 0.005) and spine (+9% vs. -1.7%, respectively, P < 0.05). These effects were paralleled by a decrease in TRACP5b with PRO (P < 0.05 vs. VEH) and an increase in osteocalcin with PTH, irrespective of PRO (P < 0.0001 vs. VEH). Trabecular bone microarchitecture, such as BV/TV, trabecular number and ConnD, was significantly improved by sequential-combined treatment of PRO and PTH compared to PTH alone. At midshaft femur, both PRO and PTH significantly increased cross-sectional area (CSA), but the effects of the two drugs on CSA and cortical thickness were not additive. Dynamic histomorphometry indicated that bone formation was increased by PTH at both cortical and trabecular surfaces, whereas PRO increased osteoblast number and surface on trabecular surfaces. The combined treatment further improved the extent of mineralization and BFR over PTH alone (P < 0.05) at endocortical surfaces and recapitulated the effects of PTH and PRO alone on trabecular surfaces. These results indicate that beta-adrenergic blockade may partially improve the bone remodeling balance induced by estrogen deficiency. In turn, PRO exerted synergistic effects with intermittent PTH on bone mass and cancellous bone architecture. As such, combined therapy of beta-blockers and PTH may be of interest in the treatment of postmenopausal osteoporosis.  相似文献   

14.
The periosteal and endocortical surfaces of cortical bone dictate the geometry and overall mechanical properties of bone. Yet the cellular and molecular mechanisms that regulate activity on these surfaces are far from being understood. Parathyroid hormone (PTH) has profound effects in cortical bone, stimulating periosteal expansion and at the same time accelerating intracortical bone remodeling. We report herein that transgenic mice expressing a constitutive active PTH receptor in osteocytes (DMP1‐caPTHR1 mice) exhibit increased cortical bone area and an elevated rate of periosteal and endocortical bone formation. In addition, DMP1‐caPTHR1 mice display a marked increase in intracortical remodeling and cortical porosity. Crossing DMP1‐caPTHR1 mice with mice lacking the Wnt coreceptor, LDL‐related receptor 5 (LRP5), or with mice overexpressing the Wnt antagonist Sost in osteocytes (DMP1‐Sost mice) reduced or abolished, respectively, the increased cortical bone area, periosteal bone formation rate, and expression of osteoblast markers and Wnt target genes exhibited by the DMP1‐caPTHR1 mice. In addition, DMP1‐caPTHR1 lacking LRP5 or double transgenic DMP1‐caPTHR1;DMP1‐Sost mice exhibit exacerbated intracortical remodeling and increased osteoclast numbers, and markedly decreased expression of the RANK decoy receptor osteoprotegerin. Thus, whereas Sost downregulation and the consequent Wnt activation is required for the stimulatory effect of PTH receptor signaling on periosteal bone formation, the Wnt‐independent increase in osteoclastogenesis induced by PTH receptor activation in osteocytes overrides the effect on Sost. These findings demonstrate that PTH receptor signaling influences cortical bone through actions on osteocytes and defines the role of Wnt signaling in PTH receptor action. © 2011 American Society for Bone and Mineral Research.  相似文献   

15.
Treatment of monkeys and humans with parathyroid hormone (PTH) 1-84 stimulates skeletal remodeling, which increases trabecular (Tb) bone mineral density (BMD) but decreases cortical (Ct) BMD at locations where these bone types predominate. We report the effects of daily PTH treatment (5, 10, or 25 μg/kg) of ovariectomized (OVX) rhesus monkeys for 16 months on bone structure and biomechanical properties at the proximal femur, a mixed trabecular and cortical bone site. PTH reversed the OVX-induced decrease in BMD measured by dual-energy X-ray absorptiometry at the proximal femur, femoral neck, and distal femur. Peripheral quantitative computed tomography confirmed a significant decrease in Ct.BMD and an increase in Tb.BMD at the total proximal femur and at the proximal and distal femoral metaphyses. The decrease in Ct.BMD resulted primarily from increased area because cortical bone mineral content was unaffected by PTH. Histomorphometry revealed that PTH significantly increased the trabecular bone formation rate (BFR) as well as trabecular bone volume and number. PTH did not affect periosteal or haversian BFR at the femoral neck, but cortical porosity was increased slightly. PTH had no effects on stiffness or peak load measured using a shear test, whereas work-to-failure, the energy required to fracture, was increased significantly. Thus, PTH treatment induced changes in trabecular and cortical bone at the proximal femur that were similar to those occurring at sites where these bone types predominate. Together, the changes had no effect on stiffness or peak load but increased the energy required to break the proximal femur, thereby making it more resistant to fracture.  相似文献   

16.
W S Jee  S Mori  X J Li  S Chan 《BONE》1990,11(4):253-266
To assess the efficacy of prostaglandin E2 (PGE2) in augmenting cortical bone mass, graded doses of PGE2 were subcutaneously administered for 30 days to seven-month old sham-ovariectomized (SHAM) and ovariectomized (OVX) rats. Both groups were operated at three months of age. Histomorphometric analyses of double fluorescent labeled tibial shafts were performed on basal control, OVX, and SHAM rats treated with 0, 0.3, 1, 3, and 6 mg PGE2/kg/d for 30 days. Baseline aging data showed increased cortical tissue and cortical bone area and reduced bone formation parameters at the periosteal and endocortical bone envelopes between three and eight months of age. The tibial shafts of OVX rats compared to SHAM controls showed elevated periosteal mineral apposition rate and endocortical bone formation parameters. PGE2 administration to OVX and SHAM rats increased cortical bone by the addition of new circumferential bone on the endocortical and periosteal surfaces, as well as woven cancellous bone in the marrow region. Stimulated osteoblastic recruitment and activity enhanced bone formation at all bone surfaces. The new bone was both lamellar and woven in nature. PGE2 treatment also activated intracortical bone remodeling (not seen in untreated eight-month old rats), creating a porous cortex. Thus, PGE2 administration activated cortical bone modeling in the formation mode (A----F), as well as intracortical bone remodeling (A----R----F). PGE2 administration to OVX rats resulted in more intracortical bone remodeling, periosteal bone formation, and new cancellous bone production than observed in PGE2 treated controls. The findings that PGE2 administration to OVX and intact female rats increases cortical bone mass, coupled with observations that mouse, rat, dog, and man respond similarly to PGE2, suggest that PGE2 administration may be useful in the prevention and treatment of postmenopausal osteoporosis.  相似文献   

17.
Recker RR  Bare SP  Smith SY  Varela A  Miller MA  Morris SA  Fox J 《BONE》2009,44(1):113-119
Treatment with parathyroid hormone [PTH(1-84)] increases lumbar spine bone mineral density and decreases vertebral fractures, but its effects on bone microarchitecture are unknown. We obtained iliac crest biopsies from postmenopausal osteoporotic women given placebo (n=8) or 100 microg PTH(1-84) for 18 (n=8) or 24 (n=7) months to assess cancellous and cortical bone formation and structure. At 18 months, cancellous bone volume (BV/TV) measured by microcomputed tomography and histomorphometry was 45-48% higher in subjects treated with PTH(1-84) versus placebo, a result of higher trabecular number (Tb.N) and thickness. The higher Tb.N appeared to result from intratrabecular tunneling. Connectivity density was higher and structure model index was lower, indicating a better connected and more plate-like trabecular architecture. Cancellous bone formation rate (BFR) was 2-fold higher in PTH(1-84)-treated subjects, primarily because of greater mineralizing surface. Osteoblast and osteoid surfaces were a nonsignificant 58% and 35%, respectively, higher with PTH(1-84) treatment. Osteoclast and eroded surface were unaffected by PTH(1-84). There were no effects of PTH(1-84) treatment on cortical thickness, or endocortical or periosteal BFR, but cortical porosity tended to be higher. Although cancellous BFR was lower at 24 than at 18 months, measures of cancellous and cortical bone structure were similar at both timepoints. The bone produced by PTH(1-84) had normal lamellar structure and mineralization with no abnormal histology. In conclusion, when compared with placebo, treatment of osteoporotic women with PTH(1-84) was associated with higher BV/TV and trabecular connectivity, with a more plate-like architecture, all consistent with the lower vertebral fracture incidence.  相似文献   

18.
A group of 3-month-old Sprague-Dawley rats were sham operated or ovariectomized and given daily injections of human PTH-(1-34) (8 or 16 micrograms per 100 g body weight) for 5 weeks. At the termination of the study histomorphometric techniques were used to examine changes in cortical and cancellous bone in the diaphysis and proximal metaphysis of the tibia. Ovariectomy resulted in a 50% decrease in cancellous bone that was accompanied by a 41 and 120% increase in osteoclasts and osteoblasts, respectively. In contrast, in the ovariectomized animals treated with PTH, the metaphyseal cancellous bone increased by over 300% to a level in excess of that present in the sham-operated control animals. The increase in cancellous bone induced by PTH was associated with an over 70% increase in osteoblasts and tetracycline-labeled area and an unexpected decrease in trabecular osteoclasts. In the tibial diaphysis PTH also decreased endosteal osteoclasts and at the same time increased osteoblast size and number as well as endosteal and periosteal bone formation; ovariectomy increased only periosteal bone formation. Our findings demonstrate that intermittent administration of PTH prevents ovariectomy-induced bone loss and augments cancellous and cortical bone formation in sexually mature ovariectomized rats. Although the basis of the bone anabolic action of PTH remains elusive, our data indicate that it may involve the uncoupling of bone formation and resorption such that the latter is inhibited as bone formation is enhanced. Our findings are also compatible with the view that intermittent administration of PTH increases bone mass, in part by stimulating the proliferation and differentiation of osteoblast progenitors while inhibiting osteoclast proliferation.  相似文献   

19.
Compston JE 《BONE》2007,40(6):1447-1452
Intermittent administration of parathyroid hormone peptides has anabolic skeletal effects and reduces fracture risk in postmenopausal women with osteoporosis but the cellular and structural mechanisms by which these effects are mediated have not been fully established. In cancellous and endocortical bone, there is evidence that both modelling and remodelling-based formation contribute to the increase in bone mass although the contribution of these at different time points in the response to PTH has not been established. Despite the large increase in spine bone mineral density, however, significant increases in iliac crest cancellous bone volume and trabecular thickness have not been consistently demonstrated, possibly reflecting site-specific differences in PTH-induced skeletal effects and/or the large sampling and measurement variance associated with assessment of iliac crest cancellous bone volume and structure. In iliac crest cortical bone, increased cortical thickness has been demonstrated, due at least in part to increased endosteal bone formation; there is also some evidence for increased formation on periosteal surfaces. At some sites an increase in cortical porosity may also occur and the overall effects on cortical bone strength, particularly at the hip, remain to be established. Studies in iliac crest bone indicate a trend towards a lower mineralisation density of bone matrix and increased heterogeneity of mineralisation, consistent with new bone formation. In addition, there is a reduction in mineral crystallinity and a shift towards more divalent collagen cross-links, indicating a change towards a younger bone profile.

The potential clinical implications of these effects on bone are currently unknown. The stimulatory effect of PTH peptides on bone formation may favour their use in low turnover bone disease and in states of advanced bone loss. Furthermore, if beneficial effects on cortical bone strength are confirmed, efficacy at non-vertebral sites might be superior to those observed with antiresorptive drugs. Better definition of the effects of intermittent PTH administration on cancellous and cortical bone remodelling and structure at different skeletal sites may inform these speculations and is an important area for future research.  相似文献   


20.
The treatment of osteoporotic women with recombinant human parathyroid hormone (rhPTH[1-34]) increases bone mineral density and reduces fracture risk. However, there has been concern that the initiation of therapy in women with low bone mass may cause an early and transient increased fracture risk because PTH stimulates bone remodeling, which in its first phase is associated with bone resorption. Animal and human studies suggest, however, that the stimulation of remodeling caused by rhPTH(1–34) does not lead to a deterioration of bone’s mechanical properties or to an increased fracture risk even early in the treatment. There are several reasons for this. Bone biomarkers associated with formation rise earlier than those associated with resorption, suggesting that there is an initial period prior to the stimulation of remodeling during which bone formation occurs on surfaces without prior resorption. This initial period of formation may protect the patient from the later small and transient losses that occur through remodeling. Moreover, the increased remodeling occurs on cancellous surfaces or close to the endosteal surface of bone, where its mechanical effect is minimal. Additionally, these transient losses may be compensated by periosteal apposition that maintains the overall strength of the bone. Thus, the early stimulation of bone formation without prior resorption, and the redistribution of bone from cancellous and endocortical surfaces to the periosteal surface combine to prevent the mechanical deterioration that could otherwise occur with a transient acceleration of bone remodeling in a patient with low bone mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号