首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Diphtheria toxin was injected into the electric organ of the gymnotid fish, Sternarchus albifrons. After 10 days, there was extensive demeylination of electrocyte fibers in the area of injection. Electron microscopy showed that paranodal loops of myelin do not separately cleanly from the axon, and remnants of the myelin loops may persist after demyelination of the internodes is nearly complete. The dense cytoplasmic undercoating of the nodal axolemma may disappear before the paranodal junctions are completely gone. Observations of demyelination of internodes between the elaborate, inexcitable nodes suggest that the presence of myelin may not be necessary for the maintenance of structural differentiation of this region of the axolemma. Use of diphtheria toxin to demyelinate Sternarchus electrocytes may provide a useful system for experimental neuropathological studies.  相似文献   

2.
Analysis of Shiverer central nervous tissue by the freeze-fracture method shows that axoglial junctions of the type found normally in the paranodal region occur commonly despite the gross reduction in myelin. On a substructural level these junctions appear identical to those that form between paranodal oligodendroglial processes and the axolemma. On a grosser level, however, they are bizarre in shape, arrangement and distribution. Isolated glial processes, or small sheaves of them, course among axons and form such junctions in an irregular patchy manner, usually without apparent relationship to paranodal regions. These aberrant junctions may be oriented transversely, obliquely or longitudinally with respect to the axonal axis. Axolemmal E face particle accumulations, which characterize normal nodes of Ranvier, are usually not found in the membrane adjacent to the aberrant junctional patches. Thus, axoglial junctional specializations of the paranodal type can form in this mutant in the absence of the myelin proteins that are deficient in Shiverer, and such junctions may appear in areas not related to other paranodal or nodal structures. The relevance of these findings to differentiation of the axolemma and to the neurological defects in this mutation is discussed.  相似文献   

3.
Recent progress on the molecular organization of myelinated axons   总被引:6,自引:0,他引:6  
The structure of myelinated axons was well described 100 years ago by Ramón y Cajal, and now their molecular organization is being revealed. The basal lamina of myelinating Schwann cells contains laminin-2, and their abaxonal/outer membrane contains two laminin-2 receptors, alpha6beta4 integrin and dystroglycan. Dystroglycan binds utrophin, a short dystrophin isoform (Dp116), and dystroglycan-related protein 2 (DRP2), all of which are part of a macromolecular complex. Utrophin is linked to the actin cytoskeleton, and DRP2 binds to periaxin, a PDZ domain protein associated with the cell membrane. Non-compact myelin--found at incisures and paranodes--contains adherens junctions, tight junctions, and gap junctions. Nodal microvilli contain F-actin, ERM proteins, and cell adhesion molecules that may govern the clustering of voltage-gated Na+ channels in the nodal axolemma. Na(v)1.6 is the predominant voltage-gated Na+ channel in mature nerves, and is linked to the spectrin cytoskeleton by ankyrinG. The paranodal glial loops contain neurofascin 155, which likely interacts with heterodimers composed of contactin and Caspr/paranodin to form septate-like junctions. The juxtaparanodal axonal membrane contains the potassium channels Kv1.1 and Kv1.2, their associated beta2 subunit, as well as Caspr2. Kv1.1, Kv1.2, and Caspr2 all have PDZ binding sites and likely interact with the same PDZ binding protein. Like Caspr, Caspr2 has a band 4.1 binding domain, and both Caspr and Caspr2 probably bind to the band 4.1 B isoform that is specifically found associated with the paranodal and juxtaparanodal axolemma. When the paranode is disrupted by mutations (in cgt-, contactin-, and Caspr-null mice), the localization of these paranodal and juxtaparanodal proteins is altered: Kv1.1, Kv1.2, and Caspr2 are juxtaposed to the nodal axolemma, and this reorganization is associated with altered conduction of myelinated fibers. Understanding how axon-Schwann interactions create the molecular architecture of myelinated axons is fundamental and almost certainly involved in the pathogenesis of peripheral neuropathies.  相似文献   

4.
Intraneurally injected lysolecithin causes both segmental and paranodal demyelination. In demyelinated internodes, axonal components of nodes fragment and disappear, glial and axonal paranodal and juxtaparanodal proteins no longer cluster, and axonal Kv1.1/Kv1.2 K+ channels move from the juxtaparanodal region to appose the remaining heminodes. In paranodal demyelination, a gap separates two distinct heminodes, each of which contains the molecular components of normal nodes; paranodal and juxtaparanodal proteins are properly localized. As in normal nodes, widened nodal regions contain little or no band 4.1B. Lysolecithin also causes "unwinding" of paranodes: The spiral of Schwann cell membrane moves away from the paranodes, but the glial and axonal components of septate-like junctions remain colocalized. Thus, acute demyelination has distinct effects on the molecular organization of the nodal, paranodal, and juxtaparanodal region, reflecting altered axon-Schwann cell interactions.  相似文献   

5.
Rosenbluth J  Dupree JL  Popko B 《Glia》2003,41(3):318-325
Our understanding of the role that axoglial interactions play in node of Ranvier formation and maintenance remains incomplete. Previous studies of CNS myelinated fibers of CGT-null mice showed abnormalities in the arrangement of paranodal myelin loops and absence of a conspicuous component of the paranodal junction, the ridge-like intercellular transverse bands. Axolemmal sodium channel domains were largely preserved at nodes of Ranvier but displayed some abnormalities in form. Using a combination of freeze-fracture and immunocytochemical methods, we have found additional evidence documenting abnormalities in the size, shape, and location of axolemmal sodium channel clusters in CGT-null mice as well as evidence that these nodal abnormalities are complementary to the organization of paranodal myelin loops, despite the absence of transverse bands. We conclude that the differentiated form of the nodal axolemma and the distribution of axolemmal sodium channels depend on the conformation of paranodal axoglial contacts but not on the presence of transverse bands at the sites of contact.  相似文献   

6.
Rapid alterations of the axon membrane in antibody-mediated demyelination   总被引:1,自引:0,他引:1  
Alterations of nodal and paranodal axolemma of the rat sciatic nerve were investigated in antigalactocerebroside serum-induced demyelination. A ferric ion-ferrocyanide (FeFCN) stain that appears to stain the regions with a high sodium channel density in nerve fibers was applied. When acute conduction block was initiated 20 to 180 minutes after the antiserum injection, myelin terminal loops began to be detached from the paranodal axolemma and reaction product of FeFCN stain originally localized at the nodes decreased in density and extended to the paranodal axolemma. By the time that complete conduction block was established, 5 hours after the injection, FeFCN stain was barely detectable around the nodal area. The loss of staining was associated with detachment and vesiculovacuolar degeneration of the paranodal myelin. This rapid deterioration and disappearance of normal cytochemical characteristics of the axolemma in the presence of only modest paranodal demyelination could be a morphological correlate of the loss of excitability of the axon membrane.  相似文献   

7.
Cations are known to bind to the node of Ranvier and the paranodal regions of myelinated fibers. The integrity of these specialized structures is essential for normal conduction. Sites of cation binding can be microscopically identified by the electrondense histochemical reaction product formed by the precipitate of copper sulfate/potassium ferrocyanide. This technique was used to study the distribution of cation binding during normal development of myelinating fibers. Sciatic nerves of C57Bl mice, at 1,3,5, 6,7,8,9,13,16,18, 24 and 30 days of age, were prepared for electron microscopy following fixation in phosphate-buffered 2.5% glutaraldehyde and 1% osmic acid, microdissection and incubation in phosphate-buffered 0.1 M cupric sulfate followed by 0.1 M potassium ferrocyanide. Localization of reaction product was studied by light and electron microscopy. By light microscopy, no reaction product was observed prior to 9 days of age. At 13 days, a few nodes and paranodes exhibited reaction product. This increased in frequency and intensity up to 30 days when almost all nodes or paranodes exhibited reaction product. Ultrastructurally, diffuse reaction product was first observed at 3 days of age in the axoplasm of the node, in the paranodal extracellular space of the terminal loops, in the Schwann cell proper and in the terminal loops of Schwann cell cytoplasm. When myelinated axons fulfilled the criteria for mature nodes, reaction product was no longer observed in the Schwann cell cytoplasm, while the intensity of reaction product in the nodal axoplasm and paranodal extracellular space of the terminal loops increased. Reaction product in the latter site appeared to be interrupted by the transverse bands. These results suggest that cation binding accompanies nodal maturity and that the Schwann cell may play a role in production or storage of the cation binding substance during myelinogenesis and development.  相似文献   

8.
Light and electron microscopic observations were made on myelinated cultures of sensory ganglia maintained for 2–12 days on media with low calcium (0.025–0.050mM) or normal calcium (1.5–2.0mM) levels. After 18 h at low calcium levels, lengthening of the node of Ranvier and apparent fluid accumulation between the axon and the myelin sheath were observed in the light microscope. Electron microscopic observations indicated that these changes began with an accumulation of fluid between the Schwann cell terminal loops in the paranodal region, shrinkage and stretching of the terminal loops, and eventual breaking of the junction between the loops and the axolemma. Accompanying these changes was substantial fluid accumulation in the periaxonal space along much of the internode. These changes were found to be slowly reversible upon return to media with normal calcium levels. These observations are discussed in relation to the known properties of various types of intercellular junctions and the physiological properties of the myelinated nerve fiber. It is suggested that the unique structural characteristics of the Schwann cell-axolemmal junction in the paranodal region may relate to the presumed functional requirements of saltatory conduction,i.e., adhesiveness for the maintenance of myelin form and/or sealing of the periaxonal space from the general extracellular space, but without the establishment of low resistance channels between Schwann cell and axon.  相似文献   

9.
We used electron microscopic immunocytochemistry to study the distribution of calmodulin in rat sciatic nerve. Calmodulin immunoreactivity was found throughout the axoplasmic matrix, but particularly along microtubules. Schwann cell cytoplasm and nuclei demonstrated immunoreactivity, while compact myelin did not. There was particularly intense immuno-gold deposition within Schmidt Lanterman clefts. At the nodes of Ranvier, calmodulin appeared preferentially in the paranodal region, along the apposition of the axolemma to the paranodal loops of myelin and extending into the paranodal loops. The presence of calmodulin immunoreactivity along microtubules supports biochemical and pharmacological evidence of calmodulin involvement in regulating the assembly and phosphorylation of microtubules, and in fast axonal transport along microtubules. The co-localization of paranodal calmodulin immunoreactivity with Ca-ATPase activity demonstrated cytochemically (Mata et al.,Brain Research, in press) supports the notion that the paranodal Ca-ATPase activity may be regulated by calmodulin, and agrees with the in vitro biochemical evidence for Ca-ATPase of other cells.  相似文献   

10.
The immuno-ultrastructural localization of voltage-sensitive sodium channels was demonstrated within a central demyelinating lesion induced in the rat spinal cord by ethidium bromide/irradiation using polyclonal antibody 7493. Antibody 7493 has previously been shown to immunostain intensely axon membrane at nodes of Ranvier, and also perinodal astrocyte processes. At 25–35 days post injection/irradiation, the central portion of the demyelinating lesion is populated with chronically demyelinated axons and there is an absence of glial processes. Sodum channel immunoreactivity was not observed on the chronically demyelinated axolemma within this central portion of the lesion. Within the peripheral portion of the lesion demyelinated axons were occasionally abutted by astrocyte and Schwann cell processes. At these focal sites of apposition, the axon membrane displayed intense sodium channel immunoreactivity, while the abutting astrocyte and Schwann cell processes did not exhibit immunostaining. Also in the periphery of the lesion, some axons become ensheathed and myelinated by oligodendrocytes and Schwann cells. The axon membrane of circumferentially ensheathed axons displayed antibody 7493 immunostaining, and this immunoreactivity persisted on the axolemma until the ensheathing cytoplasmic processes compacted into myelin. Internodal axon membrane beneath the myelin sheath did not display sodium channel immunoreactivity, though (putative) developing nodal axon membrane adjacent to terminal paranodal loops exhibited robust sodium channel staining. Electrophysiological recordings within the ethidium bromide/irradiation lesion demonstrated that at least some axons conducted action potentials within the lesion, while others exhibited conduction block. These results indicate that there is a reorganization of sodium channels within the axon membrane of chronically demyelinated central axons.  相似文献   

11.
The postnatal differentiation of rat optic nerve fibres was examined by transmission electron microscopy. The results show that many early developing axons contain clusters of vesiculotubular profiles prior to Myelination. At places vesicular elements appear to fuse with the axolemma, and, in addition, some axons exhibit deep axolemmal invaginations and axoplasmic lamellated bodies. It is suggested that these feature might reflect axolemmal remodeling, possibly involving axoglial signalling and/or functional differentiation of the axolemma. The size distribution of unmyelinated optic nerve axons changes little during development. Ensheathment of larger axons commences 6 days postnatally. The subsequent formation of compact sheaths are a few microns long and separated by long bare axon segments. In optic nerves from 10–12-day-old rat pups, a few sheaths consisting of about five layers border primitive asymmetric nodes with a patchy axolemmal undercoating. Extensions from one of the terminating sheaths are often associated with undercoated patches of axolemma. Relatively differentiated nodes of Ranvier first appear 14–16 days after birth. The continued nodal maturation involves establishment of a regular nodal geometry, increasing distinctness of the axolemmal undercoating, and formation of perinodal astrocytic processes embedded in an extracellular node gap substance. The results are compared with available data on the conduction properties of rat optic nerve fibres during development.  相似文献   

12.
Mammalian Schwann cells in rat, rabbit and human fetal nerves were studied using several cryoprotective agents for electron microscopic study of freeze-fracture replicas. The findings in fixed and unfixed tissue reveal surface plasmalemma caveolar specializations and the outer layer membrane junctional complexes found in non-mammalian species. The plasmalemma also reveals a complex arrangement of contours outlining cytoplasmic channel networks distinct from the long-recognized Schmidt-Lanterman incisures and paranodal cytoplasmic loops. A specialized interconnected channel system in the outer "loose" myelin layer displays relatively uniform dimensions comparable in diameter to nodal microvilli, paranodal loops and some incisures. An adaxonal tubular channel system constituting the "axon-Schwann network" is found in the internodal region in addition to other variants of the adaxonal Schwann plasmalemma. The several forms of sequestration of Schwann cell cytoplasm presumably underlie the specialized needs of cytoplasmic continuity in a dynamic functional entity in which large domains of cytoplasm have been displaced by the formation of compact myelin.  相似文献   

13.
Paranodal axo-glial junctions are important for ion channel clustering and rapid action potential propagation in myelinated nerve fibers. Paranode formation depends on the cell adhesion molecules neurofascin (NF) 155 in glia, and a Caspr and contactin heterodimer in axons. We found that antibody to ganglioside GM1 labels paranodal regions. Autoantibodies to the gangliosides GM1 and GD1a are thought to disrupt nodes of Ranvier in peripheral motor nerves and cause Guillain-Barré syndrome, an autoimmune neuropathy characterized by acute limb weakness. To elucidate ganglioside function at and near nodes of Ranvier, we examined nodes in mice lacking gangliosides including GM1 and GD1a. In both peripheral and central nervous systems, some paranodal loops failed to attach to the axolemma, and immunostaining of Caspr and NF155 was attenuated. K(+) channels at juxtaparanodes were mislocalized to paranodes, and nodal Na(+) channel clusters were broadened. Abnormal immunostaining at paranodes became more prominent with age. Moreover, the defects were more prevalent in ventral than dorsal roots, and less frequent in mutant mice lacking the b-series gangliosides but with excess GM1 and GD1a. Electrophysiological studies revealed nerve conduction slowing and reduced nodal Na(+) current in mutant peripheral motor nerves. The amounts of Caspr and NF155 in low density, detergent insoluble membrane fractions were reduced in mutant brains. These results indicate that gangliosides are lipid raft components that contribute to stability and maintenance of neuron-glia interactions at paranodes.  相似文献   

14.
Toews JC  Schram V  Weerth SH  Mignery GA  Russell JT 《Glia》2007,55(2):202-213
During action potential conduction, the axonal specializations at the node, together with the adjacent paranodal terminations of the myelin sheath, interact with glial processes that invest the nodal gap. The nature of the mutual signals between axons and myelinating glia, however, are not well understood. Here we have characterized the distribution of inositol 1,4,5-trisphosphate receptors (IP(3)Rs) in the axoglial apparatus by immunohistochemistry, using known myelin domain-specific markers. While IP(3)R1 is not expressed in the Schwann cells or the axon, IP(3)R2 and IP(3)R3 are expressed in distinct cellular domains, suggesting distinct signaling roles for the two receptors. IP(3)R3 is the most predominant isoform in Schwann cells, and is expressed in particularly dense patches in the paranodal region. In addition to IP(3)Rs, two other members of the metabotropic Ca(2+) signaling pathway, G(alpha)q, and P(2)Y1 type of purinoceptors were also found in Schwann cells. Their pattern of expression matches the expression of their signaling partners, the IP(3)Rs. One interesting finding to emerge from this study is the expression of connexin 32 (Cx32) in close proximity with IP(3)R3. Although IP(3)R3 and Cx32 are not colocalized, their expression in the same membrane areas raises the question whether Schwann cell Ca(2+) signals either control the function of the gap junctions, or whether the gap junctional channels serve as conduits for rapid radial spread of Ca(2+) signals initiated during action potential propagation.  相似文献   

15.
M Mata  J Staple  D J Fink 《Brain research》1988,445(1):47-54
We used an electron microscopic cytochemical method to determine the localization of Ca2+-ATPase in rat peripheral nerve. We found that reaction product occurred along most cytoplasmic membranes in the dorsal root ganglia (DRG). Unmyelinated axons demonstrated reaction product on the axolemma diffusely along their length. Myelinated fibers, in contrast, had reaction product limited to the axolemma in the paranodal region. Internodal axolemma never showed reaction product and nodal axolemma was only occasionally stained, usually in sections reacted for the maximum times. Schwann cell plasma membranes uniformly showed reaction product. The restricted localization of Ca2+-ATPase to the paranodal region of myelinated fibers suggests that calcium efflux may occur principally at those sites.  相似文献   

16.
Glycoprotein M6B and the closely related proteolipid protein regulate oligodendrocyte myelination in the central nervous system, but their role in the peripheral nervous system is less clear. Here we report that M6B is located at nodes of Ranvier in peripheral nerves where it stabilizes the nodal axolemma. We show that M6B is co‐localized and associates with gliomedin at Schwann cell microvilli that are attached to the nodes. Developmental analysis of sciatic nerves, as well as of myelinating Schwann cells/dorsal root ganglion neurons cultures, revealed that M6B is already present at heminodes, which are considered the precursors of mature nodes of Ranvier. However, in contrast to gliomedin, which accumulates at heminodes with or prior to Na+ channels, we often detected Na+ channel clusters at heminodes without any associated M6B, indicating that it is not required for initial channel clustering. Consistently, nodal cell adhesion molecules (NF186, NrCAM), ion channels (Nav1.2 and Kv7.2), cytoskeletal proteins (AnkG and βIV spectrin), and microvilli components (pERM, syndecan3, gliomedin), are all present at both heminodes and mature nodes of Ranvier in Gpm6b null mice. Using transmission electron microscopy, we show that the absence of M6B results in progressive appearance of nodal protrusions of the nodal axolemma, that are often accompanied by the presence of enlarged mitochondria. Our results reveal that M6B is a Schwann cell microvilli component that preserves the structural integrity of peripheral nodes of Ranvier.  相似文献   

17.
Guinea pig and rat sciatic nerves were fixed with cacodylate-buffered aldehydes and OsO4, and were stained with ferric ion and ferrocyanide. Cytoplasmic surfaces of the non-myelinated nodal axon membrane of A-fibres display distinct electron-dense aggregates of stain. These aggregates were not observed in association with the paranodal or internodal axolemma. The membranes of C-fibres exhibit no staining under these conditions. Thus, the nodal axolemma of normal myelinated fibres is structurally distinct from both the myelinated internodal membrane, and from the axolemma of C-fibres. The ferric ion-ferrocyanide technique may provide a method for marking axonal membrane with normal nodal properties.  相似文献   

18.
S Y Chiu 《Glia》1991,4(6):541-558
Recent patch-clamp studies on freshly isolated mammalian Schwann cells suggest that voltage-gated sodium and potassium channels, first demonstrated in cells under culture conditions, are present in vivo. The expression of these channels, at least at the cell body region, appears to be dependent on the myelinogenic and proliferative states of the Schwann cell. Specifically, myelin elaboration is accompanied by a down regulation of functional potassium channel density at the cell body. One possibility to account for this is a progressive regionalization of ion channels on a Schwann cell during myelin formation. In adult myelinating Schwann cells, voltage-gated potassium channels appear to be localized at the paranodal region. Theoretical calculations have been made of activity-dependent potassium accumulations in various compartments of a mature myelinated nerve fibre; the largest potassium accumulation occurs not at the nodal gap but rather at the adjacent 2-4 microns length of periaxonal space at the paranodal junction. Schwann cell potassium channels at the paranode may contribute to ionic regulation during nerve activities.  相似文献   

19.
Summary Regeneration of the node of Ranvier was investigated in the rat peroneal nerve 10–60 days after nerve crush, by light and electron microscopy. At 10 and 20 days after crush nodes of Ranvier were clearly identifiable by electron microscopy but had a relatively simple structure. At 40 days after crush however nodes were highly differentiated showing specialised features such as paranodal bulbs, nodal constriction of the axon, paranodal Schwann cell mitochondria, nodal Schwann cell microvilli, and nodal gap substance. By light microscopy some nodes were identifiable as early as 20 days after crush. At both 30 and 60 days after crush regenerated internodes were uniformly short (means of 275 m and 339 m respectively).  相似文献   

20.
Summary Using the freeze-freeze-fracture technique, the sciatic nerve of the rat and rabbit was examined distally at 24 h after crush, with particular reference to the node of Ranvier and paranode. The paranodes, in the majority of myelinated fibres, showed a loss of the cytoplasmic circumferential bands and longitudinal columns and their associated membrane pores which characterise the normal Schwann cell surface. Axonal changes consisting of accumulations of axoplasmic organelles occurred at both the node and paranode. At the nodes large intramembraneous partiles in the axolemma (E face) appeared unchanged. Nodal Schwann cell microvilli and paranodal myelin terminal loops were generally unaffected. The findings are discussed in terms of the decrease in amplitude of the action potential which occurs in early Wallerian degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号