首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of 3‐benzoylamino‐5‐(1H‐imidazol‐4‐yl)methylaminobenzo[b]furans were synthesized and screened as antitumor agents. As a general trend, tested compounds showed concentration‐dependent antiproliferative activity against HeLa and MCF‐7 cancer cell lines, exhibiting GI50 values in the low micromolar range. In most cases, insertion of a methyl substituent on the imidazole moiety improved the antiproliferative activity. Therefore, methyl‐imidazolyl‐benzo[b]furans compounds were tested in cell cycle perturbation experiments, producing cell cycle arrest with proapoptotic effects. Their core similarity to known colchicine binding site binders led us to further study the structure features as antitubulin agents by in silico protocols.  相似文献   

2.
A series of new 2‐anilinoquinolines 6a – o possessing the substantial N‐methylpicolinamide motif at C5 has been designed and synthesized as sorafenib analogs. The antiproliferative activities of the target compounds were preliminarily appraised against a panel of three human cancer cell lines (MCF‐7, SK‐BR3, and HCT116), and a selected array was further tested over a panel of approximately 60 cancer cell lines at NCI at 10 μM concentration. Interestingly, compounds 6c , 6d , 6j , 6k , and 6l showed promising selective anticancer activities (growth inhibition >80%) toward certain cancer cells at 10 μM testing dose. Compounds 6d and 6j were advanced to five‐dose testing mode to determine their GI50 values and compared with our previously reported ureidoquinoline B and sorafenib as reference compounds. The 4‐chloro‐3‐trifluoromethylaniline derivative 6j manifested superior potency than both compound B and sorafenib over eleven and eight cell lines, respectively. It showed GI50 values of 0.36, 0.66, 0.68, and 0.60 μM against the breast MDA‐MB‐468, renal A498, and melanoma SK‐MEL‐5 and UACC‐62 cell lines, respectively. Moreover, both 6d and 6j exerted low cytotoxic effects against HFF‐1 normal cell line. Furthermore, compounds 6d and 6j were tested against both B‐RafV600E and C‐Raf kinases and displayed modest inhibitory activities, which were justified by molecular docking study. Compound 6j could serve as a promising candidate for further development of potent anticancer chemotherapeutics.  相似文献   

3.
New quinolines substituted with various heterocycles and chalcone moieties were synthesized and evaluated as antitumor agents. All the synthesized compounds were in vitro screened against 60 human cancer cell lines. Compound 13 showed the highest cytotoxicity toward 58 cell lines, exhibiting distinct growth inhibition values (GI50) against the majority of them, including SR, HL‐60 (TB) strains (leukemia), and MDA‐MB‐435 strains (melanoma), with GI50 values of 0.232, 0.260, and 0.300 µM, respectively. It exhibited great selectivity toward cancer cell lines, with less toxic effect against normal cells represented by skin fibroblast (BJ) and breast epithelial cell lines (MCF‐10F). The enzyme inhibitory activity of compound 13 was evaluated against topoisomerase 1 (Topo 1), epidermal growth factor receptor and vascular endothelial growth factor receptor 2, where it displayed worthy Topo 1 inhibition activity with an IC50 value of 0.278 µM compared with camptothecin as a reference drug (IC50 0.224 µM). Docking studies were performed to investigate the recognition profile of compound 13 with the Topo 1 enzyme binding site.  相似文献   

4.
A series of new 1‐phenylsulphonyl‐2‐(1‐methylindol‐3‐yl)‐benzimidazole derivatives were designed, synthesized and evaluated as potential inhibitors of tubulin polymerization and anthropic cancer cell lines. Among them, compound 33 displayed the most potent tubulin polymerization inhibitory activity in vitro (IC50 = 1.41 μM) and strong antiproliferative activities against A549, Hela, HepG2 and MCF‐7 cell lines in vitro with GI50 value of 1.6, 2.7, 2.9 and 4.3 μM, respectively, comparable with the positive control colchicine (GI50 value of 4.1, 7.2, 9.5 and 14.5 μM, respectively) and CA‐4 (GI50 value of 2.2, 4.3, 6.4 and 11.4 μM, respectively). Simultaneously, we evaluated that compound 33 could effectively induce apoptosis of A549 associated with G2/M phase cell cycle arrest. Immunofluorescence microscopy also clearly indicated compound 33 a potent antimicrotubule agent. Docking simulation showed that compound 33 could bind tightly with the colchicine‐binding site and act as a tubulin inhibitor. Three‐dimensional‐QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent tubulin assembling inhibitory activity in the future.  相似文献   

5.
Abstract: The linear peptide dolastatin 15 ( 1 ), a potent antineoplastic constituent from the shell-less mollusk Dolabella auricularia, has been selected as the lead compound for developing novel antitumor drugs. Recently LU103793 ( 2 ), a synthetic and structure-simplified analog of dolastatin 15, has been demonstrated to be highly cytotoxic [IC50 = 0.1 nm ; M. De Arruda, C.A. Cocchiaro, C.M. Nelson, C. M. Grinnel, B. Janssen, A. Haupt & T. Barlozzari (1995) Cancer Res. 55 , 3085–3092]. Both compounds have been undergoing human cancer clinical trials in Europe and North America. Based on the novel structure of LU103793, a series of analogs modified at the N-terminal dolavalyl moiety and -Pro-Pro-benzylamide unit was developed. These synthesized analogs were tested using a sulforhodamine B (SRB) assay for the drug-screening program at NCI on a variety of human cancer cell lines. As expected, most analogs exhibited potent and selective growth inhibition against leukemia. Analog 18 was specifically active against HL-60 and K-562 cell lines (GI50s: 0.05 µm and 0.07 µm , respectively) while analogs 14 and 17 were selectively potent against prostate and breast cancer cell lines (GI50s at micromolar levels). However, all analogs were less potent than 2 as growth inhibitors of some breast and colon cancer cell lines (e.g. MDA-MB-435 and HT-29). We believe that modification of novel marine natural products as synthetic analogs might show particular promise for developing novel anticancer candidates with moderate specificity.  相似文献   

6.
The synthesis of several new pyrazole and indazole derivatives from acetophenone and tetralone substrates is reported. The bioactivities of the new compounds were evaluated through in vitro assays for endothelial cell proliferation and tube formation. Results herein indicate that the easily prepared compounds containing the indazole structural framework exhibit potent cytostatic properties against all cell lines tested, with compounds 13 and 14 being the most active displaying IC50 values of 1.5 ± 0.4 µM and 5.6 ± 2.5 µM, respectively, against MCF‐7 cells. In addition, the indazole derivative 16 was assessed as a competent inhibitor of endothelial tube formation at 30 µM.  相似文献   

7.
Dimerization of proteins/receptors plays a critical role in various cellular processes, including cell proliferation and differentiation. Therefore, targeting such dimeric proteins/receptors by dimeric small molecules could be a potential therapeutic approach to treating various diseases, including inflammation‐associated diseases like cancer. A novel series of bis‐imidazoles ( 13–18 ) and bis‐imidazo[1,2‐a]pyridines ( 19–28 ) were designed and synthesized from Schiff base dimers ( 1–12 ) for their anticancer activities. All the synthesized compounds were screened for anticancer activities against three cancer cell lines, including cervical (HeLa), breast (MDA‐MB‐231), and renal cancer (ACHN). From structure–activity relationship studies, imidazo[1,2‐a]pyridines ( 19–28 ) showed remarkable cytotoxic activities, with compounds 19 and 24 showing the best inhibitory activities against all three cell lines. Especially, both 19 and 24 were very effective against the breast cancer cell line ( 19 , GI50 = 0.43 µM; 24 , GI50 = 0.3 µM), exceeding the activity of the control adriamycin (GI50 = 0.51 µM). The in vivo anticancer activity results of compounds 19 and 24 were comparable with those of the animals treated with the standard drug tamoxifen. Therefore, the dimeric imidazo[1,2‐a]pyridine scaffold could serve as a potential lead for the development of novel anticancer agents.  相似文献   

8.
A novel series of 1-benzylquinazoline-2,4(1H,3H)-dione derivatives, 6a , b to 11a – e , was designed, synthesized, and evaluated for their anticancer activity against HepG2, HCT-116, and MCF-7 cells. Compounds 11b , 11e , and 11c were found to be the most potent derivatives of all tested compounds against the HepG2, HCT-116, and MCF-7 cancer cell lines, with GI50 = 9.16 ± 0.8, 5.69 ± 0.4, 5.27 ± 0.2 µM, 9.32 ± 0.9, 6.37 ± 0.7, 5.67 ± 0.5 µM, and 9.39 ± 0.5, 6.87 ± 0.7, 5.80 ± 0.4 µM, respectively. These compounds exhibited nearly the same activity as sorafenib against HepG2 and HCT-116 cells and a higher activity against MCF-7 cells (GI50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively). Also, these compounds displayed a lower activity than doxorubicin against HepG2 cells and a higher activity against HCT-116 and MCF-7 cells (GI50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively). The most active antiproliferative derivatives, 6a , b , 8 , 9 , and 11a – e , were selected to evaluate their enzymatic inhibitory activity against VEGFR-2. Compounds 11b , 11e , and 11c potently inhibited VEGFR-2 at IC50 values of 0.12 ± 0.02, 0.12 ± 0.02, and 0.13 ± 0.02 µM, respectively, which are nearly equipotent as sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR-2 active site.  相似文献   

9.
A novel series of benzoxazole/benzothiazole derivatives 4a–c – 11a–e were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT‐116, and MCF‐7 cells. HCT‐116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 4c was found to be the most potent derivative against HepG2, HCT‐116, and MCF‐7 cells, with IC50 values = 9.45 ± 0.8, 5.76 ± 0.4, and 7.36 ± 0.5 µM, respectively. Compounds 4b, 9f , and 9c showed the highest anticancer activities against HepG2 cells with IC50 values of 9.97 ± 0.8, 9.99 ± 0.8, and 11.02 ± 1.0 µM, respectively, HCT‐116 cells with IC50 values of 6.99 ± 0.5, 7.44 ± 0.4, and 8.15 ± 0.8 µM, respectively, and MCF‐7 cells with IC50 values of 7.89 ± 0.7, 8.24 ± 0.7, and 9.32 ± 0.7 µM, respectively, in comparison with sorafenib as reference drug with IC50 values of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 4a–c, 9b,c,e,f,h , and 11c,e were further evaluated for their VEGFR‐2 inhibition. Compounds 4c and 4b potently inhibited VEGFR‐2 at IC50 values of 0.12 ± 0.01 and 0.13 ± 0.02 µM, respectively, which are nearly equipotent to the sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR‐2 active site.  相似文献   

10.
Novel series of benzoxazole s 4 a‐f ‐16 were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT‐116, and MCF‐7 cells. HCT‐116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 5 e was found to be the most potent against HepG2, HCT‐116, and MCF‐7 with IC50 = 4.13 ± 0.2, 6.93 ± 0.3, and 8.67 ± 0.5 µM, respectively. Compounds 5 c , 5 f , 6 b , 5 d , and 6 c showed the highest anticancer activities against HepG2 cells with IC50 of 5.93 ± 0.2, 6.58 ± 0.4, 8.10 ± 0.7, 8.75 ± 0.7, and 9.95 ± 0.9 µM, respectively; HCT‐116 cells with IC50 of 7.14 ± 0.4, 9.10 ± 0.8, 7.91 ± 0.6, 9.52 ± 0.5, and 12.48 ± 1.1 µM, respectively; and MCF‐7 cells with IC50 of 8.93 ± 0.6, 10.11 ± 0.9, 12.31 ± 1.0, 9.95 ± 0.8, and 15.70 ± 1.4 µM, respectively, compared with sorafenib as a reference drug with IC50 of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 5 c‐f and 6 b,c were further evaluated for their vascular endothelial growth factor receptor‐2 (VEGFR‐2) inhibition. Compounds 5 e and 5 c potently inhibited VEGFR‐2 at lower IC50 values of 0.07 ± 0.01 and 0.08 ± 0.01 µM, respectively, compared with sorafenib (IC50 = 0.1 ± 0.02 µM). Compound 5 f potently inhibited VEGFR‐2 at low IC50 value (0.10 ± 0.02 µM) equipotent to sorafenib. Our design was based on the essential pharmacophoric features of the VEGFR‐2 inhibitor sorafenib. Molecular docking was performed for all compounds to assess their binding pattern and affinity toward the VEGFR‐2 active site.  相似文献   

11.
Twenty new N-substituted-4-phenylphthalazin-1-amine derivatives were designed, synthesized, and evaluated for their anticancer activities against HepG2, HCT-116, and MCF-7 cells as VEGFR-2 inhibitors. HCT-116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 7f was found to be the most potent derivative among all the tested compounds against the three cancer cell lines, with 50% inhibition concentration, IC50 = 3.97, 4.83, and 4.58 µM, respectively, which is more potent than both sorafenib (IC50 = 9.18, 5.47, and 7.26 µM, respectively) and doxorubicin (IC50 = 7.94, 8.07, and 6.75 µM, respectively). Fifteen of the synthesized derivatives were selected to evaluate their inhibitory activities against VEGFR-2. Compound 7f was found to be the most potent derivative that inhibited VEGFR-2 at an IC50 value of 0.08 µM, which is more potent than sorafenib (IC50 = 0.10 µM). Compound 8c inhibited VEGFR-2 at an IC50 value of 0.10 µM, which is equipotent to sorafenib. Moreover, compound 7a showed very good activity with IC50 values of 0.11 µM, which is nearly equipotent to sorafenib. In addition, compounds 7d , 7c , and 7g possessed very good VEGFR-2-inhibitory activity, with IC50 values of 0.14, 0.17, and 0.23 µM, respectively.  相似文献   

12.
New 4‐arylazo‐3,5‐diamino‐1H‐pyrazole derivatives substituted in the 4‐aryl ring with the acetyl moiety were designed and synthesized. The antiproliferative activity of the novel arylazopyrazoles was examined against the MCF‐7 cell line. Among all target compounds, 8b (IC50 3.0 µM) and 8f (IC50 4.0 µM) displayed higher cytotoxicity as compared with the reference standard imatinib (IC50 7.0 µM). Further studies to explore the mechanism of action were performed on the most active hit of our library, 8b , via anti‐CDK2 kinase activity. It demonstrated good inhibitory effects for CDK2 (IC50 0.24 µM) with 62.5% inhibition, compared with imatinib. The cell cycle analysis in the MCF‐7 cell line revealed apoptosis induction by 8b and cell cycle arrest at the S phase. Docking in the CDK2 active site and pharmacophore modeling confirmed the affinity of 8b to the CDK2 active site. Absorption, distribution, metabolism, and excretion studies revealed that our target compounds are orally bioavailable, with no permeation through the blood–brain barrier.  相似文献   

13.
A new series of 1,2‐diaryl‐4‐substituted‐benzylidene‐5(4H)‐imidazolone derivatives 4a–l was synthesized. Their structures were confirmed by different spectroscopic techniques (IR, 1H NMR, DEPT‐Q NMR, and mass spectroscopy) and elemental analyses. Their cytotoxic activities in vitro were evaluated against breast, ovarian, and liver cancer cell lines and also normal human skin fibroblasts. Cyclooxygenase (COX)‐1, COX‐2 and lipoxygenase (LOX) inhibitory activities were measured. The synthesized compounds showed selectivity toward COX‐2 rather than COX‐1, and the IC50 values (0.25–1.7 µM) were lower than that of indomethacin (IC50 = 9.47 µM) and somewhat higher than that of celecoxib (IC50 = 0.071 µM). The selectivity index for COX‐2 of the oxazole derivative 4e (SI = 3.67) was nearly equal to that of celecoxib (SI = 3.66). For the LOX inhibitory activity, the new compounds showed IC50 values of 0.02–74.03 µM, while the IC50 of the reference zileuton was 0.83 µM. The most active compound 4c (4‐chlorobenzoxazole derivative) was found to have dual COX‐2/LOX activity. All the synthesized compounds were docked inside the active site of the COX‐2 and LOX enzymes. They linked to COX‐2 through the N atom of the azole scaffold, while C?O of the oxazolone moiety was responsible for the binding to amino acids inside the LOX active site.
  相似文献   

14.
A series of 6‐hydrazinyl‐2,4‐bismorpholino pyrimidine and 1,3,5‐triazine derivatives ( 5a – 5l and 8a – 8o ) were synthesized and their chemical structures as well as the relative stereochemistry were confirmed. All the synthesized compounds were evaluated for antiproliferative activity against three cancer cell lines (H460, HT‐29, and MDA‐MB‐231). Several potent compounds were further evaluated against two other cell lines (U87MG, H1975). Most of the prepared compounds, particularly compounds 5c and 5j with IC50 values (0.07 and 0.05 µM, respectively) in the nM range, exhibited moderate to excellent antiproliferative activity and high selectivity against the H460 cancer cell line as compared with compound 1 . The most promising compound 5j , possessing a cyano group at the 3‐position of the benzene ring, showed strong antiproliferative activity against H460, HT‐29, and MDA‐MB‐231 cell lines with IC50 values of 0.05, 6.31, and 6.50 µM, which were 4.6‐ to 190.4‐fold more active than compound 1 (9.52, 29.24, and 36.21 µM), respectively.  相似文献   

15.
Series of quinoline–ferrocene hybrids containing various linkers were synthesized and evaluated for antimalarial and anticancer activities as well as cytotoxicity. The hybrids with rigid linkers were found to be inactive, while those with flexible spacers showed activity against both the D10 and Dd2 strains of Plasmodium falciparum, and demonstrated a good selectivity towards these parasitic cells in comparison with emetine. The hybrid 16, featuring 3-aminopropyl methylamine linker, was the most antimalarial active compound, exhibiting a significantly better potency than chloroquine against the Dd2 strain (IC50 = 0.008 vs. 0.148 μM; 19-fold), and was also found to be significantly more active than the equimolar chloroquine–ferrocene combination (IC50 = 3.7 vs. 41 ng/ml, tenfold) against the Dd2 strain. Anticancer activity screening showed that all the antimalarial active hybrids also exhibited potent cytostatic (GI50 = 0.6–3.3 μM) and had good cytotoxic effects (LC50 = 6–8 μM) against all three cancer cell lines. The hybrid 11 possessing 1,4-butanediamine linker was distinctively the most antiproliferative of all. It was found to be more cytostatic (GI50: 0.7 vs. 5.9 μM, eightfold) and (LC50: 6.4 vs. 92.6 μM, 14-fold) more cytotoxic than etoposide against the TK10 (renal) cell line.  相似文献   

16.
A series of compounds bearing quinoline‐imidazole ( 8a–e , 9a–e , 10a–e , 11a–e , and 12a–e ) not reported previously were designed and synthesized. The target compounds were evaluated for antitumor activity against A549, PC‐3, HepG2, and MCF‐7 cells by the MTT method, with NVP‐BEZ235 being the positive control. Most compounds showed moderate activity and compound 12a showed the best activity against HepG2, A549, and PC‐3 cells, with half‐maximal inhibitory concentration (IC50) values of 2.42 ± 1.02 µM, 6.29 ± 0.99 µM, and 5.11 ± 1.00 µM, respectively, which was equal to NVP‐BEZ235 (0.54 ± 0.13 µM, 0.36 ± 0.06 µM, 0.20 ± 0.01 µM). Besides, the IC50 value of 12a against the cell line WI‐38 (human fetal lung fibroblasts) was 32.8 ± 1.23 µM, indicating that the target compounds were selective for cancer cells. So, 11a and 12a were evaluated against PI3Kα and mTOR to find out if the compounds acted through the PI3K‐Akt‐mTOR signal transduction pathway. The inhibition ratios to PI3Kα and mTOR were slightly lower than that of NVP‐BEZ235, suggesting there may be some other mechanisms of action. The structure–activity relationships and docking study of 11a and 12a revealed that the latter was superior. Moreover, the target compounds showed better in vitro anticancer activity when the C‐6 of the quinoline ring was replaced by a bromine atom.
  相似文献   

17.
Safe and effective chemotherapeutic agents for the treatment of pancreatic cancer remain elusive. We found that chalcone epoxides (1,3‐diaryl‐2,3‐epoxypropanones) inhibited growth in two pancreatic cancer cell lines, BxPC‐3 and MIA PaCa‐2. Three compounds were active, with GI50 values of 5.6 to 15.8 µM. Compound 4a , 1,3‐bis‐(3,4,5‐trimethoxyphenyl)‐2,3‐epoxypropanone, had an average GI50 of 14.1 µM in the NCI 60‐cell‐line panel. To investigate the mode of action, cell cycle analyses of BxPC‐3 cells were carried out. Treatment of cells with 50 µM 4a resulted in dramatic accumulation at G2/M (61% after 12 h for 4a vs. 15% for untreated cells). The cells rapidly entered apoptosis. After 12 h, 26% of cells treated with 50 µM 4a had entered apoptosis vs. 4% for cells treated with 100 µM etoposide and 2% for untreated cells. Compound 4a interfered with paclitaxel enhancement of tubulin polymerization, suggesting microtubules as the site of action. Reaction of thiol nucleophiles with 4a under basic conditions resulted in epoxide ring‐opening and retroaldol fragmentation, yielding alkylated thiol. MALDI mass spectrometry showed that retroaldol reaction occurred upon treatment of β‐tubulin with 4a . The site of alkylation was identified as Cys354. Chalcone epoxides warrant further study as potential agents for treatment of cancer.  相似文献   

18.
For confirming the role of five membered ring of imidazolidinone moiety of N-arylsulfonylimidazolidinones (7) previously reported with highly potent anticancer agent, a series of N-arylsulfonylpyrimidones (10a–g) and N-arylsulfonyltetrahydropyrimidones (11a–e) were prepared and their anti-proliferating activity was measured against human cancer cell lines (renal ACHN, colon HCT-15, breast MDA-MB-231, lung NCI-H23, stomach NUGC-3, and prostate PC-3) using XTT assay. Among them, 1-(1-acetylindolin-5-ylsulfonyl)-4-phenyltetrahydropyrimidin-2(1H)-one (11d, mean GI50 = 3.50 µM) and ethyl 5-(2-oxo-4-phenyltetrahydropyrimidin-1(2H)-ylsulfonyl)-indoline-1-carboxylate (11e, mean GI50 = 0.26 µM) showed best growth inhibitory activity against human cancer cell lines. Considering the activity results, N-arylsulfonyltetrahydropyrimidones (11) exhibited more potent activity compared to N-arylsulfonylpyrimidones (10) and comparable activity to N-arylsulfonylimidazolidinones (7). Especially, tetrahydropyrimidin-2(1H)-one analogs containing acylindolin-5-ylsulfonyl moiety at position 1 demonstrated their strong growth inhibitory activity against human cancer cell lines.  相似文献   

19.
A series of nitrogen mustard‐linked chalcones were synthesized and evaluated for their antitumor activity in vitro against the K562 and HepG2 cell lines. The aldol condensation of [N,N‐bis(chloroethyl)‐3‐amino]‐acetophenone ( 2 ) with aromatic aldehydes afforded the nitrogen mustard‐linked chalcones. Among the analogs tested, compounds 5e and 5k exhibited significant anti‐proliferation activities against K562 cells with IC50 values of 2.55 and 0.61 µM, respectively, which revealed higher cell toxicity than the standard drugs cisplatin (IC50 > 200 µM) and adriamycin (IC50 = 14.88 µM). The methoxyl and N,N‐dimethyl groups on the B‐ring of the chalcone frame enhanced the inhibitory activities against both the K562 and HepG2 cell lines. The structure–activity relationship study indicated that the inhibitory activities significantly varied with the position(s) and species of the substituted group(s).  相似文献   

20.
In an attempt to develop potent antitumor agents, a series of novel 2‐hydrazonylpyrido[2,3‐b]pyrazin‐3(4H)‐one derivatives were designed and synthesized. All the prepared compounds were screened for their cytotoxic activities against A549, MDA‐MB‐231 and HT‐29 cell lines in vitro. Pharmacological data indicated that five of the target compounds showed cytotoxicity against A549 cell line below a concentration of 1 µM. Compound 15g was the most potent one with IC50 values of 0.19, 2.11 and 2.15 µM against A549, MDA‐MB‐231 and HT29 cell lines, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号