首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sleep electroencephalographic (EEG) slow-wave activity is increased after wakefulness and decreases during sleep. Regional sleep EEG differences are thought to be a consequence of activation of specific cortical neuronal circuits during waking. We investigated the relationship between handedness and interhemispheric brain asymmetry. Bilateral EEG recordings were obtained from the frontal and occipital cortex in rats with a clear paw preference in a food-reaching task (right, n = 5; left, n = 5). While still na?ve to the task, no waking or sleep EEG asymmetry was present. During the food-reaching task, the waking EEG showed significant, substantial power increases in the frontal hemisphere contralateral to the dominant paw in the low theta range (4.5-6.0 Hz). Moreover, the non-REM sleep EEG following feeding bouts was markedly asymmetric, with significantly higher power in the hemisphere contralateral to the preferred paw in frequencies >1.5 Hz. No asymmetry was evident in the occipital EEG. Correlation analyses revealed a positive association between the hemispheric asymmetry during sleep and the degree of preferred use of the contralateral paw during waking in frequencies <9.0 Hz. Our findings show that handedness is reflected in specific, regional EEG asymmetry during sleep. Neuronal activity induced by preferential use of a particular forelimb led to a local enhancement of EEG power in frequencies within the delta and sigma ranges, supporting the hypothesis of use-dependent local sleep regulation. We conclude that inherent laterality is manifested when animals are exposed to complex behavioral tasks, and sleep plays a role in consolidating the hemispheric dominance of the brain.  相似文献   

2.
Low frequency (< 1 Hz) delta EEG in sleep is of increasing interest as it indicates cortical reorganization, especially in the prefrontal cortex (PFC). Other research shows that delta power in sleep is positively linked to waking cerebral metabolic rate. Such findings suggest that < 1 Hz activity may reflect waking performance at neuropsychological tests specific to the PFC. We investigated this unexplored area. Sleep EEGs (Fp1-F3, Fp2-F4, O1-P3, O2-P4) were recorded in 24 healthy 61-75-year-olds. We found significant associations between 0.5-1.0 Hz power from the left frontal EEG channel, in the first non-REM period, and performance at tasks more specific to the left PFC (e.g., nonverbal planning and verbal fluency). This association was absent from the posterior channels. Neither age nor response times were confounding factors. This potential sleep EEG marker for PFC neuropsychological function in healthy, older people also points to further uses of the sleep EEG in understanding the role of sleep.  相似文献   

3.
I Tobler  A A Borbély 《Sleep》1982,5(2):145-153
Sleep was recorded in the rat after combined treatment with p-chlorophenylalanine (PCPA; 300 mg/kg) and 24-h sleep deprivation (SD) and then compared with sleep recorded after either treatment alone. PCPA alone reduced total sleep (TS), rapid eye movement sleep (REMS) per TS, as well as the power density of the EEG delta band (1.25-4.00 Hz) of non-REM sleep (NREMS). SD enhanced these sleep parameters and reduced the frequency of wake episodes. The combined treatment with PCPA and SD reduced TS and REMS/TS to a level similar to that induced by PCPA alone, and it increased delta activity to a level similar to that induced by SD alone. The frequency of wake episodes was reduced. It is concluded that essential aspects of sleep regulation are still functional during PCPA-induced insomnia. The sleep-inhibiting action of PCPA may be related to the hyperresponsiveness to stimuli rather than to the impairment of sleep regulation itself.  相似文献   

4.
The 24-hr sleep-wake distribution and power spectra of the electroencephalogram were determined in rabbits that had been implanted with cortical and hippocampal electrodes. A diurnal preference for sleep was observed. The spectral power density in nonrapid eye movement sleep (NREM sleep) of the cortex showed a decreasing trend in most frequencies within the 12-hr light period. In the 12-hr dim period no clear trend was present. Most hippocampal EEG frequencies decreased in NREM sleep in the first two hours of the light period, and thereafter stayed on a constant level. Sleep deprivation elicited the following changes: a prolonged increase of NREM sleep and a short increase of REM sleep; in the cortex, an increase of slow-wave activity (SWA; power density in the 0.25-2.0 Hz frequency band) in NREM sleep, which declined in the course of recovery; an enhancement of slow-wave (1.25-3 Hz) and theta (6.25-7 Hz) activity in REM sleep. The hippocampus showed an increase in NREM sleep power density in almost all frequencies. In REM sleep the hippocampus exhibited an increase in power density in the 6.25-7 Hz and 12.25-13 Hz bands, whereas in the 7.25-8 Hz band the values were below baseline. The results show that SWA in NREM sleep and theta activity in REM sleep are enhanced by sleep deprivation, as has been observed in other mammalian species. The EEG changes in the hippocampus resembled those in the cortex.  相似文献   

5.

Study Objectives:

To determine the impact of alcoholism on sleep architecture and sleep EEG power spectra in men and women with uncomplicated alcoholism.

Design and Participants:

42 alcoholics (27 men) and 42 controls (19 men) screened for medical, psychiatric, and sleep problems participated in a full night of polysomnography following an adaptation night. Data were collected from multiple scalp sites and subjected to power spectral analysis. Sleep architecture and EEG spectral power measures were evaluated for the effects of diagnosis and sex using age as a covariate.

Results:

Compared with controls, alcoholics had less slow wave sleep and increased proportions of stage 1 and REM sleep. Spectral analysis of NREM sleep showed reduced levels of slow wave activity (SWA, 0.3–4 Hz) and slow θ (theta) power (4–6 Hz) in alcoholics. The differences in SWA extended across the slow band (0.3–1 Hz) and all δ (delta) frequencies and were most prominent over frontal scalp regions. No group differences were seen in the power spectra of REM sleep. Women had more SWA and θ power than men, but there were no sex by diagnosis interactions for any measures, suggesting that alcoholism does not differentially influence men and women.

Conclusion:

Long-term alcoholism affects sleep even after long periods of abstinence in both men and women. Measures of frontal slow wave activity were particularly sensitive markers of this long-lasting effect. Sleep EEG measures would thus seem to provide a functional correlate of the changes in brain structure seen in frontal cortex of long-term alcoholics.

Citation:

Colrain IM; Turlington S; Baker FC. Impact Of Alcoholism On Sleep Architecture And EEG Power Spectra In Men And Women. SLEEP 2009;32(10):1341-1352.  相似文献   

6.
Several recent results show that sleep and sleep regulation are not only global phenomena encompassing the entire brain, but have local features. It is well established that slow-wave activity [SWA; mean electroencephalographic (EEG) power density in the 0.75-4.0 Hz band] in non-rapid eye movement (NREM) sleep is a function of the prior history of sleep and wakefulness. SWA is thought to reflect the homeostatic component of the two-process model of sleep regulation. According to this model, originally formulated for the rat and later extended to human sleep, the timing and structure of sleep are determined by the interaction of a homeostatic Process S and a circadian process. Our aim was to investigate the dynamics of SWA in the EEG of two brain regions (frontal and occipital cortex) after sleep deprivation (SD) in two of the mice strains most often used in gene targeting. C57BL/6J (n = 9) and 129/Ola (n = 8) were recorded during a 24-h baseline day, 6-h SD, and 18-h recovery. Both derivations showed a significant increase in SWA in NREM sleep after SD in both strains. In the first hour of recovery, SWA was enhanced more in the frontal derivation than in the occipital derivation and showed a faster decline. This difference resulted in a lower value for the time constant for the decrease of SWA in the frontal derivation (frontal: 10.9 +/- 2.1 and 6.8 +/- 0.9 h in Ola and C57, respectively; occipital: 16.6 +/- 2.1 and 14.1 +/- 1.5 h; P < 0.02; for each of the strains; paired t-test). Neither time constant differed significantly between the strains. The subdivision of SWA into a slower and faster band (0.75-2.5 Hz and 2.75-4.0 Hz) further highlighted regional differences in the effect of SD. The lower frequency band had a higher initial value in the frontal derivation than in the occipital derivation in both strains. Moreover, in the higher frequency band a prominent reversal took place so that power in the frontal derivation fell below the occipital values in both strains. Thus our results indicate that there may be differences in the brain in the effects of SD on SWA in mice, suggesting regional differences in the dynamics of the homeostatic component of sleep regulation. The data support the hypothesis that sleep has local, use- or waking-dependent features that are reflected in the EEG, as has been shown for humans and the laboratory rat.  相似文献   

7.
Recent evidence suggests that the human sleep electroencephalogram (EEG) shows regional differences over both the sagittal and coronal planes. In the present study, in a group of 10 right-handers, the authors investigated the presence of hemispheric asymmetries in the homeostatic regulation of human sleep EEG power during and after selective slow-wave sleep (SWS) deprivation. The SWS deprivation was slightly more effective over the right hemisphere, but the left hemisphere showed a markedly larger increase of EEG power in the 1.00-24.75 Hz range during recovery-night non-REM sleep, and a larger increase of EEG power during both deprivation-night and recovery-night REM sleep. These results support the greater need for sleep recuperative processes of the left hemisphere, suggesting that local sleep regulation processes may also act during REM sleep.  相似文献   

8.
Studies on homeostatic aspects of sleep regulation have been focussed upon non‐rapid eye movement (NREM) sleep, and direct comparisons with regional changes in rapid eye movement (REM) sleep are sparse. To this end, evaluation of electroencephalogram (EEG) changes in recovery sleep after extended waking is the classical approach for increasing homeostatic need. Here, we studied a large sample of 40 healthy subjects, considering a full‐scalp EEG topography during baseline (BSL) and recovery sleep following 40 h of wakefulness (REC). In NREM sleep, the statistical maps of REC versus BSL differences revealed significant fronto‐central increases of power from 0.5 to 11 Hz and decreases from 13 to 15 Hz. In REM sleep, REC versus BSL differences pointed to significant fronto‐central increases in the 0.5–7 Hz and decreases in the 8–11 Hz bands. Moreover, the 12–15 Hz band showed a fronto‐parietal increase and that at 22–24 Hz exhibited a fronto‐central decrease. Hence, the 1–7 Hz range showed significant increases in both NREM sleep and REM sleep, with similar topography. The parallel change of NREM sleep and REM sleep EEG power is related, as confirmed by a correlational analysis, indicating that the increase in frequency of 2–7 Hz possibly subtends a state‐aspecific homeostatic response. On the contrary, sleep deprivation has opposite effects on alpha and sigma activity in both states. In particular, this analysis points to the presence of state‐specific homeostatic mechanisms for NREM sleep, limited to <2 Hz frequencies. In conclusion, REM sleep and NREM sleep seem to share some homeostatic mechanisms in response to sleep deprivation, as indicated mainly by the similar direction and topography of changes in low‐frequency activity.  相似文献   

9.
Jenni OG  Achermann P  Carskadon MA 《Sleep》2005,28(11):1446-1454
STUDY OBJECTIVES: To examine the effects of total sleep deprivation on adolescent sleep and the sleep electroencephalogram (EEG) and to study aspects of sleep homeostasis. DESIGN: Subjects were studied during baseline and recovery sleep after 36 hours of wakefulness. SETTING: Four-bed sleep research laboratory. PARTICIPANTS: Seven prepubertal or early pubertal children (pubertal stage Tanner 1 or 2 = Tanner 1/2; mean age 11.9 years, SD +/- 0.8, 2 boys) and 6 mature adolescents (Tanner 5; 14.2 years, +/- 1.4, 2 boys). INTERVENTIONS: Thirty-six hours of sleep deprivation. MEASUREMENTS: All-night polysomnography was performed. EEG power spectra (C3/A2) were calculated using a Fast Fourier transform routine. RESULTS: In both groups, sleep latency was shorter, sleep efficiency was higher, non-rapid eye movement (NREM) sleep stage 4 was increased, and waking after sleep onset was reduced in recovery relative to baseline sleep. Spectral power of the NREM sleep EEG was enhanced after sleep deprivation in the low-frequency range (1.6-3.6 Hz in Tanner 1/2; 0.8-6.0 Hz in Tanner 5) and reduced in the sigma range (11-15 Hz). Sleep deprivation resulted in a stronger increase of slow-wave activity (EEG power 0.6-4.6 Hz, marker for sleep homeostatic pressure) in Tanner 5 (39% above baseline) than in Tanner 1/2 adolescents (18% above baseline). Sleep homeostasis was modeled according to the two-process model of sleep regulation. The build-up of homeostatic sleep pressure during wakefulness was slower in Tanner 5 adolescents (time constant of exponential saturating function 15.4 +/- 2.5 hours) compared with Tanner 1/2 children (8.9 +/- 1.2 hours). In contrast, the decline of the homeostatic process was similar in both groups. CONCLUSION: Maturational changes of homeostatic sleep regulation are permissive of the sleep phase delay in the course of adolescence.  相似文献   

10.
The analysis of the time-course of different EEG bands during the first sleep cycle has up to now taken into account mostly central derivations. In the present study, we assessed the topographical differences of the time-course of different EEG bands during the first 30 min of sleep, by analysing the EEG power from four different scalp locations along the antero-posterior axis. Correlation of EEG bands time courses within and between each derivation has also been evaluated. Delta-theta (1-6.75 Hz) and alpha (7-10.75 Hz) activities exhibited an antero-posterior gradient with maximal power on the frontal lead and increased at all derivations in the first 15 min and 5 min periods, respectively. Then alpha power decreased at all derivations, but the frontal. Sigma EEG power (11-15.75 Hz) showed a coherent behavior over the four derivations, characterized by a steep increase in the first 3-5 min of sleep, followed by a stable decreasing trend. Beta power (16-25.75 Hz) linearly decreased only on the more posterior derivations, abruptly increasing on the frontal lead after a 15 min interval. Correlations between delta-theta and alpha band were higher on the frontal derivation. Moreover, frontal alpha was strongly related to delta-theta activity on all the four derivations, while occipital alpha was not. The negative correlations between delta-theta and beta time courses were very high on all derivations but the frontal one. This study shows the existence of topographical differences in the time-course of different EEG bands during the first 30 min of sleep. The peculiar behavior of the alpha and beta EEG bands over the frontal derivation indicates the need to re-consider the functional role of traditional EEG bands during sleep.  相似文献   

11.
D J Dijk  D G Beersma  G M Bloem 《Sleep》1989,12(6):500-507
Baseline sleep of 13 men (mean age of 23.5 years) and 15 women (21.9 years) was analyzed. Visual scoring of the electroencephalograms (EEGs) revealed no significant differences between the sexes in the amounts of slow-wave sleep and rapid-eye-movement (REM) sleep. Spectral analysis, however, detected significantly higher power densities during non-REM sleep over a wide frequency range (0.25-11.0 Hz) in the female versus male subjects. Also, during REM sleep, power densities were higher in the females. Analysis of the time course of EEG power density during sleep revealed that the differences between males and females persisted throughout the sleep episode. Comparison of these differences with published data on the effects of sleep deprivation on EEG power spectra did not suggest a common mechanism underlying sleep deprivation effects and the sex difference in sleep EEGs. It is concluded that sex differences in EEG power spectra are not likely to be caused by sex differences in sleep regulatory mechanisms but may, for instance, be caused by sex differences in skull characteristics.  相似文献   

12.
SUMMARY  The hypothesis that local activation of brain regions during wakefulness affects the EEG recorded from these regions during sleep was tested by applying vibratory stimuli to one hand prior to sleep. Eight subjects slept in the laboratory for five consecutive nights. During a 6-h period prior to night 3, either the left or the right hand was vibrated intermittently (20 min on-8 min off), while prior to night 5 the same treatment was applied to the contralateral hand. The sleep EEG was recorded from frontal, central, parietal and occipital derivations and subjected to spectral analysis. The interhemispheric asymmetry index (IAI) was calculated for spectral power in nonREM sleep in the frequency range 0.25-25.0 Hz for 0.5-Hz or 1-Hz bins. In the first hour of sleep following right-hand stimulation, the IAI of the central derivation was increased relative to baseline, which corresponds to a shift of power towards the left hemisphere. This effect was most prominent in the delta range, was limited to the first hour of sleep and was restricted to the central derivation situated over the somatosensory cortex. No significant changes were observed following left-hand stimulation. Although the effect was small, it is consistent with the hypothesis that the activation of specific neuronal populations during wakefulness may have repercussions on their electrical activity pattern during subsequent sleep.  相似文献   

13.
Studies have shown that synchrony or temporal coupling of gamma activity is involved in processing and integrating information in the brain. Comparing rapid eye movement (REM) sleep to waking and non-REM (NREM) sleep, interhemispheric temporal coupling is higher, but lower between the frontal and posterior association areas of the same hemisphere. However, the homeostatic response of REM sleep temporal coupling after selective REM sleep deprivation (REMD) has not been studied. This study proposed exploring the effect of one night of selective REMD on the temporal coupling of cortical gamma activity during recovery REM sleep. Two groups of healthy subjects were subjected to either REMD by awakening them at each REM sleep onset, or to NREM sleep interruptions. Subjects slept four consecutive nights in the laboratory: first for adaptation, second as baseline, third for sleep manipulation, and fourth for recovery. Interhemispheric and intrahemispheric EEG correlations were analyzed during tonic REM (no eye movements) for the first three REM sleep episodes during baseline sleep, and recovery sleep after one night of selective REMD. Temporal coupling between frontal lobes showed a significant homeostatic rebound that increased during recovery REM sleep relative to baseline and controls. Results showed a rebound in temporal coupling between the two frontal lobes after REM sleep deprivation, indicating that the enhanced gamma temporal coupling that occurs normally during REM sleep has functional consequences. Conclusion: results suggest that synchronized activity during REM sleep may play an important role in integrating and reprocessing information.  相似文献   

14.
STUDY OBJECTIVES: We have previously shown that healthy older volunteers react with an attenuated frontal predominance of sleep electroen-cephalogram (EEG) delta activity in response to high sleep pressure. Here, we investigated age-related changes in homeostatic sleep regulation under low sleep pressure conditions, with respect to regional EEG differences and their dynamics. DESIGN: Analysis of the sleep EEG during an 8-hour baseline night, during a 40-hour multiple nap protocol (150 minutes of wakefulness and 75 minutes of sleep) and during the following 8-hour recovery night under constant posture conditions. SETTING: Centre for Chronobiology, Psychiatric University Clinics, Basel, Switzerland PARTICIPANTS: Sixteen young (20-31 years) and 15 older (57-74 years) healthy volunteers INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: All-night EEG spectra revealed an increase in spindle activity (13-15.25 Hz) for both age groups, but only in the young did we find a significant decrease of delta activity (0.5-1.25 Hz) in response to low sleep pressure conditions, predominantly in occipital brain regions. However, delta activity during the first non-rapid eye movement (NREM) sleep episode was equally reduced in both age groups. This response lasted significantly longer in the young (across the first 2 NREM sleep episodes) than in the older participants (only the first NREM sleep episode). CONCLUSION: The initial EEG delta response to low sleep pressure was similar in healthy older and young participants. Therefore, age-related sleep deteriorations cannot solely be attributed to alterations in the homeostatic sleep-regulatory system. It is, rather, the interplay of circadian and homeostatic factors of sleep regulation, which is changed with aging.  相似文献   

15.
The aim of this study was to evaluate the effects of a 200-mg administration of caffeine on polysomnographic sleep variables and quantitative sleep electroencephalography (EEG) in 12 young (20-30 years) and 12 middle-aged (40-60 years) moderate caffeine consumers (one to three cups of coffee per day). All subjects were submitted to both a caffeine (200 mg) and placebo (lactose) condition in a double-blind cross-over design. The conditions were separated by 1 week. Compared with the placebo condition, the evening ingestion of caffeine lengthened sleep latency, reduced sleep efficiency, and decreased sleep duration and amount of stage 2 sleep in both age groups. Caffeine also reduced spectral power in delta frequencies in frontal, central and parietal brain areas, but not in prefrontal (PF) and occipital regions. Moreover, caffeine increased spectral power in beta frequencies in frontal and central brain areas in both age groups. A suppression of spectral power in the PF area in low delta frequencies (0.5-1.00 Hz) and a rise in spectral power in the parietal region in high alpha (10.00-12.00 Hz) and beta frequencies (17.00-21.00, 23.00-25.00, 27.00-29.00 Hz) occurred solely in middle-aged subjects. No such changes were noticeable in young subjects. Generally, caffeine produced similar effects in young and middle-aged subjects. Only a few frequency bins showed more effects of caffeine in middle-aged subjects compared with young subjects. Furthermore, sleep EEG results do not entirely support the hypothesis that caffeine fully mimics the effects of a reduction of homeostatic sleep propensity when following a normal sleep-wake cycle.  相似文献   

16.
To study the role of GABA-ergic mechanisms in sleep regulation, the combined action of 40 h sleep deprivation and either 20 mg zolpidem or placebo on the sleep electroencephalogram (EEG) were investigated by quantitative EEG analysis in eight young men who participated in a positron emission tomography study. Compared with baseline, sleep deprivation increased low-frequency (1.25-7.0 Hz) EEG power in non-rapid eye movement (NREM) sleep in the placebo night. After administration of zolpidem, power in the 3.75-10.0 Hz range and 14. 25-16.0 Hz band was reduced. The largest decrease was observed in the theta band. Comparison with placebo revealed that zolpidem attenuated power in the entire 1.75-11.0 Hz range. The plasma concentration of zolpidem at 4.5 h after intake showed a positive correlation with the drug-induced difference in power from placebo in the 14.25-16.0 Hz band. Regional EEG analysis based on bipolar derivations along the antero-posterior axis disclosed, for NREM sleep, a drug-induced posterior shift of power in the frequency range of 7.75-9.75 Hz. Zolpidem did not affect rapid eye movemnt sleep spectra. We conclude that sleep deprivation and agonistic modulation of GABAA receptors have separate and additive effects on power spectra and that their effects are mediated by different neurophysiological mechanisms.  相似文献   

17.
There is profound knowledge that sleep restriction increases tonic (event‐unrelated) electroencephalographic (EEG) activity. In the present study we focused on time‐locked activity by means of phasic (event‐related) EEG analysis during a psychomotor vigilance task (PVT) over the course of sleep deprivation. Twenty healthy subjects (10 male; mean age ± SD: 23.45 ± 1.97 years) underwent sleep deprivation for 24 h. Subjects had to rate their sleepiness hourly (Karolinska Sleepiness Scale) and to perform a PVT while EEG was recorded simultaneously. Tonic EEG changes in the δ (1–4 Hz), θ (4–8 Hz) and α (8–12 Hz) frequency range were investigated by power spectral analyses. Single‐trial (phase‐locking index, PLI) and event‐related potential (ERP) analyses (P1, N1) were used to examine event‐related changes in EEG activity. Subjective sleepiness, PVT reaction times and tonic EEG activity (delta and theta spectral power) significantly increased over the night. In contrast, event‐related EEG parameters decreased throughout sleep deprivation. Specifically, the ERP component P1 diminished in amplitude, and delta and theta PLI estimates decreased progressively over the night. It is suggested that event‐related EEG measures (such as the amplitude of the P1 and especially delta/theta phase‐locking) serve as a complimentary method to track the deterioration of attention and performance during sleep loss. As these measures actually reflect the impaired response to specific events rather than tonic changes during sleep deprivation they are a promising tool for future sleep research.  相似文献   

18.
Topographic differences in the sleep EEG have been repeatedly found in humans and rodents. A frontal predominance of EEG slow-wave activity (0.75-4 Hz; delta band) during non-rapid eye movement (NREM) sleep is particularly evident under conditions of increased sleep propensity. Local aspects of neuronal connectivity in the neocortex that are modified by specific neuronal stimulation may underlie these differences. To investigate the role of altered neuronal connectivity on anterior-posterior EEG topography, sleep was recorded in mice with congenital dysgenesis of the corpus callosum (B1 strain) during baseline and after 6 h sleep deprivation (SD). In these mice neuronal connections within a hemisphere are increased due to the longitudinal Probst bundle, a structure of re-routed callosal fibers. After SD the frequencies above 1.5 Hz within the delta band in NREM sleep were reduced in B1 mice compared with control C57BL/6 mice, a strain that has a normal corpus callosum, while power in the lowest frequency band (0.75-1.0 Hz) was enhanced in B1 mice. The differences between the strains subsided in the course of recovery. The redistribution of EEG power within the delta band in the frontal region in mice with a well developed Probst bundle, suggests a role of intracortical connectivity in local sleep regulation.  相似文献   

19.
Basic research shows that the physiological and molecular mechanisms of very low frequency (<1 Hz) electroencephalogram (EEG) waves of non-rapid eye movement (NREM) sleep differ from those of the higher (1–4 Hz) delta frequencies. Human studies show that the across-NREM period dynamics of very low frequency and 1–4 Hz EEG also differ. These differences and the reported failure of very low frequency EEG power to increase after a night of total sleep deprivation raise the question of whether very low frequency EEG shows the other homeostatic properties established for higher delta frequencies. Here we tested the relation of very low frequency EEG power density to prior waking duration across a normal day and whether these low frequencies meet another criterion for homeostatic sleep EEG: conservation of power across a late nap and post-nap sleep. Data from 19 young adults recorded in four separate sessions of baseline, daytime nap and post-nap sleep were analyzed. Power density in very low frequency NREM EEG increased linearly when naps were taken later in the day (i.e. were preceded by longer waking durations). In the night following an 18:00 h nap, very low frequency power was reduced by roughly the amount of power in the nap. Thus, very low frequency EEG meets two major homeostatic criteria. We hypothesize that these low frequencies reflect the executive rather than the functional processes by which NREM sleep reverses the effects of waking brain activity.  相似文献   

20.
Jaar O  Pilon M  Carrier J  Montplaisir J  Zadra A 《Sleep》2010,33(11):1511-1516

Study Objectivies:

Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers'' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes.

Participants:

Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation.

Results:

Analysis of patients'' sleep EEG over the 200 sec prior to the episodes'' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset.

Conclusions:

The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.

Citation:

Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号