首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to compare a novel, rolling circle amplification (RCA) assay for detection of common isoniazid (INH) resistance mutations in Mycobacterium tuberculosis with a multiplex allele-specific PCR (MAS-PCR) and sequencing of katG and the fabG1-inhA promoter region. One or more mutations were identified by RCA, MAS-PCR, and sequencing in 21 (68%), 22 (71%), and 23 (74%), respectively, of 31 epidemiologically unrelated INH-resistant isolates, and in none of 8 INH-susceptible isolates. The RCA assay is a rapid, inexpensive, and practical screening method for INH resistance in M. tuberculosis in countries with high prevalence of INH resistance.  相似文献   

2.
ObjectivesProthionamide, a structural analogue of isoniazid, is used mainly for treating multidrug-resistant tuberculosis (MDR-TB). Both drugs have a common target InhA, so prothionamide can be ineffective against isoniazid-resistant (INHR) Mycobacterium tuberculosis. We aimed to investigate the prevalence of mutations in katG, ethA, ndh, ethR, mshA, inhA and/or its promoter associated with independent resistance and cross-resistance to INHR and/or prothionamide-resistant (PTOR) M. tuberculosis isolates.MethodsWe sequenced the above genes in 206 M. tuberculosis isolates with susceptibility testing against ten drugs.ResultsOf the 173 INHR PTOR isolates, 170 (98.3%) harboured mutations in katG, 111 (64.2%) in ethA, 58 (33.5%) in inhA or its promoter, 5 (2.9%) in ndh, 3 (1.7 %) in ethR and 2 (1.2%) in mshA. Among the 18 INHR PTOS isolates, mutations in katG were found in all of them; one had a mutation in the inhA promoter and another in ndh. Of the five INHS PTOR isolates, four showed mutations in ethA and two in the inhA promoter. Notably, 55 novel non-synonymous mutations were found in them and 20.2% of the PTOR M. tuberculosis isolates harboured no known mutations.ConclusionsThis is the first report to investigate cross-resistance between INHR and/or PTOR isolates. Among INHR (94.4% MDR-TB) M. tuberculosis isolates, the high diversity of mutations for independent resistance and cross-resistance with prothionamide highlight the importance of both phenotypic susceptibility and genotypic diagnosis when using it to treat patients with INHR-TB. The high proportion (one-fifth) of PTOR M. tuberculosis isolates showed no known mutation related to PTOR genes, so uncovered resistance mechanism(s) of prothionamide exist.  相似文献   

3.
The emergence of multidrug-resistance Mycobacterium tuberculosis is an increasing threat to tuberculosis control programmes. Susceptibility testing of Mycobacterium tuberculosis complex isolates by traditional methods requires a minimum of 14 days. This can be reduced significantly if molecular analysis is used. DNA sequencing is a good method for detecting mutation, but cannot be used routinely because of its relatively high cost. A sensitive and specific microarray has been designed to detect mutations in the rifampin resistance determining region of rpoB and loci in katG and inhA associated with isoniazid (INH) resistance. A panel of Mycobacterium tuberculosis isolates containing 13 different rpoB genotypes, two mutation genotypes within codon 315 of katG and one mutation genotypes at inhA was used to validate the microarray. The results obtained indicate that 100% of rifampicin-resistant M. tuberculosis strains isolated in Chongqing had rpoB mutations, with 531-Ser and 526-His being the most common positions substituted. Of the total 50 INH resistant isolates, 82% had a katG315 mutation and 18% had an inhA mutation. All the mutations detected by the microarray method were also confirmed by conventional DNA sequencing. It is demonstrated that the microarray is an efficient, specialized technique and can be used as a rapid method for detecting rifampin and isoniazid resistance.  相似文献   

4.

Purpose

The Mycobacterium tuberculosis complex comprises M. tuberculosis, M. bovis, M. bovis bacillus Calmette-Guérin (BCG) and M. africanum, and causes tuberculosis in humans and animals. Identification of Mycobacterium spp. and M. tuberculosis complex to the species level is important for practical use in microbiological laboratories, in addition to optimal treatment and public health.

Materials and Methods

A novel multiplex PCR assay targeting a conserved rpoB sequence in Mycobacteria spp., as well as regions of difference (RD) 1 and RD8, was developed and evaluated using 37 reference strains and 178 clinical isolates.

Results

All mycobacterial strains produced a 518-bp product (rpoB), while other bacteria produced no product. Virulent M. tuberculosis complex strains, M. tuberculosis, M. bovis and M. africanum, produced a 254-bp product (RD1), while M. bovis BCG, M. microti and nontuberculous mycobacteria produced no RD1 region product. Additionally, M. tuberculosis and M. africanum produced a 150-bp product (RD8), while M. bovis and M. bovis BCG produced a 360-bp product (deleted form of RD8). M. microti and nontuberculous mycobacteria produced no RD8 region product. This assay identified all Mycobacterium spp. and all M. tuberculosis complex strains to the species level.

Conclusion

The multiplex PCR assay of the present study could be implemented as a routine test in microbiology laboratories, and may contribute to more effective treatment and surveillance of tuberculosis stemming from the M. tuberculosis complex.  相似文献   

5.
Objective: Resistance to drugs is due to particular genomic mutations in the specific genes of Mycobacterium tuberculosis. Timely genetic characterization will allow identification of resistance mutations that will optimize an effective antibiotic treatment regimen. We determine the magnitude of gene mutations conferring resistance to isoniazid (INH), rifampicin (RMP) and ethambutol (EMB) among tuberculosis (TB) lymphadenitis patients.Methods: A cross sectional prospective study was conducted among 226 M.tuberculosis isolates from culture positive lymph node aspirates collected from TB lymphadenitis patients between April 2012 and May 2012. Detection of mutations conferring resistance to drugs was carried out using GenoType® MTBDRplus and GenoType® MTBDRsl assay.Results: Out of the 226 strains, mutations conferring resistance to INH, RMP, multidrug resistance tuberculosis (MDR-TB) and EMB were 8, 3, 2 and 2 isolates, respectively. There was no isolated strain that showed mutation in the inhA promoter region gene. All INH resistant strains had mutations in the katG gene at codon 315 with amino acid change of S315T1. Among rifampicin resistant strains, two isolates displayed mutations at codon 531 in the rpoB gene with amino acid change of S531L and one isolate was by omission of wild type probes at Q513L. According to mutations associated with ethambutol resistance, all of the isolates had mutations in the embB gene with aminoacid change of M306I. All isolates resistant to INH, RMP and MDR using BacT/AlerT 3D system were correctly identified by GenoType® MTBDRplus assay.Conclusion: We observed mutations conferring resistance to INH at S315T1 of the katG gene, RMP at S531L and Q513L in the rpoB genes and EMB at M306I of the embB gene. In the absence of conventional drug susceptibility testing, the effort to develop easy, rapid and cost effective molecular assays for drug resistance TB monitoring is definitely desirable and the GenoType® MTBDRplus assay was found to be a useful method for diagnosis of resistance to INH, RMP and MDR from lymph node aspirates. Further molecular cluster analysis to determine transmission dynamics of mutated strain is required.  相似文献   

6.
7.
Background: Early detection of multidrug-resistant tuberculosis (MDR-TB) is essential to prevent its transmission in the community and initiate effective anti-TB treatment regimen. Materials and Methods: High-resolution melting curve (HRM) analysis was evaluated for rapid detection of resistance conferring mutations in rpoB and katG genes. We screened 95 Mycobacterium tuberculosis clinical isolates including 20 rifampin resistant (RIF-R), 21 isoniazid resistant (INH-R) and 54 fully susceptible (S) isolates determined by proportion method of drug susceptibility testing. Nineteen M. tuberculosis isolates with known drug susceptibility genotypes were used as references for the assay validation. The nucleotide sequences of the target regions rpoB and katG genes were determined to investigate the frequency and type of mutations and to confirm HRM results. Results: HRM analysis of a 129-bp fragment of rpoB allowed correct identification of 19 of the 20 phenotypically RIF-R and all RIF-S isolates. All INH-S isolates generated wild-type HRM curves and 18 out of 21 INH-R isolates harboured any mutation in 109-bp fragment of katG exhibited mutant type HRM curves. However, 1 RIF-R and 3 INH-R isolates were falsely identified as susceptible which were confirmed for having no mutation in their target regions by sequencing. The main mutations involved in RIF and INH resistance were found at codons rpoB531 (60% of RIF-R isolates) and katG315 (85.7% of INH-R isolates), respectively. Conclusion: HRM was found to be a reliable, rapid and low cost method to characterise drug susceptibility of clinical TB isolates in resource-limited settings.  相似文献   

8.
The distribution and mutation spectrum of the katG, inhA, and ahpC genes encoding Isoniazid resistance have been studied in 257 patients with active lung tuberculosis in Saratov oblast. The tests were performed using biological microchips from TB-Biochip MDR pharmacological kits (Russia). The incidence rate of Isoniazid-resistant M. tuberculosis strains was found to be 55.7%. Isoniazid-resistant strains demonstrated a high rate (26.9%) of combined mutations in two and three genes simultaneously and predominance in gene katG Ser315 → Thr1 (91.1%) inducing high resistance to Isoniazid. The sensitivity and specificity of the TB-Biochip MDR test system were 88.2 and 91.3%, respectively. The results of this work show additional measures must be taken to reduce the incidence of Isoniazid-resistant strains.  相似文献   

9.
Multiple-drug-resistant Mycobacterium tuberculosis (MDR-MTB) has been well studied in hospitals or health care institutions and in human immunodeficiency virus-infected populations. However, the characteristics of MDR-MTB in the community have not been well investigated. An understanding of its prevalence and circulation within the community will help to estimate the problem and optimize the strategies for control and prevention of its development and transmission. In this study, MDR-MTB isolates from Scotland collected between 1990 and 1997 were characterized, along with non-drug-resistant isolates. The results showed that they were genetically diverse, suggesting they were unrelated to each other and had probably evolved independently. Several new alleles of rpoB, katG, and ahpC were identified: rpoB codon 525 (ACC→AAC; Thr525Asn); katG codon 128 (CGG→CAG; Arg128Gln) and codon 291 (GCT→CCT; Ala291Pro); and the ahpC synonymous substitution at codon 6 (ATT→ATC). One of the MDR-MTB isolates from an Asian patient had an IS6110 restriction fragment length polymorphism pattern very similar to that of the MDR-MTB W strain and had the same drug resistance-related alleles but did not have any epidemiological connection with the W strains. Additionally, a cluster of M. tuberculosis isolates was identified in our collection of 715 clinical isolates; the isolates in this cluster had genetic backgrounds very similar to those of the W strains, one of which had already developed multiple drug resistances. The diverse population of MDR-MTB in Scotland, along with a low incidence of drug-resistant M. tuberculosis, has implications for the control of the organism and prevention of its spread.  相似文献   

10.
Objective: The objective of our study was to evaluate the use of a real-time polymerase chain reaction (PCR)-based technique for the prediction of phenotypic resistance of Mycobacterium tuberculosis. Materials and Methods: We tested 67 M tuberculosis strains (26 drug resistant and 41 drug susceptible) using a method recommended for the LightCycler platform. The susceptibility testing was performed by the absolute concentration method. For rifampin resistance, two regions of the rpoB gene were targeted, while for identification of isoniazid resistance, we searched for mutations in katG and inhA genes. Results: The sensitivity and specificity of this method for rapid detection of mutations for isoniazid resistance were 96% (95% CI: 88% to 100%) and 95% (95% CI: 89% to 100%), respectively. For detection of rifampin resistance, the sensitivity and specificity were 92% (95% CI: 81% to 100%) and 74% (95% CI: 61% to 87%), respectively. The main isoniazid resistance mechanism identified in our isolates is related to changes in the katG gene that encodes catalase. We found that for rifampin resistance the concordance between the predicted and observed phenotype was less than satisfactory. Conclusions: Using this method, the best accuracy for genotyping compared with phenotypic resistance testing was obtained for detecting isoniazid resistance mutations. Although real-time PCR assay may be a valuable diagnostic tool, it is not yet completely satisfactory for detection of drug resistance mutations in M tuberculosis.  相似文献   

11.
The availability of an MDR TB-Biochip for the express detection of Mycobacterium tuberculosis (MBT) strains resistant to rifampicin and isoniasid has been studied in 940 patients with pulmonary tuberculosis. The rpoB gene of rifampicin-resistant MBT strains circulating in the Kyrgyz Republic was shown to have substitutions at codons 531, 526, 516, 511, 513, 512, 533, and 522. MBT strains with mutations at codons 531 and 526 are prevalent. Among all rifampicin-resistant strains, MBT strains with the mutation of Ser531 → Leu occurred most frequently (59.7%). Isoniasid resistance is determined by mutations in the katG (94.5%), inhA (3.5%), and ahpC (1%) genes. Among isoniasid-resistant MBT strains, those with the mutation of Ser315 → Thr315 (94%) in the katG gene codon are predominant. Original Russian Text ? Zh.T. Isakova, 2008, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2008, No. 4, pp. 36–38.  相似文献   

12.
We have developed a multiplex assay, based on multiplex ligation-dependent probe amplification (MLPA), that allows simultaneous detection of multiple drug resistance mutations and genotype-specific mutations at any location in the Mycobacterium tuberculosis genome. The assay was validated on a reference panel of well-characterized strains, and the results show that M. tuberculosis can be accurately characterized by our assay. Eighteen discriminatory markers identifying drug resistance (rpoB, katG, inhA, embB), members of the M. tuberculosis complex (16S rRNA, IS6110, TbD1), the principal genotypic group (katG, gyrA), and Haarlem and Beijing strains (ogt, mutT2, mutT4) were targeted. A sequence specificity of 100% was reached for 16 of the 18 selected genetic targets. In addition, a panel of 47 clinical M. tuberculosis isolates was tested by MLPA in order to determine the correlation between phenotypic drug resistance and MLPA and between spoligotyping and MLPA. Again, all mutations present in these isolates that were targeted by the 16 functional probes were identified. Resistance-associated mutations were detected by MLPA in 71% of the identified rifampin-resistant strains and in 80% of the phenotypically isoniazid-resistant strains. Furthermore, there was a perfect correlation between MLPA results and spoligotypes. When MLPA is used on confirmed M. tuberculosis clinical specimens, it can be a useful and informative instrument to aid in the detection of drug resistance, especially in laboratories where drug susceptibility testing is not common practice and where the rates of multidrug-resistant and extensively drug resistant tuberculosis are high. The flexibility and specificity of MLPA, along with the ability to simultaneously genotype and detect drug resistance mutations, make MLPA a promising tool for pathogen characterization.  相似文献   

13.
ObjectiveLaboratory quality control (QC) is essential to assess the reliability of tuberculosis diagnostic testing. To provide safe QC reagents for the detection of drug-resistant Mycobacterium tuberculosis, we generated antibiotic-resistant mycobacterial strains of attenuated virulence (M. bovis bacillus Calmette–Guérin (BCG)).MethodsSeven mono-resistant BCG strains were developed by introducing resistance-conferring mutations into wild-type BCG strains. Mutations were confirmed by dideoxynucleotide sequencing. Phenotypic resistance was quantified by microbroth dilution to determine the MIC90. The capacity of two commercial tests (GeneXpert TB/RIF and Genotype MTBDRplus) to detect resistance-conferring mutations was evaluated independently.ResultsOur panel included BCG strains with mutations in rpoB (S450L, I491F), katG (deletion at AA428), gyrA (D94G), rpsL (K43R) and Rv0678c (S63R). These mutations translated respectively into phenotypic resistance to rifampin (MIC ≥8 mg/L), isoniazid (MIC ≥8 mg/L), moxifloxacin (MIC 4 mg/L) and streptomycin (MIC ≥8 mg/L); the Rv0678c mutant showed decreased susceptibility to both clofazimine (MIC 4 mg/L) and bedaqualine (MIC 1 mg/L). GeneXpert (Cepheid) and Genotype MTBDRplus (Hain Lifesciences) both called the rpoB S450L strain rifampin-resistant and the I491F mutant rifampin-susceptible, as expected based on single nucleotide polymorphism positions. Likewise, MTBDRplus called the novel katG deletion mutant isoniazid susceptible despite phenotypic resistance.ConclusionBCG strains engineered to be mono-resistant to anti-tuberculosis drugs can be used as safe QC reagents for tuberculosis diagnostics and drug susceptibility testing.  相似文献   

14.
A series of 69 Han Chinese PD patients (including 66 index cases and 3 relatives) with early-onset Parkinson's disease (EOPD) were studied to assess the frequency of parkin and PINK1 gene mutations. Mutation analysis of the parkin gene was performed by real-time quantitative polymerase chain reaction (QPCR), denaturing high-performance liquid chromatography (DHPLC) and DNA sequencing. For the PINK1 gene, DHPLC and DNA sequencing were used. Nineteen patients (including one relative) had mutation in the parkin gene, and the c.2T > C (p.M1T) was not reported previously. No mutation of the PINK1 gene was found. The onset age of the patients with mutations in the parkin was earlier than that of those without mutation (p < 0.05). We concluded that mutations in parkin gene are common in Chinese EOPD patients, and mainly are exon rearrangements, while mutation in PINK1 might be not common in Chinese EOPD patients.  相似文献   

15.
Nucleotide sequences of genes conferring isoniazid resistance (katG, inhA, oxyR–ahpC and ndh) and ethionamide resistance (ethA) in 160 drug-resistant Mycobacterium tuberculosis clinical isolates from Thailand were analysed. Mutations in the katG gene were found in 129 isolates, predominantly at codon 315, which was mutated in 127 isolates. Twenty-two isolates had mutations in the inhA promoter and coding region. Mutations in the oxyR–ahpC intergenic region and in ndh were detected in four and one isolate(s), respectively. Of 24 ethionamide-resistant isolates, 13 had mutations in the ethA gene. However, these mutations were dispersed along the entire gene, with no codon predominating significantly.  相似文献   

16.
Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne's disease in cattle and a potential risk factor for Crohn's disease. Scanning electron microscopy and colonization levels of the M. ap mutant indicated that the pstA gene significantly contributes to the ability of M. ap to form biofilms. Digital measurements taken during electron microscopy identified a unique morphology for the ΔpstA mutant, which consisted of significantly shorter bacilli than the wild type. Analysis of the lipid profiles of the mycobacterial strains identified a novel lipopeptide that was present in the cell wall extracts of wild-type M. ap, but missing from the ΔpstA mutant. Interestingly, the calf infection model suggested that pstA contributes to intestinal invasion of M. ap. Furthermore, immunoblot analysis of peptides encoded by pstA identified a specific and significant level of immunogenicity. Taken together, our analysis revealed a novel cell wall component that could contribute to biofilm formation and to the virulence and immunogenicity of M. ap. Molecular tools to better control M. ap infections could be developed utilizing the presented findings.  相似文献   

17.
18.
Molecular diagnostic methods based on the detection of mutations conferring drug resistance are promising technologies for rapidly detecting multidrug-/extensively drug-resistant tuberculosis (M/XDR TB), but large studies of mutations as markers of resistance are rare. The Global Consortium for Drug-Resistant TB Diagnostics analyzed 417 Mycobacterium tuberculosis isolates from multinational sites with a high prevalence of drug resistance to determine the sensitivities and specificities of mutations associated with M/XDR TB to inform the development of rapid diagnostic methods. We collected M/XDR TB isolates from regions of high TB burden in India, Moldova, the Philippines, and South Africa. The isolates underwent standardized phenotypic drug susceptibility testing (DST) to isoniazid (INH), rifampin (RIF), moxifloxacin (MOX), ofloxacin (OFX), amikacin (AMK), kanamycin (KAN), and capreomycin (CAP) using MGIT 960 and WHO-recommended critical concentrations. Eight genes (katG, inhA, rpoB, gyrA, gyrB, rrs, eis, and tlyA) were sequenced using Sanger sequencing. Three hundred seventy isolates were INHr, 356 were RIFr, 292 were MOXr/OFXr, 230 were AMKr, 219 were CAPr, and 286 were KANr. Four single nucleotide polymorphisms (SNPs) in katG/inhA had a combined sensitivity of 96% and specificities of 97 to 100% for the detection of INHr. Eleven SNPs in rpoB had a combined sensitivity of 98% for RIFr. Eight SNPs in gyrA codons 88 to 94 had sensitivities of 90% for MOXr/OFXr. The rrs 1401/1484 SNPs had 89 to 90% sensitivity for detecting AMKr/CAPr but 71% sensitivity for KANr. Adding eis promoter SNPs increased the sensitivity to 93% for detecting AMKr and to 91% for detecting KANr. Approximately 30 SNPs in six genes predicted clinically relevant XDR-TB phenotypes with 90 to 98% sensitivity and almost 100% specificity.  相似文献   

19.
We evaluated high-resolution melting (HRM) curve analysis as a tool for detecting rifampin (RIF) and isoniazid (INH) resistance in Mycobacterium tuberculosis in an accurate, affordable, and rapid manner. Two hundred seventeen M. tuberculosis clinical isolates of known resistance phenotype were used. Twenty-nine known rpoB mutant DNAs, including rare mutations, were also included. Four pairs of primers were designed: rpoB-F/R (for codons 516 to 539 of rpoB), rpoB-516F/R (for codons 508 to 536 of rpoB), katG-F/R (for the codon 315 region of katG), and inhA-F/R (for the nucleotide substitution of C to T at position −15 of inhA). An HRM curve was generated for each isolate after real-time PCR differentiated the mutant from the wild-type strains. DNA sequencing of the target regions was performed to confirm the results of the HRM curve analysis. All but one of the 73 RIF-resistant (RIF-R) strains and all 124 RIF-susceptible (RIF-S) isolates were correctly identified by HRM curve analysis of rpoB. Twenty-seven of 29 known rpoB mutants were detected. In HRM curve analysis of katG and inhA, 90 INH-R strains that harbored katG or inhA mutations, or both, and all INH-S strains were correctly identified. Ten phenotypically INH-R strains not harboring katG or inhA mutations were not detected. The HRM curve analysis will be a useful method for detection of RIF and INH resistance in M. tuberculosis in a rapid, accurate, simple, and cost-effective manner.The rates of mortality and morbidity from tuberculosis (TB) remain high, despite intense worldwide efforts. One of the major factors sustaining the current TB epidemic is the increasing drug resistance of Mycobacterium tuberculosis strains (2). In the early 1990s, multidrug-resistant (MDR) TB cases that were resistant to at least rifampin (RIF) plus isoniazid (INH) arose (6). When the frequency and distribution of extensively drug-resistant (XDR) TB cases were assessed in 2004 by the U.S. Centers for Disease Control and Prevention and the World Health Organization, several cases of drug-resistant tuberculosis consistent with an XDR phenotype were found (7). This study revealed that 20% of the isolates met the MDR criteria; 2% of those were classifiable as XDR; and 4%, 15%, and 19% of the XDR TB cases were from the United States, South Korea, and Latvia, respectively (7). Thus, it is crucial that rapid drug susceptibility tests be developed to prevent the spread of MDR and XDR TB.Although drug susceptibility testing (DST) is a prerequisite for accurate results, such testing requires much time and labor (3). Therefore, several molecular techniques have been applied to detect mutations related to drug resistance (5, 10). Resistance to RIF and INH, the mainstays of antituberculosis treatment, is mainly attributable to mutations in genes encoding the drug target or drug-converting enzymes (8). Early studies demonstrated that 95% of the resistance to RIF is associated with mutation of the RIF resistance-determining region of rpoB, whereas mutations in katG and the regulatory zone of inhA are most frequently associated with INH resistance (11).The oligonucleotide chip method and real-time PCR have been used for detection of drug-resistant M. tuberculosis (17, 21, 27, 29). A novel method of high-resolution melting (HRM) curve analysis is an accurate and simple technique for analyzing the genotype without the need for specific probes. The dye LC Green, SYTO9, or Eva Green saturates amplified DNA, unlike SYBR green dye, during homogeneous melting curve analysis. Also, HRM curve analysis generates a difference plot curve, which analyzes nucleic acid sequences with high accuracy. Application of genotyping by HRM curve analysis has followed (13, 19). The aim of the study described here was to develop a useful molecular tool for the identification of drug resistance in M. tuberculosis in an accurate, rapid, and cost-effective manner.  相似文献   

20.
In the last decade, several genes have been linked to Parkinson's disease (PD), including GIGYF2, ATP13A2 and GBA. To explore whether mutations in these genes contribute to development of PD in the Brazilian population, we screened 110 patients with early-onset PD. No clearly pathogenic mutations were identified in ATP13A2 and GIGYF2. In contrast, we identified a significantly higher frequency of known pathogenic mutations in GBA gene among the PD cases (6/110 = 5.4%) when compared to the control group (0/155) (P = 0.0047). Our results strongly support an association between GBA gene mutations and an increased risk of PD. Mutations in GIGYF2 and ATP13A2 do not seem to represent a risk factor to the development of PD in the Brazilian population. Considering the scarcity of studies on GIGYF2, ATP13A2 and GBA mutation frequency in Latin American countries, we present significant data about the contribution of these genes to PD susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号