首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dendrites of pyramidal neurons have markedly different electrical properties from those of the soma, owing to the non-uniform distribution of voltage-gated ion channels in dendrites. It is thus possible that drugs acting on ion channels might preferentially alter dendritic, but not somatic, excitability. Using dendritic and somatic whole-cell and cell-attached recordings in rat hippocampal slices, we found that the anticonvulsant lamotrigine selectively reduced action potential firing from dendritic depolarization, while minimally affecting firing at the soma. This regional and input-specific effect resulted from an increase in the hyperpolarization-activated cation current (I(h)), a voltage-gated current present predominantly in dendrites. These results demonstrate that neuronal excitability can be altered by drugs acting selectively on dendrites, and suggest an important role for I(h) in controlling dendritic excitability and epileptogenesis.  相似文献   

2.
The propagation and integration of signals in the dendrites of pyramidal neurons is regulated, in part, by the distribution and biophysical properties of voltage-gated ion channels. It is thus possible that any modification of these channels in a specific part of the dendritic tree might locally alter these signaling processes. Using dendritic and somatic whole-cell recordings, combined with calcium imaging in rat hippocampal slices, we found that the induction of long-term potentiation (LTP) was accompanied by a local increase in dendritic excitability that was dependent on the activation of NMDA receptors. These changes favored the back-propagation of action potentials into this dendritic region with a subsequent boost in the Ca(2+) influx. Dendritic cell-attached patch recordings revealed a hyperpolarized shift in the inactivation curve of transient, A-type K(+) currents that can account for the enhanced excitability. These results suggest an important mechanism associated with LTP for shaping signal processing and controlling dendritic function.  相似文献   

3.
4.
Summary Intracellular recording in the in vitro hippocampal slice was utilized to examine the effects of nimodipine and nifedipine on CA1 pyramidal cell excitability. The excitatory postsynaptic potential (EPSP) elicited by a single stimulus in stratum radiatum was enhanced by nifedipine as evidenced by increases in EPSP amplitude, area and slope. Threshold for synaptically-evoked somatic action potentials was decreased following either nifedipine or nimodipine application, often resulting in spontaneous action potential activity. A secondary, late EPSP-like event appeared in the intracellular recordings during and following bath application of nimodipine, and was associated with burst-like activity in field potential recordings. In accordance with the hydrophobic nature of these compounds, extensive washout in normal Krebs' solution failed to reverse their effects, but nifedipine's actions were photolabile. These results indicate that dihydropyridines can enhance synaptic efficacy in the CA1 region of the hippocampus. Offprint requests to: Neuroscience Research Laboratory/127A  相似文献   

5.
Kainate-type glutamate ionotropic receptors (KAR) mediate either depression or potentiation of inhibitory transmission. The mechanisms underlying the depressant effect of KAR agonists have been controversial. Under dual patch-clamp recording techniques in synaptically coupled pairs of CA1 interneurons and pyramidal neurons in hippocampal slices, micromolar concentrations of KAR agonists, kainic acid (KA, 10 microM) and ATPA (10 microM), induced inactivation of action potentials (APs) in 58 and 50% of presynaptic interneurons, respectively. Inactivation of interneuronal APs might have significantly contributed to KA-induced decreases in evoked inhibitory postsynaptic currents (eIPSCs) that are obtained by stimulating the stratum radiatum. With controlled interneuronal APs, KAR agonists induced a decrease in the potency (mean amplitude of successful events) and mean amplitude (including failures) of unitary inhibitory postsynaptic currents (uIPSCs) without significantly changing the success rate (P(s)) at perisomatic high-P(s) synapses. In contrast, KAR agonists induced a decrease in both the P(s) and potency of uIPSCs at dendritic high-P(s) synapses. KAR agonists induced an inhibition of GABA(A) currents by activating postsynaptic KARs in pyramidal neurons; this was more prominent at dendrites than at soma. Both the exogenous GABA-induced current and the amplitude of miniature IPSCs (mIPSCs) were attenuated by KAR agonists. Thus the postsynaptic KAR-mediated inhibition of GABA(A) currents may contribute to the KAR agonist-induced decrease in the potency of uIPSCs and KA-induced disinhibition.  相似文献   

6.
7.
GABA(A) receptors can mediate both 'phasic' synaptic inhibition and a persistent 'tonic' form of signaling. We show that, in the presence of intact GABA uptake, guinea pig hippocampal interneurons, but not pyramidal cells, express a tonic GABA(A) receptor-mediated conductance. This conductance was pharmacologically distinct from spontaneous inhibitory postsynaptic currents (IPSCs). Inhibiting GABA uptake resulted in the expression of a comparable GABA(A) receptor-mediated tonic conductance in pyramidal cells. Reducing the tonic conductance in interneurons enhanced their excitability and the inhibitory drive to pyramidal cells. These results point to a role for cell type-dependent tonic inhibition in regulating cortical excitability.  相似文献   

8.
9.
To investigate voltage-gated potassium channels underlying action potentials (APs), we simultaneously recorded neuronal APs and single K(+) channel activities, using dual patch-clamp recordings (1 whole cell and 1 cell-attached patch) in single-layer V neocortical pyramidal neurons of rat brain slices. A fast voltage-gated K(+) channel with a conductance of 37 pS (K(f)) opened briefly during AP repolarization. Activation of K(f) channels also was triggered by patch depolarization and did not require Ca(2+) influx. Activation threshold was about -20 mV and inactivation was voltage dependent. Mean duration of channel activities after single APs was 6.1 +/- 0.6 ms (mean +/- SD) at resting membrane potential (-64 mV), 6.7 +/- 0.7 ms at -54 mV, and 62 +/- 15 ms at -24 mV. The activation and inactivation properties suggest that K(f) channels function mainly in AP repolarization but not in regulation of firing. K(f) channels were sensitive to a low concentration of tetraethylammonium (TEA, 1 mM) but not to charybdotoxin (ChTX, 100 nM). Activities of A-type channels (K(A)) also were observed during AP repolarization. K(A) channels were activated by depolarization with a threshold near -45 mV, suggesting that K(A) channels function in both repolarization and timing of APs. Inactivation was voltage dependent with decay time constants of 32 +/- 6 ms at -64 mV (rest), 112 +/- 28 ms at -54 mV, and 367 +/- 34 ms at -24 mV. K(A) channels were localized in clusters and were characterized by steady-state inactivation, multiple subconductance states (36 and 19 pS), and inhibition by 5 mM 4-aminopyridine (4-AP) but not by 1 mM TEA. A delayed rectifier K(+) channel (K(dr)) with a unique conductance of 17 pS was recorded from cell-attached patches with TEA/4-AP-filled pipettes. K(dr) channels were activated by depolarization with a threshold near -25 mV and showed delayed long-lasting activation. K(dr) channels were not activated by single action potentials. Large conductance Ca(2+)-activated K(+) (BK) channels were not triggered by neuronal action potentials in normal slices and only opened as neuronal responses deteriorated (e.g., smaller or absent spikes) and in a spike-independent manner. This study provides direct evidence for different roles of various K(+) channels during action potentials in layer V neocortical pyramidal neurons. K(f) and K(A) channels contribute to AP repolarization, while K(A) channels also regulate repetitive firing. K(dr) channels also may function in regulating repetitive firing, whereas BK channels appear to be activated only in pathological conditions.  相似文献   

10.
11.
12.
Sensory cortical neurons display substantial receptive field dynamics during and after persistent sensory drive. Because a cell's response properties are determined by the inputs it receives, receptive field dynamics are likely to involve changes in the relative efficacy of different inputs to the cell. To test this hypothesis, we have investigated if brief repetitive stimulus drive in vitro alters the efficacy of two types of corticocortical inputs to layer V pyramidal cells. Specifically, we have used whole cell recordings to measure the effect of repetitive electrical stimulation at the layer VI/white matter (WM) border on the synaptic response of layer V pyramidal cells to corticocortical input evoked by electrical stimulation of layer I or layer II/III and emulated by local application of glutamate. Repetitive stimulation (10 Hz for 3 s) at the layer VI/WM border transiently potentiated excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation of layer II/III by 97 +/- 12% (mean +/- SE). The recovery of EPSP amplitude to its preconditioning value was well-described by a single-term decaying exponential with a time constant of 7.2 s. The same layer VI/WM conditioning train that evoked layer II/III EPSP potentiation frequently caused an attenuation of layer I EPSPs. Similarly, subthreshold postsynaptic responses to local glutamate application in layers II/III and I were potentiated and attenuated, respectively, by the conditioning stimulus. Potentiation and attenuation could be evoked in the same cell by repositioning the glutamate puffer pipette in the appropriate layer. The conditioning stimulus that led to the transient modification of upper layer EPSP efficacy also evoked a slow depolarization in glial cells. The membrane potential of glial cells recovered with a time course similar to the dissipation of the potentiation effect, suggesting that stimulus-evoked changes in extracellular potassium (ECK) play a role in layer II/III EPSP potentiation. Consistent with this proposal, increasing the bath concentration of ECK caused a substantial increase of layer II/III EPSP amplitude. EPSP potentiation was sensitive to postsynaptic membrane potential and, more importantly, was significantly weaker for synaptic currents than for synaptic potentials, suggesting that it involves the recruitment of a postsynaptic voltage-dependent mechanism. Two observations suggest that layer II/III EPSP potentiation may involve the recruitment of postsynaptic sodium channels: EPSP potentiation was strongly reduced by intracellular application of N-(2,6-dimethyl-phenylcarbamoylmethyl) triethylammonium bromide (QX-314) and responses to local glutamate application were potentiated by high ECK in the presence of cadmium but not in the presence of tetrodotoxin. The results demonstrate a novel way in which brief periods of repetitive stimulus drive are accompanied by rapid, transient, and specific alterations in the functional connectivity and information processing characteristics of sensorimotor cortex.  相似文献   

13.
1. End-plate potentials produced by brief trains of action potentials (5-7 at 50-100 Hz) were recorded at toad sciatic-sartorius neuromuscular junctions. When transmitter secretion was depressed in solutions containing magnesium, the increase in amplitude (growth pattern) of successive end-plate-potentials was greater than could be accounted for by arithmetic summation of facilitation (arithmetic model) as proposed by Mallart & Martin (1967). 3. With e.p.p.s of normal quantral content or in solutions in which the calcium concentration was lowered, growth patterns were occasionally reasonably close to those predicted by the arithmetic model but there was always some degree of disparity. 4. A simple, two-step, kinetic model is described which is more consistent with the varied growth patterns of end-plate potentials that have been recorded. The model can predict growth patterns of e.p.p.s with high or low quantal content.  相似文献   

14.
Trains of repetitive transcranial magnetic stimuli (rTMS) appear to have effects on corticospinal excitability that outlast the duration of the train. In order to investigate the mechanism of this effect in more detail we applied short periods of rTMS consisting of up to 20 stimuli at 5 Hz, 10 Hz or 20 Hz (rTMS) to the motor cortex at an intensity equal to resting threshold in 11 healthy, relaxed subjects. Spinal excitability, as judged by effects on the H-reflex or on transcranial anodal facilitation of the H-reflex, was not affected by the rTMS. However, cortical excitability, as judged by the effect on the size of EMG responses evoked by a suprathreshold TMS pulse, was decreased for up to 1 s after the end of rTMS. Post-train suppression was more powerful following longer trains or higher frequencies of rTMS. The predominant suppression contrasts with previous reports of facilitation, particularly after high-frequency rTMS. A second set of experiments, however, showed that this could be converted into facilitation if the intensity of rTMS was increased. We conclude that the after-effects of rTMS depend on its frequency, intensity and duration. The results are consistent with a model in which inhibition and facilitation build up gradually during the course of a conditioning train. Inhibition reaches its maximum effect after only a small number of stimuli, whereas facilitation takes longer. The threshold for evoking inhibition is lower than that for facilitation. Thus if moderate intensities of conditioning train are applied, inhibition is predominant after short trains, whereas facilitation dominates after long trains.  相似文献   

15.
Galantamine increases excitability of CA1 hippocampal pyramidal neurons   总被引:2,自引:0,他引:2  
Oh MM  Wu WW  Power JM  Disterhoft JF 《Neuroscience》2006,137(1):113-123
Galantamine is a third generation cholinesterase inhibitor and an allosteric potentiating ligand of nicotinic acetylcholine receptors. It enhances learning in aging rabbits and alleviates cognitive deficits observed in patients with Alzheimer's disease. We examined galantamine's effect on CA1 neurons from hippocampal slices of young and aging rabbits using current-clamp, intracellular recording techniques. Galantamine (10-200 microM) dose-dependently reduced the postburst afterhyperpolarization and the spike-frequency accommodation of CA1 neurons from both young and aging animals. These reductions were partially, but significantly, reversed by the addition of the muscarinic receptor antagonist, atropine (1 microM), to the perfusate. In contrast, the nicotinic acetylcholine receptor antagonist, alpha-bungarotoxin (10 nM), had no effect; i.e. alpha-bungarotoxin did not reverse the afterhyperpolarization and accommodation reductions. The allosteric potentiating ligand effect was examined by stimulating the Schaffer collateral and measuring the excitatory postsynaptic potentials for 30 min during bath application of galantamine. Galantamine (200 microM) significantly enhanced the excitatory postsynaptic potential amplitude and area over time. These effects were blocked by 10 nM alpha-bungarotoxin, supporting a role for galantamine as an allosteric potentiating ligand. We did not observe a facilitation of the excitatory postsynaptic potentials with 1 microM galantamine. However, when the excitatory postsynaptic potential was pharmacologically isolated by adding 10 microM gabazine (GABA(A) receptor antagonist) to the perfusate, 1 microM galantamine potentiated the subthreshold excitatory postsynaptic potentials into action potentials. We propose that the learning enhancement observed in aging animals and the alleviation of cognitive deficits associated with Alzheimer's disease after galantamine treatment may in part be due to the enhanced function of both nicotinic and muscarinic excitatory transmission on hippocampal pyramidal neurons.  相似文献   

16.
Watermaze learning enhances excitability of CA1 pyramidal neurons   总被引:7,自引:0,他引:7  
The dorsal hippocampus is crucial for learning the hidden-platform location in the hippocampus-dependent, spatial watermaze task. We have previously demonstrated that the postburst afterhyperpolarization (AHP) of hippocampal pyramidal neurons is reduced after acquisition of the hippocampus-dependent, temporal trace eyeblink conditioning task. We report here that the AHP and one or more of its associated currents (IAHP and/or sIAHP) are reduced in dorsal hippocampal CA1 pyramidal neurons from rats that learned the watermaze task as compared with neurons from control rats. This reduction was a learning-induced phenomenon as the AHP of CA1 neurons from rats that failed to learn the hidden-platform location was similar to that of neurons from control rats. We propose that reduction of the AHP in pyramidal neurons in regions crucial for learning is a cellular mechanism of learning that is conserved across species and tasks.  相似文献   

17.
1. Input-output properties of the inhibitory synaptic connection between non-spiking neurons (EX1) and gastric mill (GM) neurons were examined in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus. Current was injected into and the voltage was recorded during current injection, two independent microelectrodes were used. 2. The EX1-GM synaptic connection is a conductance-increase inhibitory type, with an input-output curve that resembles the curve for the squid giant synapse. There is a threshold level of depolarization for transmitter release from the presynaptic cell. Beyond that threshold, increasing presynaptic depolarization causes increasing postsynaptic hyperpolarization (and inhibition). 3. A long presynaptic current step always causes a postsynaptic response with an initial peak of hyperpolarization followed by a decay to a less hyperpolarized plateau level. The plateau level is maintained, in most cells, for the duration of the presynaptic depolarization even over long periods (30 s). 4. The peak, but not the plateau, part of the postsynaptic response is sensitive to the past history of the synaptic connection. If a large conditioning pulse is applied to the presynaptic cell causing a large postsynaptic hyperpolarization, then the postsynaptic response to a later presynaptic test depolarization will have a reduced peak, leaving the plateau component unchanged.  相似文献   

18.
19.
Intracellular recordings were made from neurones in the nucleus locus coeruleus in a slice of tissue cut from the rat pons. Clonidine (100 nM-10 microM), noradrenaline (10 microM-1 mM) and adrenaline (10 microM-1 mM) all reduced the duration of the spontaneously occurring action potential of the neurones. This effect was also observed on the action potential in the presence of tetrodotoxin, which results from calcium entering the cell. These concentrations of clonidine, noradrenaline and adrenaline always hyperpolarized the membrane. This hyperpolarization was prevented by two procedures which block potassium currents--intracellular caesium and extracellular barium. In conditions of potassium current blockade, noradrenaline (100 microM-1 mM) and adrenaline (20 microM-1 mM) shortened the calcium action potential but clonidine was ineffective even at 10 microM. Adrenaline and noradrenaline also suppressed inward calcium and barium currents measured under voltage clamp. This action of noradrenaline and adrenaline was not prevented by yohimbine (10 microM), propranolol (20 microM) or prazosin (1 microM); it was reduced by a concentration of phentolamine about 100 times higher than its Ke for alpha 2-adrenoceptors on locus coeruleus neurones. It is concluded that noradrenaline and adrenaline can directly inhibit calcium action potentials in locus coeruleus neurones when applied in high concentrations, but that this does not involve an alpha 2-adrenoceptor.  相似文献   

20.
Summary (1) The responses of CA1 pyramidal cells to short glutamate pulses (10–50 ms) delivered at sensitive spots in the apical dendrites have been analysed by intracellular recording. (2) The glutamate pulses elicited stable depolarizing responses in a dose- and frequencydependent manner. (3) When a single action potential with a firing probability around 0.5 was elicited, a subtraction procedure showed that a slow depolarizing ramp preceded each spike. We call this ramp the glutamate-induced prepotential (GluPP). (4) In contrast to the upward convex subthreshold depolarization the GluPP was upward concave. (5) The GluPP amplitude and time course increased with depolarization of the membrane, a phenomenon which appears to be connected to the elevation of action potential threshold. (6) The GluPP was regenerative since once started, it ended in an action potential. (7) A specific N-methyl-D-aspartate receptor antagonist, DL-2-amino-5-phosphonovaleric acid (50 M) reduced the glutamateinduced depolarization, but did not affect the form or amplitude of GluPP, once the latter was induced. (8) It is concluded that short glutamate pulses elicited action potentials through a prepotential mechanism, similar to the slow prepotentials induced by long depolarizing current pulses across the soma membrane. (9) A possible physiological role for the GluPP is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号