首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In patients routinely treated with metoprolol, influences of CYP2D6 genotype on the response of heart rate to isoproterenol (IP) were studied at its peak and trough concentrations and were compared with those of bisoprolol. In 72 patients treated with metoprolol or bisoprolol, CYP2D6 genotype (ie, CYP2D6*1, *2, *4, *5, *10, and *14) was determined. No patients except one who was heterozygous for CYP2D6*5 carried the null alleles of CYP2D6. The homozygote frequency for CYP2D6*10 was relatively high (19.4%) and these patients had greater peak and trough plasma concentrations of metoprolol than the other patients. Isoproterenol-induced percentage increases in heart rate were 58% and 38% less at the low and high rate of isoproterenol infusion (0.02 and 0.04 microg/kg/min), respectively, in patients homozygous for CYP2D6*10 than in the other patients at the trough, but not at the peak concentrations. In contrast, CYP2D6 genotype did not affect plasma concentrations of bisoprolol and the extent of its beta-adrenergic inhibition. Thus, in patients routinely treated with metoprolol, CYP2D6 genotype significantly affects circadian variations of beta-adrenergic inhibition induced by metoprolol. In contrast, bisoprolol has a relatively constant beta-adrenergic inhibition independent of CYP2D6 genotype.  相似文献   

2.
CYP2D6是一种重要的P450系氧化代谢酶,主要参与多种重要药物的代谢。CYP2D6基因多态性会引起药物代谢有显著的个体和种族差异。美托洛尔为选择性β1受体阻滞剂,临床应用上存在巨大个体差异,主要在肝脏经多条途径代谢,大约70%的代谢由CYP2D6介导,CPY2D6基因多态性对美托洛尔代谢有较大影响。本文从CYP2D6的基因多态性及它对美托洛尔代谢的影响这两方面作一综述。  相似文献   

3.
Crane AL  Klein K  Zanger UM  Olson JR 《Toxicology》2012,293(1-3):115-122
Chlorpyrifos (CPF) is a widely used organophosphorus (OP) pesticide. CPF is bioactivated by cytochrome P450s (CYPs) to the potent cholinesterase inhibitor chlorpyrifos oxon (CPF-O) or detoxified to 3,5,6-trichloro-2-pyridinol (TCPy). Human CYP2B6 has the highest reported Vmax)/Km (intrinsic clearance--CL(int)) for bioactivation while CYP2C19 has the highest reported CL(int) for detoxification of CPF. In this study, 22 human liver microsomes (HLMs) genotyped for common variants of these enzymes (CYP2B6*6 and CYP2C19*2) were incubated with 10 μM and 0.5 μM CPF and assayed for metabolite production. While no differences in metabolite production were observed in homozygous CYP2C19*2 HLMs, homozygous CYP2B6*6 specimens produced significantly less CPF-O than wild-type specimens at 10 μM (mean 144 and 446 pmol/min/mg, respectively). This correlated with reduced expression of CYP2B6 protein (mean 4.86 and 30.1 pmol/mg, for CYP2B6*6 and *1, respectively). Additionally, CYP2B6*1 and CYP2B6*6 were over-expressed in mammalian COS-1 cells to assess for the first time the impact of the CYP2B6*6 variant on the kinetic parameters of CPF bioactivation. The Vmax for CYP2B6*6 (1.05×10? pmol/min/nmol CYP2B6) was significantly higher than that of CYP2B6*1 (4.13×10? pmol/min/nmol CYP2B6) but the K(m) values did not differ (1.97 μM for CYP2B6*6 and 1.84 μM for CYP2B6*1) resulting in CL(int) rates of 53.5 and 22.5 nL/min/nmol CYP2B6 for *6 and *1, respectively. These data suggest that CYP2B6*6 has increased specific activity but reduced capacity to bioactivate CPF in HLMs compared to wild-type due to reduced hepatic protein expression, indicating that individuals with this genotype may be less susceptible to CPF toxicity.  相似文献   

4.
1.?CYP2D6 is an important member of the cytochrome P450 (CYP450) enzyme superfamily, we recently identified 22 CYP2D6 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of venlafaxine in vitro.

2.?The wild-type and 24 CYP2D6 variants were expressed in insect cells, and each variant was characterized using venlafaxine as the substrate. Reactions were performed at 37?°C with 5–500?μM substrate (three variants was adjusted to 1000?μM) for 50?min. By using high-performance liquid chromatography to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of O-desmethylvenlafaxine were determined.

3.?Among the 22 CYP2D6 variants, the intrinsic clearance (Vmax/Km) values of all variants were significantly decreased (from 0.2% to 84.5%) compared with wild-type CYP2D6*1. In addition, the kinetic parameters of two CYP2D6 variants could not be detected because they have no detectable enzyme activity.

4.?The comprehensive in vitro assessment of CYP2D6 variants provides significant insights into allele-specific activity towards venlafaxine in vivo.  相似文献   

5.
CYP2D6 genotyping was carried out by XbaI restriction fragment length polymorphism analysis and polymerase chain reaction in 168 healthy Danish volunteers, 77 extensive metabolizers (EM) and 91 poor metabolizers (PM) of sparteine. All EM were genotyped correctly as heterozygous or homozygous for the functional (wild type) gene, D6-wt. However, the D6-wt gene was apparently also present in 11 (12%) of the PM who accordingly were incorrectly genotyped as EM. The specificity of genotyping PM thus was 100% but the sensitivity was only 88%. The most common allele was the D6-wt with an apparent frequency of 0.741 (0.026) in the Danish population and the second most common allele was the D6-B with an apparent frequency of 0.194 (0.024). The median (range) of the sparteine metabolic ratio (MR) in 47 homozygous D6-wt EM was 0.28 (0.11–4.10) and the corresponding value in heterozygous EM was 0.36 (0.11–9.10). The median difference was 0.09 (95% confidence interval: 0.02–0.16). CYP2D6 phenotyping is a promising tool in tailoring the individual dose of tricyclic antidepressants, some neuroleplics and some antiarrhythmics. However if the genotype test could be improved with regard to both sensitivity in PM and the ability to predict CYP2D6 activity in EM then it would be of even greater clinical value in therapeutic drug monitoring.  相似文献   

6.
Venlafaxine serum levels and CYP2D6 genotype   总被引:5,自引:0,他引:5  
Thirty-three patients with depression treated with 225 mg venlafaxine were genotyped for the polymorphic enzyme, debrisoquine 4-hydroxylase (CYP2D6). The relationship between drug and metabolite levels and between genotype and clinical response were investigated. Although the number of responders in this study is insufficient for definite conclusions to be drawn, a target therapeutic concentration ranging from 195-400 microg/L for the sum of venlafaxine and O-desmethylvenlafaxine is suggested. The ratio of O-desmethylvenlafaxine to venlafaxine in the serum concentrations is a measure of metabolic turnover, and can be used to distinguish between ultrarapid and poor metabolizers. All but one of the nonresponders in this study had lower ratios than the responders. Three patients (9%) had homozygous defective CYP2D6 alleles and did not readily metabolize venlafaxine to O-desmethylvenlafaxine, pointing to poor metabolism. In these patients, N-desmethylation was increased. Two out of four patients detected by the ratio as potentially ultrarapid metabolizers were shown to have multiple copies of a functional CYP2D6 gene.  相似文献   

7.
目的:研究细胞色素P-450 2D6基因分型测定方法及其与表型的吻合率。方法:利用等位基因特异扩增法基本原理,对CYP2D6酶缺陷等位基因CYP2D6*3,*4,*6和*7进行测定。结果:通过168例基因分型,并将结果与表型对照,发现同时测定CYP2D6*3,*4,*6和*7等位基因时,125例快代谢者和43例慢代谢者的基因分型结果与表型结果的吻合率为100%。快代谢者至少有一个野生型CYP2D6等位基因,基因型为*1/*1,*1/*3和*1/*4。发现慢代谢者是CYP2D6突变型纯合子,基因型为*3/*4,*4/*4,*3/*6,*4/*7,*4/*6和*6/*6。结论:对CYP2D6*3,*4,*6和*7等位基因的测定能够准确预测其表型。  相似文献   

8.
OBJECTIVE: We reported recently that celecoxib inhibits the metabolism of the cytochrome P450 (CYP)2D6 substrate metoprolol in volunteers. Valdecoxib, the active metabolite of parecoxib, has also been claimed to interfere with the metabolism of CYP2D6 substrates. However, little support for this contention is available despite the intensive use of parecoxib in the perioperative setting. Therefore, the objective of this study was to examine the effect of valdecoxib on the pharmacokinetics of the clinically relevant CYP2D6 substrate metoprolol. METHODS: An open, randomized, 3-period crossover study was performed in 15 healthy male volunteers. Metoprolol (50 mg) was given in all 3 periods without, or following a 7-day pre-treatment with valdecoxib (20 mg, o.d.) or rofecoxib (25 mg, o.d.), to achieve steady state conditions of COX-2 inhibitors in Periods 2 and 3. In a small group of extensive metabolizers (EM/EM), short-term application of twice the dose was investigated. RESULTS: No effect of valdecoxib (20 mg/d) or rofecoxib (25 mg/d) were detected on the area under the plasma concentration-time curve of metoprolol (323 +/- 333 to 324 +/- 296 or 309 +/- 256 microg x h/l) or at a higher dose. No significant changes of pharmacokinetic or pharmacodynamic parameters of metoprolol were apparent. CONCLUSION: We conclude that, at therapeutic doses, valdecoxib and rofecoxib do not influence the CYP2D6 substrate metoprolol.  相似文献   

9.
研究细胞色素P450-2D6基因分型测定方法及其与表型的吻合率。方法:利用等位基因特异扩增法基本原理,对CYP2D6酶缺陷等位基因CYP2D6*3,*4,*6和*7进行测定。结果;通过168例基因分型,并将结果与表型对照,发现同时测定CYP2D6*3,*4,*6和*7等位基因时,125例快代谢者和43例慢代谢者的基因分型结果与表型结果的吻合率为100%。  相似文献   

10.
OBJECTIVE: To evaluate the effect of the CYP2D6 genotype on the pharmacokinetics of tropisetron in healthy Korean subjects. METHODS: A single 5-mg capsule of tropisetron was administered orally to 13 healthy subjects. Plasma concentrations were determined by validated HPLC procedures and data were analyzed by using noncompartmental linear PK methods. Four alleles, CYP2D6*1, CYP2D6*2 x2, CYP2D6*5, and CYP2D6*10, were identified by PCR. RESULTS: Thirteen subjects, consisting of two homozygous carriers of the wild type allele ( *1/*1), four heterozygous carriers of poor metabolizer (PM)-associated allele (* 1/*10), six homozygous carriers of PM-associated alleles (four with *10/*10 and two with *5/*10), and one carrier of a duplicated allele *1/*2 x2. All tested pharmacokinetic parameters (AUC(inf), AUC(inf)(NL70), Cmax, Cmax(NL70), T(1/2), and Tec) were significantly different among four different genotypic groups. The mean AUCs of carriers with the heterozygous PM-associated allele and the homozygous PM-associated allele were 1.9- and 6.8-higher than those of carriers with the wild type allele, respectively. In contrast, the mean AUC of carriers with a duplicated allele was 0.5-fold lower than that of those carriers with the wild type allele. CONCLUSION: The presence of CYP2D6*5, CYP2D6*10, and CYP2D6*2 x2 has an important impact on the pharmacokinetics of tropisetron, which may influence clinical response to tropisetron therapy.  相似文献   

11.
AIMS: Interindividual differences in the pharmacokinetics of venlafaxine, a new antidepressant, were shown during early clinical trials in Japan. Venlafaxine is metabolized mainly by CYP2D6 to an active metabolite, O-desmethylvenlafaxine (ODV). Therefore, the influence of the CYP2D6 genotypes on venlafaxine pharmacokinetics was examined in a Japanese population. METHODS: Twelve adult Japanese men in good health participated in this study. Genomic DNA was isolated from peripheral lymphocytes, and the CYP2D6 genotypes were determined by codon 188C/T, 1934G/A, 2938G/A and 4268G/C mutations using endonuclease tests based on PCR and by Xba I-RFLP analysis. Subjects were categorized into the following 3 groups (n=4 in each group); Group1: CYP2D6*10/*10, *5/*10, Group2: CYP2D6*1/*10, *2/*10 and Group3: CYP2D6*1/*1, CYP2D6*1/*2. Venlafaxine (25 mg, n=6; 37.5 mg, n=6) was administered orally at 09.00 h following an overnight fast. Plasma concentrations of venlafaxine and ODV were monitored by h.p.l.c. for 48 h. RESULTS: The Cmax and AUC of venlafaxine were 184% and 484% higher in the group 1 subjects than in the group 3 subjects, and 101% and 203% higher in the group 1 than in the group 2, respectively. CONCLUSIONS: These results suggest that CYP2D6*10 influences the pharmacokinetics of venlafaxine in a Japanese population.  相似文献   

12.
CYP2D6基因与药物代谢   总被引:2,自引:0,他引:2  
细胞色素P 45 0 (CYP)中的CYP2D6酶在抗抑郁药、安定药及某些抗心律失常药的代谢中起重要作用 ,CYP2D6基因位于 2 2号常染色体上为隐性遗传 ,CYP2D6基因呈多态性约有 70余种等位基因变异型 ,也存在特异人群差别 ,因而导致所编码的酶活性不同 ,这些数据有助于理解药物代谢的个体差异、有助于预测药物之间的相互作用。  相似文献   

13.

Objective

To examine the effect of CYP2D6 genotype on the pharmacokinetics of flecainide, we conducted a population pharmacokinetic analysis of the data collected during routine therapeutic drug monitoring of Japanese patients with supraventricular tachyarrhythmia.

Methods

Population analysis was performed on retrospective data from 58 patients with normal kidney and liver function treated with oral flecainide for supraventricular tachyarrhythmia. Serum concentrations of flecainide were determined by high-performance liquid chromatography. CYP2D6 genotyping for extensive metabolizer (EM), intermediate metabolizer (IM) and poor metabolizer (PM) alleles was conducted by allele-specific polymerase chain reaction (PCR) and stepdown PCR. WinNonMix® was used to estimate oral clearance (CL/F) of flecainide with a one-compartment model for first-order absorption.

Results

Body weight, age, sex, serum creatinine concentration (Scr), and CYP2D6 genotype influenced flecainide pharmacokinetics. The CL/F was affected by age (30% reduction in ≥70 years old) and sex (24% reduction in females). The ratios of CL/F for the five CYP2D6 genotypes were: 1.00 (EM/EM), 0.89 (EM/IM), 0.84 (EM/PM), 0.79 (IM/IM), 0.73 (IM/PM). A model including these five covariates reduced the interpatient variability of CL/F from 32.9% (base model) to 17.8%. Using a Bayesian method we estimated that the CL/F in IMs was significantly lower than in homozygous EMs (0.25±0.05 l h?1 kg?1 vs. 0.37±0.08 l h?1 kg?1, P<0.05) among male patients under 70 years old.

Conclusions

CYP2D6 genotype, even in IMs, as well as body weight, age, sex, and Scr influence flecainide pharmacokinetics in Japanese patients with supraventricular tachyarrhythmia.  相似文献   

14.
Several studies have reported that the cytochrome P450 (CYP) 2D6 plays an important role in the fluvoxamine metabolism. However, some other studies have reported that the CYP2D6 genotype has no major impact on the fluvoxamine concentration. This study investigated the dose-dependent effect of CYP2D6-variant alleles on the steady-state fluvoxamine concentration. There were 23 patients whose plasma concentrations of fluvoxamine were measured at 4 doses (50, 100, 150, and 200 mg/d). The differences in the plasma fluvoxamine concentration were analyzed between 2 genotype groups divided by the number of CYP2D6-variant alleles (with 0 and 1 or 2 variant alleles). The results demonstrated the nonlinear kinetics of fluvoxamine metabolism, and the degree of nonlinear kinetics decreased as the dose was increased. Significant differences in fluvoxamine concentration were observed between the subjects with 0 variant alleles and the subjects with 1 or 2 variant alleles (P = 0.044) when they were treated by 50 mg of fluvoxamine. There were no significant differences in the plasma concentration of fluvoxamine at 100, 150, and 200 mg/d. The present study suggests that the effect of the CYP2D6 genotype on fluvoxamine metabolism is greater at lower doses of fluvoxamine.  相似文献   

15.
16.
目的:研究中国人群CYP2D6基因多态性对美托洛尔药代动力学的影响。方法:使用基因芯片技术测定中国健康志愿者CYP2D6的基因型,按照分型结果将志愿者分为四组,第1组:CYP2D6*2W*10W,第2组:CYP2D6*2H*10W或CYP2D6*2M*10W,第3组:CYP2D6*2M*10H,第4组:CYP2D6*2M*10M,每组筛选10人,共40人。各组志愿者单次口服100mg美托洛尔后,使用HPLC方法测定血和尿中美托洛尔及其代谢产物α-羟基美托洛尔(HM)的浓度,研究其在不同基因型志愿者体内的药代过程。结果:第2组美托洛尔及其HM的主要药动学参数与第1组相比均没有统计学差异。第3组美托洛尔的t1/2、AUC、Cmax显著高于第1组(P〈0.05);而HM的t1/2延长47.3%,AUC降低56.0%(P〈0.05)。第4组美托洛尔的t1/2、AUC、Cmax均显著高于第1组(P〈0.05)和第3组(P〈0.05);HM的t1/2、AUC、Cmax与第1组和第3组相比均有统计学差异(P〈0.05),且呈现基因剂量效应。第3组和第4组的口服清除率和肾清除率均低于第1组,而0-24h代谢比率分别为第1组的1.82倍和3.96倍。结论:CYP2D6*2对于美托洛尔的药代动力学过程没有影响;但CYP2D6*10可降低酶活性,且CYP2D6*10纯合子变异比杂合子变异对美托洛尔药代动力学的影响更大,呈现基因剂量效应。  相似文献   

17.
18.
The cytochrome P450 2D6 (CYP2D6) genotypes and phenotypes of 106 unrelated, healthy black Tanzanians of Bantu origin were investigated. The results revealed a population with a generally decreased capacity to metabolize the CYP2D6 substrate debrisoquine with 59% of the Tanzanian extensive metabolisers having debrisoquine metabolic ratios (MRs) > 1 versus 20% in Caucasians. This decrease in metabolic capacity was not fully explained by the partially or fully detrimental CYP2D6 gene mutations analysed for in this study. As many as 7% poor metabolizers of debrisoquine were identified but none was homozygous for defective CYP2D6 alleles. The majority among the group of poor metabolizers had relatively low metabolic ratios. The mutational profile indicated a closer association of the Tanzanian CYP2D locus to that of Zimbabweans rather than to that of Ethiopians. The defective alleles CYP2D6*3, *4, *5 and *6 were found at low frequencies (0%, 1%, 6%, 0%, respectively), whereas the CYP2D6*17 allele causing an enzyme with altered specificity was common (allele frequency = 17%). It is concluded that the CYP2D6 genotype in the Tanzanian Bantu population is different from that of other African populations examined to date and that further studies are required to explain the generally lower capacity to metabolize CYP2D6 substrates.  相似文献   

19.
1 The metabolism of metoprolol depends in part on the genetically determined activity of the CYP2D6 isoenzyme. In vitro studies have shown that nicardipine is a potent inhibitor of CYP2D6 activity. Since the combination of metoprolol and nicardipine is likely to be used for the treatment of hypertension, we examined the interaction between these two drugs at steady-state. 2 Fourteen healthy volunteers, seven extensive and seven poor metabolisers of dextromethorphan were studied in a double-blind, randomised cross-over four-period protocol. Subjects received nicardipine 50 mg every 12 h, metoprolol 100 mg every 12 h, a combination of both drugs and placebo during 5.5 days. Steady-state pharmacokinetics of nicardipine and metoprolol were analyzed. Beta-adrenoceptor blockade was assessed as the reduction of exercise-induced tachycardia. 3 During treatment with metoprolol, alone or in combination with nicardipine, its steady-state plasma concentrations were higher in subjects of the poor metaboliser phenotype than in extensive metabolisers. Beta-adrenoceptor blockade was also more pronounced in poor metabolisers than in extensive metabolisers of dextromethorphan during treatment with metoprolol alone or in combination with nicardipine (24.0 +/- 2.4% vs 17.1 +/- 3.5% and 24.1 +/- 2.5% vs 15.4 +/- 2.7% reduction in exercise trachycardia, respectively, P < 0.01 in each case). 4 Nicardipine produced a small increase in plasma metoprolol concentration in extensive metabolisers from 35.9 +/- 16.6 to 45.8 +/- 15.4 ng ml(-1) (P < 0.02), but had no significant effect in poor metabolisers. However, nicardipine did not alter the R/S metoprolol ratio in plasma 3 h after dosing, the plasma concentration of S-(-)-metoprolol 3 h after dosing or the beta-adrenoceptor blockade produced by metoprolol in subjects of both phenotypes. The partial metabolic clearance of metoprolol to alpha-hydroxy-metoprolol was not altered significantly in extensive metabolisers. Plasma nicardipine concentration and beta-adrenoceptor blocking effects did not differ between the phenotypes and were not influenced by metoprolol. We conclude that beta-adrenoceptor blockade during repeated dosing with metoprolol is more pronounced in poor than in extensive metaboliser subjects, that nicardipine decreases a CYP2D6-independent route of metoprolol elimination but does not increase beta-adrenoceptor blockade during repeated dosing with metoprolol.  相似文献   

20.
Perhexiline is metabolized by CYP2D6 and has concentration-related hepatoxicity and peripheral neuropathy. The risk of toxicity is reduced using therapeutic drug monitoring. CYP2D6 genotyping before therapy may allow earlier appropriate dosing. This study aimed to determine whether assessment of CYP2D6 genotype in patients on perhexiline could predict accurately metabolizer status as determined by the perhexiline metabolic ratio (MR). Blood samples from patients stabilized on perhexiline were analysed for CYP2D6 genotype and for concentrations of perhexiline and its hydroxy metabolite. The MR was determined. Of 74 patients, five were poor metabolizers (PM) defined by a MR<0.4, and the remainder were extensive metabolizers (EM). The genotypes were: *1/*1 (n=21), *1/*4 (n=18), *1/*2 (n=12), *1/*3 (n=2), *1/*5 (n=1), *1/*9 (n=2), *1/*10 (n=2), *2/*4 (n=4), *2/*2 (n=3), *4/*41 (n=3), *2/*41 (n=1), *41/*41 (n=1), *4/*9 (n=1), *4/*5 (n=1), *5/*6 (n=1) and *4/*6 (n=1). Allele frequencies were consistent with those reported in population studies. The 3 PMs with the lowest MR were predicted by genotype (*4/*5, *5/*6, *4/*6). The other 2 PMs had intermediate metabolizer genotypes and were on CYP2D6 inhibiting drugs. Amongst the EMs, the highest MR was associated with *1 and *2 allele combinations and the MR was progressively lower with the presence of alleles with intermediate function (*9, *10, *41) followed by alleles with no functional product (*3, *4, *5, *6). Thus, a gene-dose effect was observed. Genotype predicted PM phenotype and also intermediate metabolizers. Determination of CYP2D6 genotype before therapy with perhexiline may help predict perhexiline dose requirements and reduce the risk of perhexiline concentration-related toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号