首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impaired ciliary and flagellar functions resulting in male infertility and recurrent respiratory tract infections are found in patients suffering from primary ciliary dyskinesia (PCD). In most cases, axonemal defects are present, i.e. PCD patients often lack inner and/or outer dynein arms in their sperm tails and cilia, supporting the hypothesis that mutations in dynein genes may cause PCD. However, to date it is unclear whether mutations in dynein heavy chain genes are responsible for impaired flagellar and ciliary motility in mammals. To elucidate the role of the mouse dynein heavy chain 7 (MDHC7) gene, which encodes a component of the inner dynein arm, we have generated mice lacking this dynein heavy chain isoform. Both MDHC7(+/-) and MDHC7(-/-) mice are viable and show no malformations; however, homozygous males produce no offspring. In comparison to MDHC7(+/-) and wild-type mice the spermatozoa of MDHC7(-/-) mice revealed a dramatic reduced straight line velocity and progressive movement, resulting in the inability of MDHC7-deficient sperm to move from the uterus into the oviduct. Additionally, we measured the beat frequency of tracheal cilia and observed a decrease in the beat frequency of approximately 50% in MDHC7(-/-) mice. The reduction in both ciliary and flagellar motility is not correlated with any gross defects in the axonemal structure. The phenotype of MDHC7(-/-) mice is similar to that observed in some patients suffering from PCD, and our data strongly suggest that in some patients this disease could be due to mutations in the homologous human gene DNAH1 (HDHC7).  相似文献   

2.
Primary ciliary dyskinesia (PCD) is an inherited disorder causing significant upper and lower respiratory tract morbidity and impaired fertility. Half of PCD patients show abnormal situs. Human disease loci have been identified but a mouse model without additional deleterious defects is elusive. The inversus viscerum mouse, mutated at the outer arm dynein heavy chain 11 locus (Dnahc11) is a known model of heterotaxy. We demonstrated immotile tracheal cilia with normal ultrastructure and reduced sperm motility in the Dnahc11(iv) mouse. This is accompanied by gross rhinitis, sinusitis, and otitis media, all indicators of human PCD. Strikingly, age-related progression of the disease is evident. The Dnahc11(iv) mouse is robust, lacks secondary defects, and requires no intervention to precipitate the phenotype. Together these findings show the Dnahc11(iv) mouse to be an excellent model of many aspects of human PCD. Mutation of the homologous human locus has previously been associated with hyperkinetic tracheal cilia in PCD. Two PCD patients with normal ciliary ultrastructure, one with immotile and one with hyperkinetic cilia were found to carry DNAH11 mutations. Three novel DNAH11 mutations were detected indicating that this gene should be investigated in patients with normal ciliary ultrastructure and static, as well as hyperkinetic cilia.  相似文献   

3.
Primary ciliary dyskinesia (PCD), also known as Kartagener's syndrome, is a human syndrome that results from ciliary dysfunction. This syndrome is characterized by recurrent respiratory infections, situs inversus and infertility. In some cases, hydrocephalus is also observed. We have characterized an insertional mutation in a mouse axonemal dynein heavy chain gene (Mdnah5) that reproduces most of the classical features of PCD, including recurrent respiratory infections, situs inversus and ciliary immotility. These mice also suffer from hydrocephalus and die perinatally. Electron microscopic studies demonstrate the loss of axonemal outer arms. These results show that mutations in Mdnah5 are a primary cause of PCD and provide direct evidence that mutations in an axonemal dynein can cause hydrocephalus. Mutations in the human DNAH5 have recently been identified in PCD patients. Comparison of the mouse model and the human data suggests that the degree of ciliary dysfunction is causally related to the severity of human PCD, particularly the presence of hydrocephalus.  相似文献   

4.
Primary ciliary dyskinesia (PCD), or immotile cilia syndrome (ICS), is an autosomal recessive disorder affecting ciliary movement with an incidence of 1 in 20000-30000. Dysmotility to complete immotility of cilia results in a multisystem disease of variable severity with recurrent respiratory tract infections leading to bronchiectasis and male subfertility. Ultrastructural defects are present in ciliated mucosa and spermatozoa. Situs inversus (SI) is found in about half of the patients (Kartagener syndrome). We have collected samples from 61 European and North American families with PCD. A genome-wide linkage search was performed in 31 multiplex families (169 individuals including 70 affecteds) using 188 evenly spaced (19cM average interval) polymorphic markers. Both parametric (recessive model) and non-parametric (identity by descent allele sharing) linkage analyses were used. No major locus for the majority of the families was identified, although the sample was powerful enough to detect linkage if 40% of the families were linked to one locus. These results strongly suggest extensive locus heterogeneity. Potential genomic regions harbouring PCD loci were localised on chromosomes 3p, 4q, 5p, 7p, 8q, 10p, 11q, 13q, 15q, 16p, 17q and 19q. Linkage analysis using PCD families with a dynein arm deficiency provided 'suggestive' evidence for linkage to chromosomal regions 8q, 16pter, while analyses using only PCD families with situs inversus resulted in 'suggestive' scores for chromosomes 8q, and 19q.  相似文献   

5.
6.
ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetic disorder causing chronic oto-sino-pulmonary disease. No single diagnostic test will detect all PCD cases. Transmission electron microscopy (TEM) of respiratory cilia was previously considered the gold standard diagnostic test for PCD, but 30% of all PCD cases have either normal ciliary ultrastructure or subtle changes which are non-diagnostic. These cases are identified through alternate diagnostic tests, including nasal nitric oxide measurement, high-speed videomicroscopy analysis, immunofluorescent staining of axonemal proteins, and/or mutation analysis of various PCD causing genes. Autosomal recessive mutations in DNAH11 and HYDIN produce normal TEM ciliary ultrastructure, while mutations in genes encoding for radial spoke head proteins result in some cross-sections with non-diagnostic alterations in the central apparatus interspersed with normal ciliary cross-sections. Mutations in nexin link and dynein regulatory complex genes lead to a collection of different ciliary ultrastructures; mutations in CCDC65, CCDC164, and GAS8 produce normal ciliary ultrastructure, while mutations in CCDC39 and CCDC40 cause absent inner dynein arms and microtubule disorganization in some ciliary cross-sections. Mutations in CCNO and MCIDAS cause near complete absence of respiratory cilia due to defects in generation of multiple cellular basal bodies; however, the scant cilia generated may have normal ultrastructure. Lastly, a syndromic form of PCD with retinal degeneration results in normal ciliary ultrastructure through mutations in the RPGR gene. Clinicians must be aware of these genetic causes of PCD resulting in non-diagnostic TEM ciliary ultrastructure and refrain from using TEM of respiratory cilia as a test to rule out PCD.  相似文献   

7.
Primary ciliary dyskinesia (PCD) is an autosomal recessive disease characterized by chronic respiratory infections of the upper and lower airways, hypofertility, and, in approximately half of the cases, situs inversus. This complex phenotype results from defects in motile cilia and sperm flagella. Among the numerous genes involved in PCD, very few—including CCDC39 and CCDC40—carry mutations that lead to a disorganization of ciliary axonemes with microtubule misalignment. Focusing on this particular phenotype, we identified bi‐allelic loss‐of‐function mutations in GAS8, a gene that encodes a subunit of the nexin‐dynein regulatory complex (N‐DRC) orthologous to DRC4 of the flagellated alga Chlamydomonas reinhardtii. Unlike the majority of PCD patients, individuals with GAS8 mutations have motile cilia, which, as documented by high‐speed videomicroscopy, display a subtle beating pattern defect characterized by slightly reduced bending amplitude. Immunofluorescence studies performed on patients’ respiratory cilia revealed that GAS8 is not required for the proper expression of CCDC39 and CCDC40. Rather, mutations in GAS8 affect the subcellular localization of another N‐DRC subunit called DRC3. Overall, this study, which identifies GAS8 as a PCD gene, unveils the key importance of the corresponding protein in N‐DRC integrity and in the proper alignment of axonemal microtubules in humans.  相似文献   

8.
《Genetics in medicine》2009,11(7):473-487
Primary ciliary dyskinesia is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (dynein axonemal heavy chain 5) or intermediate (dynein axonemal intermediate chain 1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for primary ciliary dyskinesia is available for the most common mutations. The respiratory manifestations of primary ciliary dyskinesia (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis, and chronic otitis media) reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of patients with primary ciliary dyskinesia have laterality defects (including situs inversus totalis and, less commonly, heterotaxy, and congenital heart disease), reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most patients with primary ciliary dyskinesia have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with primary ciliary dyskinesia.  相似文献   

9.
10.
Wistar Imamichi rat and human respiratory cilia were examined with anti-dynein antibody (AD2), which is specific for sea urchin sperm flagellar dynein. AD2-labelled fresh-frozen normal rat and human cilia stained clearly by immunofluorescence and the peroxidase-antiperoxidase (PAP) technique. On immunoelectron microscopy, AD2 labelled the outer dynein arms of normal human cilia. Paraffin-embedded normal human cilia also stained by immunofluorescence, although not always clearly. Neither the cilia of WIC-Hyd male rats, an animal model of Kartagener's syndrome, nor human cilia from patients with primary ciliary dyskinesia (PCD) reacted positively by the immunofluorescence or PAP technique. Western blots of normal rat cilia yielded a single band of about 450 kDa. In conclusion, AD2 recognizes the outer arm dynein heavy chains of healthy cilia and may be useful in diagnosing and classifying PCD light microscopically especially when only paraffin-embedded specimens are available. This approach may be of potential use for better defining and classifying PCD.  相似文献   

11.
BACKGROUND: The main symptoms of primary ciliary dyskinesia (PCD) are nasal rhinorrhea or blockage and moist-sounding cough. Diagnosis can be difficult and is based on an abnormal ciliary beat frequency, accompanied by specific abnormalities of the ciliary axoneme. It is unknown whether determining ciliary beat pattern related to specific ultrastructural ciliary defects might help in the diagnosis of PCD. OBJECTIVE: We sought to determine ciliary beat pattern and beat frequency (CBF) associated with the 5 common ultrastructural defects responsible for PCD. METHODS: Nasal brushings were performed on 56 children with PCD. Ciliary movement was recorded using digital high-speed video imaging to assess beat frequency and pattern. Electron microscopy was performed. RESULTS: In patients with an isolated outer dynein arm or with an outer and inner dynein arm defect, 55% and 80% of cilia were immotile, respectively. Cilia that moved were only flickering. Mean CBF (+/- 95% CI) was 2.3 Hz (+/- 1.2) and 0.8 Hz(+/- 0.8), respectively. Cilia with an isolated inner dynein arm or a radial spoke defect had similar beat patterns. Cilia appeared stiff, had a reduced amplitude, and failed to bend along their length. Immotile cilia were present in 10% of cilia with an inner dynein arm defect and in 30% of radial spoke defects. Mean CBF was 9.3 Hz (+/- 2.6) and 6.0 Hz (+/- 3.1), respectively. The ciliary transposition defect produced a large circular beat pattern (mean CBF, 10.7 Hz [+/- 1.1]). No cilia were immotile. CONCLUSIONS: Different ultrastructural defects responsible for PCD result in predictable beat patterns. Recognition of these might help in the diagnostic evaluation of patients suspected of having PCD.  相似文献   

12.
BACKGROUND: Primary ciliary dyskinesia (PCD) results in impaired mucociliary clearance. Patients with this disorder develop chronic sinopulmonary disease with recurrent sinusitis, otitis media, nasal polyposis, pneumonia, and, ultimately, bronchiectasis. Other associated findings of dysfunctional ciliary activity include situs inversus, dextrocardia, and infertility. OBJECTIVE: To describe our 10-year experience using a small, plastic, disposable curette to perform a screening procedure for cilia function and to collect samples for electron microscopy. METHODS: In the past 10 years, we screened infants and children with severe chronic sinusitis and other chronic recurrent upper respiratory tract problems for PCD by using a plastic, disposable curette to collect tissue samples from the nasal mucosa. Samples were placed in sterile saline and examined under light microscopy for the presence of cilia. Failure to note ciliary movement prompted another examination 1 month later. If no functional cilia were noted at the follow-up examination, a specimen was obtained and sent for electron microscopy. RESULTS: We identified 7 patients with PCD; 2 had situs inversus totalis. Average age at diagnosis was 3 years. The most common symptom at presentation was frequent upper respiratory tract infections with severe otitis media (7 patients) and sinusitis (5 patients). Recurrent pneumonia was present in 6 patients. Dynein arm deficiency was the most common electron microscopic diagnosis. CONCLUSIONS: Evaluating children for PCD by using a plastic, disposable curette is a relatively simple procedure that could be used by allergists in practice. Primary ciliary dyskinesia occurs frequently enough that physicians should consider it as part of the differential diagnosis in evaluating children with recurrent, severe sinopulmonary infections.  相似文献   

13.
Transmission electron microscopy of nasal cilia was performed in three patients, two of them siblings, with repeated respiratory infections. Number of microtubuli and dynein arms were within normal limits and they had an ordered arrangement except for a disarray of the microtubuli in some areas of the biopsies from two of the patients. In the normal areas radial spokes and sheaths were easily found but nexin links could not be discerned in any of the patients. The orientation of the cilia was partly random. As all patients repeatedly and constantly had very low nasal NO (range 9-15 ppb; normal findings for persons <10 years old are > 50 ppb), the diagnoses were very likely primary ciliary dyskinesia (PCD). Absence of nexin links may be an ultrastructural variant of PCD. Deficiency of these structures might be the cause of the microtubular disarray observed in some areas of the biopsies.  相似文献   

14.
Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by perturbed or absent beating of motile cilia, which is referred to as Kartagener syndrome (KS) when associated with situs inversus. We present a German family in which five individuals have PCD and one has KS. PCD was confirmed by analysis of native and cultured respiratory ciliated epithelia with high-speed video microscopy. Respiratory ciliated cells from the affected individuals showed an abnormal nonflexible beating pattern with a reduced cilium bending capacity and a hyperkinetic beat. Interestingly, the axonemal ultrastructure of these respiratory cilia was normal and outer dynein arms were intact, as shown by electron microscopy and immunohistochemistry. Microsatellite analysis indicated genetic linkage to the dynein heavy chain DNAH11 on chromosome 7p21. All affected individuals carried the compound heterozygous DNAH11 mutations c.12384C>G and c.13552_13608del. Both mutations are located in the C-terminal domain and predict a truncated DNAH11 protein (p.Y4128X, p.A4518_A4523delinsQ). The mutations described here were not present in a cohort of 96 PCD patients. In conclusion, our findings support the view that DNAH11 mutations indeed cause PCD and KS, and that the reported DNAH11 nonsense mutations are associated with a normal axonemal ultrastructure and are compatible with normal male fertility.  相似文献   

15.
Sliding between adjacent microtubules within the axonema gives rise to the motility of cilia and flagella. The driving force is produced by dynein complexes which are mainly composed of the axonemal dynein heavy chains. We used cells of human respiratory epithelium after in vitro ciliogenesis to clone cDNA fragments of nine dynein heavy chain genes, one of which had never been identified before. Dynein heavy chains are highly conserved from protozoa to human and the evolutionary ancestry of these dynein heavy chain cDNA fragments was deduced by phylogenetic analysis. These dynein heavy chain cDNAs are highly transcribed in human tissues containing axonema such as trachea, testis and brain, but not in adult heart or placenta. PAC clones containing dynein heavy chains were obtained and used to determine by FISH their chromosomal position in the human genome. They were mapped to 2p12-p11, 2q33, 3p21.2-p21.1, 13q14, 16p12 and 17p12. The chromosomal assignment of these dynein heavy chain genes which was confirmed by GeneBridge 4 radiation hybrid screening, will be extremely useful for linkage analysis efforts in patients with primary ciliary dyskinesia (PCD).  相似文献   

16.
《Genetics in medicine》2023,25(5):100798
PurposePrimary ciliary dyskinesia (PCD) is a heterogeneous disorder that includes respiratory symptoms, laterality defects, and infertility caused by dysfunction of motile cilia. Most PCD-causing variants result in abnormal outer dynein arms (ODAs), which provide the generative force for respiratory ciliary beating and proper mucociliary clearance.MethodsIn addition to studies in mouse and planaria, clinical exome sequencing and functional analyses in human were performed.ResultsIn this study, we identified homozygous pathogenic variants in CLXN (EFCAB1/ODAD5) in 3 individuals with laterality defects and respiratory symptoms. Consistently, we found that Clxn is expressed in mice left-right organizer. Transmission electron microscopy depicted ODA defects in distal ciliary axonemes. Immunofluorescence microscopy revealed absence of CLXN from the ciliary axonemes, absence of the ODA components DNAH5, DNAI1, and DNAI2 from the distal axonemes, and mislocalization or absence of DNAH9. In addition, CLXN was undetectable in ciliary axonemes of individuals with defects in the ODA-docking machinery: ODAD1, ODAD2, ODAD3, and ODAD4. Furthermore, SMED-EFCAB1-deficient planaria displayed ciliary dysmotility.ConclusionOur results revealed that pathogenic variants in CLXN cause PCD with defects in the assembly of distal ODAs in the respiratory cilia. CLXN should be referred to as ODA-docking complex–associated protein ODAD5.  相似文献   

17.
Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disorder, characterized by progressive development of bronchiectasis, inflammation, and features characteristic of chronic obstructive pulmonary disease. We report here that a murine mutation of the evolutionarily conserved adenylate kinase 7 (Ak7) gene results in animals presenting with pathological signs characteristic of PCD, including ultrastructural ciliary defects and decreased ciliary beat frequency in respiratory epithelium. The mutation is associated with hydrocephalus, abnormal spermatogenesis, mucus accumulation in paranasal passages, and a dramatic respiratory pathology upon allergen challenge. Ak7 appears to be a marker for cilia with (9 + 2) microtubular organization. This is suggested by its tissue specificity of expression and also the stringent conservation of Ak7 ortholog structure only in protozoans and metazoans possessing motile (9 + 2) cilia. Collectively, our results indicate an ancestral and crucial role of Ak7 in maintaining ciliary structure and function, and suggest that mutations of the human ortholog may underlie a subset of genetically uncharacterized PCD cases.  相似文献   

18.
Motility of unicellular organisms occurred early in evolution with the emergence of cilia and flagella. In vertebrates, motile cilia are required for numerous functions such as clearance of the airways and determination of left-right body asymmetry. Ependymal cells lining the brain ventricles also carry motile cilia, but their biological function has remained obscure. Here, we show that ependymal cilia generate a laminar flow of cerebrospinal fluid through the cerebral aqueduct, which we term as 'ependymal flow'. The axonemal dynein heavy chain gene Mdnah5 is specifically expressed in ependymal cells, and is essential for ultrastructural and functional integrity of ependymal cilia. In Mdnah5-mutant mice, lack of ependymal flow causes closure of the aqueduct and subsequent formation of triventricular hydrocephalus during early postnatal brain development. The higher incidence of aqueduct stenosis and hydrocephalus formation in patients with ciliary defects proves the relevance of this novel mechanism in humans.  相似文献   

19.
Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormal ciliary structure and function, impaired mucociliary clearance, and chronic middle ear, sinus, and lung disease. PCD is associated with situs inversus in ∼50% of the patients. One proposed explanation for this relationship is that normal ciliary function plays a role in normal organ orientation, whereas organ orientation in PCD is a random event because of dysfunctional cilia in early embryonic development. Another hypothesis for the association between PCD and situs inversus is that mutated genes in PCD not only cause defective cilia, but are also linked to the control of organ laterality, such that abnormalities in this molecular pathway result in random left-right asymmetry. We report on a set of monozygotic twin women with PCD. In both patients, deficiency of the inner dynein arms was noted on ciliary ultrastructural analysis, associated with a clinical syndrome of bronchiectasis, chronic sinusitis, and middle ear disease. One of the twins has situs solitus, the other has situs inversus totalis. DNA analysis confirmed that the twins are monozygotic. This is consistent with the hypothesis that situs inversus occurring in patients with primary ciliary dyskinesia is a random but “complete” event in the fetal development of patients with PCD. Am. J. Med. Genet. 82:155–160, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号