首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously shown that retroviral vector particles derived from Moloney murine leukemia virus (Mo-MuLV) can efficiently incorporate influenza hemagglutinin (HA) glycoproteins from fowl plague virus (FPV), thus conferring a broad tropism to the vectors. To modify its host range, we have engineered the FPV HA to display four different polypeptides on its N terminus: the epidermal growth factor, an anti-human MHC class I molecules scFv (single-chain antibody), an anti-melanoma antigen scFv, and an IgG Fc-binding polypeptide. All recombinant HA glycoproteins were correctly expressed and processed, and efficiently incorporated into Mo-MuLV retroviral particles, indicating that amino-terminal insertion of large polypeptides did not alter the conformation of HA chimeras. Virions carrying the different chimeras bound specifically to cells expressing the targeted cell surface molecules of each ligand. In addition, all virion types were infectious but exhibited various degrees of specificity regarding the use of the targeted cell surface molecule versus the wild-type FPV HA receptor for cell entry and infection. For some ligands tested, infectivity was significantly increased on cells that express the targeted receptor, compared with cells that express only the wild-type HA receptor. Furthermore, some polypeptides could abolish infectivity via the wild-type FPV HA receptor. Our data therefore indicate that it is possible to engineer the HA envelope glycoprotein by fusing ligands to its amino-terminal end without affecting its fusion activity.  相似文献   

2.
The entry of retroviral vectors into cells requires two events: binding to a cell surface receptor and the subsequent fusion of viral and cellular membranes. The host range of a vector is therefore determined largely by the receptor specificity of the fusion protein contained in the outer viral envelope. Previous attempts to generate targeted retroviral vectors have included the addition of targeting ligands to the murine leukemia virus envelope protein (MuLV Env). Although such proteins frequently display modified cell-binding characteristics, the interaction with the targeted receptors fails to trigger virus-cell fusion. Here, we report the use of a binding-defective but fusion-competent hemagglutinin (HA) protein to complement the fusion defect in a chimeric MuLV Env targeted to the Flt-3 receptor. Retroviral vectors containing both proteins showed enhanced transduction of cells expressing Flt-3, which was abrogated by preincubating the target cells with soluble Flt-3 ligand. Furthermore, the fusion function of HA was absolutely required. These data demonstrate that it is possible to separate the binding and fusion events of retroviral entry, using two separate proteins, and suggest that varying the binding protein component in this scheme may allow a general strategy for targeting retroviral vectors.  相似文献   

3.
Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.  相似文献   

4.
We have attempted to engineer murine leukemia virus (MuLV)-based retroviral vectors to specifically transduce cells expressing human CD34, an antigen present on the surface of undifferentiated hematopoietic stem cells. A number of chimeric ecotropic MuLV envelope (Env) proteins were constructed that contained anti-CD34 single-chain antibody variable fragments (scFvs). The scFv-Env proteins were generated either by replacing the receptor-binding domain of Env with the scFv or by inserting the scFv into the N terminus of the Env protein. Only chimeric Env proteins with scFv insertions between amino acids 6 and 7 were incorporated into viral particles, and coexpression of native MuLV Env did not rescue incorporation-defective proteins. In addition, the efficiency of incorporation varied with the specific anti-CD34 scFv that was used. Retroviral vectors containing the scFv-Env proteins bound to CD34+ cells and transduced NIH 3T3 cells expressing human CD34 (3T3-CD34 cells) at approximately twice the efficiency of the parental NIH 3T3 cells. However, the introduction of the mutation D84K, which prevents binding to the ecotropic MuLV receptor mcat-1, prevented transduction of both NIH 3T3 and 3T3-CD34 cells. Complementation cell-cell fusion assays [Zhao et al. (1997). J. Virol. 71, 6967-6972] in 3T3-CD34 cells revealed that although the scFv-Env proteins could contribute postbinding entry functions when bound to mcat-1, they were unable to do so when bound to CD34. Taken together, these data suggest that although the interaction with CD34 effectively increased the concentration of virus on 3T3-CD34 cells, entry could occur only through an interaction with mcat-1; CD34 alone was not capable of triggering the appropriate postbinding changes that lead to viral entry.  相似文献   

5.
Lentiviral vectors represent an attractive technology platform from which to develop a targetable injectable gene delivery system for transduction of specific cell populations in vivo, irrespective of their cell cycle status. Targeted HIV-1-based lentiviral vectors were generated by pseudotyping them with chimeric murine leukemia virus (MLV) envelope glycoproteins displaying N-terminal targeting polypeptides. Vectors displaying an EGF polypeptide were fully infectious on EGF receptor-negative cells, but were inactive on cells with abundant EGF receptors (inverse targeting). Receptor-mediated inactivation of gene transfer was overcome by competing the EGF receptors on the target cells with soluble EGF or by removing the displayed EGF domain from the surface of the vector particles by factor Xa cleavage of a specific protease substrate engineered into its tethering linker (protease targeting). Intravenous infusion of nontargeted HIV-1 vectors led to maximal luciferase activity in liver and spleen with moderate or minimal activity in heart, skeletal muscle, lung, brain, kidney, ovaries and bone marrow. In contrast, intravenous EGF-displaying vectors were expressed maximally in spleen with very low level luciferase expression detectable in liver (EGF-receptor rich). Liver transduction by the EGF-displaying vector was restored by pretreating the animals with soluble EGF suggesting that these vectors are inversely targeted to spleen.  相似文献   

6.
《Transfusion science》1996,17(1):121-128
The potential usefulness of retroviral vectors in cancer gene therapy would be dramatically increased if means could be developed to safely and efficiently target retroviruses to specific cell types in vivo. As a first step toward addressing this problem, we have developed genetically engineered retroviral vectors in which the ligand binding portion of the retroviral envelope glycoprotein is fused in-frame to the extracellular domain of a murine Fc receptor. Preliminary studies have confirmed that retroviral vectors expressing this chimeric envelope protein can be targeted to particular cell types using monoclonal antibodies. Currently, these vectors are being used to screen panels of monoclonal antibodies raised against vascular endothelial cells in order to identify differentially expressed cell surface molecules that can act as appropriate receptors for retroviral uptake andexpression.  相似文献   

7.
A major obstacle that limits the potential of human gene therapy is the inefficiency of gene delivery to appropriate sites in vivo. Previous studies demonstrated that the physiological surveillance function performed by von Willebrand factor (vWF) could be incorporated into retroviral vectors by molecular engineering of the MuLV ecotropic envelope (Env) protein. To advance the application of vWF targeting technology beyond laboratory animals, we prepared an extensive series of Env proteins bearing modified vWF-derived matrix-binding sequences and assembled these chimeric proteins into targeted vectors that are capable of transducing human cells. Initially, a dual envelope configuration was utilized, which required coexpression of a wild-type amphotropic Env. Subsequently, streamlined "escort" Env proteins were constructed wherein the inoperative receptor-binding domain of the targeting partner was replaced by the vWF-derived collagen-binding motif. Ultimately, an optimal construct was developed that exhibited properties of both extracellular matrix (ECM)-targeting and near wild-type amphotropic infectivity, and could be arrayed as a single envelope on a retroviral particle. On intraarterial instillation, enhanced focal transduction of neointimal cells (approximately 20%) was demonstrated in a rat model of balloon angioplasty. Moreover, transduction of tumor foci (approximately 1-3%) was detected after portal vein infusion of a matrix-targeted vector in a nude mouse model of liver metastasis. We conclude that the unique properties of these targeted injectable retroviral vectors would be suitable for improving therapeutic gene delivery in numerous clinical applications, including vascular restenosis, laser and other surgical procedures, orthopedic injuries, wound healing, ischemia, arthritis, inflammatory disease, and metastatic cancer.  相似文献   

8.
Measles virus (MV) is a promising vector for cancer therapy and multivalent vaccination, but high prevalence of pre-existing neutralizing antibodies may reduce therapeutic efficacy, particularly following systemic administration. MV has only one serotype, but here we show that its envelope glycoproteins can be exchanged with those of the closely related canine distemper virus (CDV), generating a chimeric virus capable of escaping neutralization. To target its entry, we displayed on the CDV attachment protein a single-chain antibody specific for a designated receptor. To enhance oncolytic efficacy we armed the virus with a prodrug convertase gene capable of locally activating chemotherapeutic prodrugs. The new virus achieved high titers, was genetically stable, and was resistant to neutralization by sera from both MV-immunized mice and MV-immune humans. The new virus targeted syngeneic murine tumor cells expressing the designated receptor implanted in immunocompetent mice, and synergized with a chemotherapeutic prodrug in a model of oncolysis. Importantly, the chimeric MV remained oncolytic when administered systemically even in the presence of anti-MV antibodies capable of abrogating the therapeutic efficacy of the parental, nonshielded MV. This work shows that targeting, arming, and shielding can be combined to generate a tumor-specific, neutralization-resistant virus that can synergize with chemotherapeutics.  相似文献   

9.
《Molecular therapy》2002,5(3):269-274
Many cancer gene therapy applications would benefit from the development of targeted vectors that could deliver genes in vivo. We have previously achieved efficient in vitro targeting of retrovirus vectors to melanoma cells by fusion of a single chain antibody recognizing the highmolecular-weight melanoma-associated antigen (HMWMAA), followed by a blocking peptide and a matrix metalloprotease cleavage site, to the amino terminus of the murine leukemia virus amphotropic strain envelope. Here we report that up to 3% of cells within an HMWMAA-positive tumor xenograft were infected following a single injection of argeted vector into the tumor and up to 10% of tumor cells became infected when they were co-injected with viral producer cells. No infected cells were detected after delivery of targeted vectors to HMWMAA-negative tumor xenografts. Intraperitoneal injection of amphotropic vectors or producer cells resulted in transduction in spleen and liver, which was not detected when targeted vectors or producer cells were used. Our results demonstrate the feasibility of using targeted retroviral vectors for in vivo gene delivery to tumors and highlight the safety benefits of targeted vectors that do not infect other host tissues.  相似文献   

10.
Oncolytic vesicular stomatitis virus (VSV) has potent antitumor activity, but infects a broad range of cell types. Here, we used the measles virus (MV) hemagglutinin (H) and fusion (F) envelope glycoproteins to redirect VSV entry and infection specifically to tumor-associated receptors. Replication-defective VSV, deleted of its glycoprotein gene (VSVΔG), was pseudotyped with MV-F and MV-H displaying single-chain antibodies (scFv) specific for epidermal growth factor receptor (EGFR), folate receptor (FR), or prostate membrane-specific antigen (PSMA). Viral titers were ~10(5) PFU/ml, but could be concentrated to 10(7) PFU/ml. Immunoblotting confirmed incorporation of the MV-H-scFv and MV-F into functional VSV virions. Although VSV-G was able to infect all tumor cell lines tested, the retargeted VSV infected only cells that expressed the targeted receptor. In vivo specificities of the EGFR-, FR-, and PSMA-retargeted VSV were assessed by intratumoral injection into human tumor xenografts. Analysis of green fluorescent protein reporter gene expression indicated that VSV infection was restricted to receptor-positive tumors. In summary, we have demonstrated for the first time that VSV can be efficiently retargeted to different cellular receptors using the measles display technology, yielding retargeted VSV vectors that are highly specific for tumors that express the relevant receptor.  相似文献   

11.
Lentiviral vectors are among the most efficient tools for gene delivery into mammalian cells. A major goal of lentiviral gene delivery systems is to develop vectors that can efficiently target specific cell types. In the present work, we attempt to generate viral particles for targeting gene delivery. We have used CCR5-positive cells as the target for our strategy. Therefore, we developed a novel Sindbis pseudotyped lentiviral vector where the Sindbis receptor binding envelope protein was modified to directly encode a single-chain antibody fragment (scFv) against the CCR5 chemokine receptor. We have generated two chimeric scFv-Sindbis envelopes, varying the length of the peptide linker that connects the heavy chain and light chain of anti-CCR5 scFv. The two chimeric scFv-Sindbis envelopes were successfully incorporated into lentiviral-derived vectors, and the resulting pseudotyped viral particles showed specific targeting to CCR5-expressing cells. However, our data demonstrate that the length of the peptide linker significantly affects the efficiency of infection. Pseudotyped viral particles, which display single-chain antibody fragments with longer peptide linkers, allowed higher titers of infection. The present study can be a model strategy for specific gene delivery mediated by lentiviral vectors pseudotyped with Sindbis envelope displaying scFv that recognizes specific cellular surface proteins. Furthermore, this strategy has the potential to become a powerful approach for targeting gene delivery in anti- HIV gene therapy due to the important role of CCR5 expression in disease progression.  相似文献   

12.
Gene modification of hematopoietic stem cells (HSC) with antigen-specific, chimeric, or “universal” immune receptors (URs) is a novel but untested form of targeted immunotherapy. A human immunodeficiency virus (HIV) envelope–specific UR consisting of the extracellular domain of human CD4 linked to the ζ chain of the T cell receptor (CD4ζ) was introduced ex vivo into murine HSC by retroviral transduction. After transplantation into immunodeficient SCID mice, sustained high level expression of CD4ζ was observed in circulating myeloid and natural killer cells. CD4ζ-transplanted mice were protected from challenge with a lethal dose of a disseminated human leukemia expressing HIV envelope. These results demonstrate the ability of chimeric receptors bearing ζ-signaling domains to activate non–T cell effector populations in vivo and thereby mediate systemic immunity.  相似文献   

13.
We have reported that retroviral particles adhered to the surface of antigen-specific T cells can be carried to metastases following adoptive transfer in vivo, a process we have called viral hitch hiking. Following antigen-driven T-cell accumulation at tumors, viral particles productively infect tumor cells via envelope/receptor dependent interactions ('hand on' of virus from the T cell to the tumor cell). We describe here a second envelope/receptor independent pathway of viral hand on from T cells, dependent on T-cell activation. We show that the endosomolytic property of perforin promotes release of viral particles from endosomes into which they are co-delivered along with cytotoxic granules from the activated T cell. Therefore, hand on of MLV particles lacking any envelope can be used for in vivo delivery of vectors, where targeting is at the extremely specific level of recognition of antigen by the T-cell receptor, thereby dispensing with the need to engineer viral envelopes. These data reveal a novel pathway by which MLV viral particles exploit a functional immunological synapse and present new opportunities both to improve the efficacy of adoptive T-cell transfer and to target vectors for systemic gene delivery.  相似文献   

14.
15.
Rabies virus glycoprotein (RVG) can pseudotype lentiviral vectors, although at a lower efficiency to that of vesicular stomatitis virus glycoprotein (VSVG). Transduction with VSVG-pseudotyped vectors of rodent central nervous system (CNS) leads to local neurotropic gene transfer, whereas with RVG-pseudotyped vectors additional disperse transduction of neurons located at distal efferent sites occurs via axonal retrograde transport. Attempts to produce high-titre RVG-pseudotyped lentiviral vectors for preclinical and clinical trials has to date been problematic. We have constructed several chimeric RVG/VSVG glycoproteins and found that a construct bearing the external/transmembrane domain of RVG and the cytoplasmic domain of VSVG shows increased incorporation onto HIV-1 lentiviral particles and has increased infectivity in vitro in 293T cells and in differentiated neuronal cell lines of human, rat and murine origin. Stereotactic application of vector pseudotyped with this RVG/VSVG chimera in the rat striatum resulted in efficient gene transfer at the site of injection showing both neuronal and glial tropism. Distal neuronal transduction in the substantia nigra, thalamus and olfactory bulb via retrograde axonal transport also occurs after intrastriatal administration of chimera-pseudotyped vectors at similar levels to that observed with a RVG-pseudotyped vector. This is the first report of distal transduction in the olfactory bulb. The enhanced pseudotyping with this envelope should enable easier production of higher-titre pseudotyped lentiviral vectors that exhibit efficient local and dispersed neuronal transduction in the CNS.  相似文献   

16.
17.
Targeting adenovirus   总被引:16,自引:0,他引:16  
Wickham TJ 《Gene therapy》2000,7(2):110-114
  相似文献   

18.
Vaccinia virus has been shown to efficiently infect tumor cells. Therefore, vaccinia virus represents a potentially safe and effective antitumor agent against ovarian cancer. Here, we assessed the ability of vaccinia virus to preferentially infect and control both human and murine ovarian tumors in vivo. We used the non-invasive luminescence imaging system to monitor the infection and suppression of ovarian tumors by vaccinia in live mice. Our data indicated that vaccinia was able to effectively infect and kill both human and murine ovarian tumors. Vaccinia virus administered to mice intraperitoneally was specifically targeted to the murine or human ovarian tumors and led to antitumor responses. These findings suggest that vaccinia virus is capable of selectively targeting and controlling ovarian tumors. Thus, intraperitoneal injection with vaccinia virus may provide a potentially effective strategy for treating advanced-stage ovarian cancers.  相似文献   

19.
We have generated three different E1-deleted replication-defective adenoviral vectors expressing either Moloney murine leukemia virus (Mo-MuLV) Gag-Pol core particle proteins, gibbon ape leukemia virus (GALV) envelope glycoproteins, or an MuLV-derived retroviral vector genome encoding mCD2 antigen, a murine cell surface marker easily detectable by flow cytometry. Each of the three vectors was first characterized individually by infection of cells providing the complementary retroviral function(s) and able to induce the production of retroviral vectors with an efficiency similar to or higher than that of FLY stable retroviral packaging cells [Cosset, F.-L., Takeuchi, Y., Battini, J.-L., Weiss, R.A., and Collins, M.K.L., (1995). J. Virol. 69, 7430-7436]. In small-scale pilot experiments, TE671 cells simultaneously coinfected with the three adenoviral vectors efficiently released helper-free retroviral vectors in their supernatant, with titers greater than 10(6) infectious particles per milliliter by end-point titrations. Our results also indicated that in contrast to retroviral vector-packageable RNAs, the adenovirus-mediated overexpression of both Gag-Pol and Env packaging functions had limited impact on retroviral titers. The primary mechanism suspected is the premature intracellular cleavage of the Pr65gag precursor that we found in gag-pol-expressing cells, which in turn may impair the normal incorporation of high loads of functional Env. Last, the characterization of the adenoviral/retroviral chimeric vectors allowed the screening of various primate cells for retroviral production and we found that three hepatocyte-derived cell lines were highly efficient in the assembly and release of infectious retroviral particles.  相似文献   

20.
Successful gene therapy for the treatment of heritable or acquired diseases typically requires high efficiency gene transfer and sustained transgene expression. Indirect evidence on the basis of RNA analysis and in vivo competitive repopulation experiments in animal models suggests a correlation between transduction efficiency and the abundance of retrovirus receptors on the hematopoietic target cell. However, transduction by oncoretroviral vectors is also subject to other factors such as target cell cycle status and the composition of the virus-containing medium, making it difficult to determine the level of receptor expression required for efficient transduction. In the present study we investigated the impact of receptor expression level on transduction by a vector with a gibbon ape leukemia virus (GALV) envelope protein in a tetracycline-inducible tissue culture model that allowed for the cell cycle-independent, regulated expression of the GALV receptor (Pit1) in otherwise non-susceptible NIH 3T3 cells. Up-regulation of receptor RNA expression by 4.5-fold resulted in a mean 150-fold increase in transduction efficiency. We then analyzed cell surface expression of the Pit1 receptor using a fusion protein consisting of GALV SU portion of the viral envelope protein linked to the human IgG Fc. These experiments showed that tetracycline-regulated receptor induction resulted in a dose-dependent increase in binding of fusion protein. At maximum induction fusion protein binding increased up to five-fold which paralleled the increase in RNA expression, and correlated with the improved transduction efficiency. Finally, studies of pseudotype-specific fusion protein binding to human CD34-enriched cells revealed increased expression of retrovirus receptors after cytokine stimulation, although overall receptor expression in CD34(+)cells remained lower than in fibroblast cell lines efficiently transduced by amphotropic and GALV vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号