首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective doses were calculated from the delivery of 6 MV, 15 MV, and 18 MV conventional and intensity-modulated radiation therapy (IMRT) prostate treatment plans. ICRP-60 tissue weighting factors were used for the calculations. Photon doses were measured in phantom for all beam energies. Neutron spectra were measured for 15 MV and 18 MV and ICRP-74 quality conversion factors used to calculate ambient dose equivalents. The ambient dose equivalents were corrected for each tissue using neutron depth dose data from the literature. The depth corrected neutron doses were then used as a measure of the neutron component of the ICRP protection quantity, organ equivalent dose. IMRT resulted in an increased photon dose to many organs. However, the IMRT treatments resulted in an overall decrease in effective dose compared to conventional radiotherapy. This decrease correlates to the ability of an intensity-modulated field to minimize dose to critical normal structures in close proximity to the treatment volume. In a comparison of the three beam energies used for the IMRT treatments, 6 MV resulted in the lowest effective dose, while 18 MV resulted in the highest effective dose. This is attributed to the large neutron contribution for 18 MV compared to no neutron contribution for 6 MV.  相似文献   

2.
3.
4.
Multileaf collimator (MLC) based intensity modulated radiation therapy (IMRT) techniques are well established but suffer several physical limitations. Dosimetric spatial resolution is limited by the MLC leaf width; interleaf leakage and tongue-and-groove effects degrade dosimetric accuracy and the range of leaf motion limits the maximum deliverable field size. Collimator rotation is used in standard radiation therapy to improve the conformity of the MLC shape to the target volume. Except for opposed orthogonal fields, collimator rotation has not been exploited in IMRT due to the complexity of deriving the MLC leaf configurations for rotated sub-fields. Here we report on a new way that MLC-based IMRT is delivered which incorporates collimator rotation, providing an extra degree of freedom in deriving leaf sequences for a desired fluence map. Specifically, we have developed a series of unique algorithms that are capable of determining rotated MLC segments. These IMRT fields may be delivered statically (with the collimator rotating to a new position in between sub-fields) or dynamically (with the collimator rotating and leaves moving simultaneously during irradiation). This introductory study provides an analysis of the rotating leaf motion calculation algorithms with focus on radiation efficiency, the range of collimator rotation and number of segments. We then evaluate the technique by characterizing the ability of the algorithms to generate rotating leaf sequences for desired fluence maps. Comparisons are also made between our method and conventional sliding window and step-and-shoot techniques. Results show improvements in spatial resolution, reduced interleaf effects and maximum deliverable field size over conventional techniques. Clinical application of these enhancements can be realized immediately with static rotational delivery although improved dosimetric modelling of the MLC will be required for dynamic delivery.  相似文献   

5.
Respiratory gating is emerging as a tool to limit the effect of motion for liver and lung tumors. In order to study the impact of target motion and gated intensity modulated radiation therapy (IMRT) delivery, a computer program was developed to simulate segmental IMRT delivery to a moving phantom. Two distinct plans were delivered to a rigid-motion phantom with a film insert in place under four conditions: static, sinusoidal motion, gated sinusoidal motion with a duty cycle of 25% and gated sinusoidal motion with duty cycle of 50% under motion conditions of a typical patient (A = 1 cm, T = 4 s). The MLC controller log files and gating log files were retained to perform a retrospective Monte Carlo dose calculation of the plans. Comparison of the 2D planar dose distributions between simulation and measurement demonstrated that our technique had at least 94% of the points passing gamma criteria of 3% for dose difference and 3 mm as the distance to agreement. This note demonstrates that the use of dynamic multi-leaf collimator and respiratory monitoring system log files together with a fast Monte Carlo dose calculation algorithm is an accurate and efficient way to study the dosimetric effect of motion for gated or non-gated IMRT delivery on a rigidly-moving body.  相似文献   

6.
In complex intensity-modulated radiation therapy cases, a considerable amount of the total dose may be delivered through closed leaves. In such cases an accurate knowledge of spatial characteristics of multileaf collimator (MLC) transmission is crucial, especially for the treatment of large targets with split fields. Measurements with an ionization chamber, radiographic films (EDR2, EBT) and EPID are taken to characterize all relevant effects related to MLC transmission for various field sizes and depths. Here we present a phenomenological model to describe MLC transmission, whereby the main focus is the off-axis decrease of transmission for symmetric and asymmetric fields as well as on effects due to the tongue and groove design of the leaves, such as interleaf transmission and the tongue and groove effect. Data obtained with the four different methods are presented, and the utility of each measurement method to determine the necessary model parameters is discussed. With the developed model, it is possible to predict the relevant MLC effects at any point in the phantom for arbitrary jaw settings and depths.  相似文献   

7.
We have investigated the tongue-and-groove effect on the IMRT dose distributions for a Varian MLC. We have compared the dose distributions calculated using the intensity maps with and without the tongue-and-groove effect. Our results showed that, for one intensity-modulated treatment field, the maximum tongue-and-groove effect could be up to 10% of the maximum dose in the dose distributions. For an IMRT treatment with multiple gantry angles (> or = 5), the difference between the dose distributions with and without the tongue-and-groove effect was hardly visible, less than 1.6% for the two typical clinical cases studied. After considering the patient setup errors, the dose distributions were smoothed with reduced and insignificant differences between plans with and without the tongue-and-groove effect. Therefore, for a multiple-field IMRT plan (> or = 5), the tongue-and-groove effect on the IMRT dose distributions will be generally clinically insignificant due to the smearing effect of individual fields. The tongue-and-groove effect on an IMRT plan with small number of fields (< 5) will vary depending on the number of fields in a plan (coplanar or non-coplanar), the MLC leaf sequences and the patient setup uncertainty, and may be significant (> 5% of maximum dose) in some cases, especially when the patient setup uncertainty is small (< or = 2 mm).  相似文献   

8.
Radiotherapy patients will from time to time be treated on another linac than originally planned due to service or logistical challenges. For patients treated with dynamic intensity modulated radiotherapy (IMRT), extra care should be taken to make sure the delivered dose remains as planned. Four linacs with the same type of dynamic multileaf collimator (MLC) were compared to find a general prediction of the potential dosimetric error caused by treating IMRT patients on another linac without recalculating the treatment plan. The MLC parameters, transmission and dosimetric leaf separation (DLS) were measured for all four linacs. The dynamic fields that were measured to find the DLS value were imported into the treatment planning system to compare the calculated and measured doses. Measured values of transmission and DLS were used directly in the calculations to obtain dose differences of less than 1% between the calculated and measured doses at the reference setup. The dosimetric discrepancy between the linacs was acceptable for all but one linac. Recalculation of the treatment plan therefore remains as standard procedure for this linac when a planned patient must switch linac during the course of treatment. The depth and field size dependences of the MLC parameters were also tested, finding dose differences of up to 4%.  相似文献   

9.
This study quantifies the dose prediction errors (DPEs) in dynamic IMRT dose calculations resulting from (a) use of an intensity matrix to estimate the multi-leaf collimator (MLC) modulated photon fluence (DPE(IGfluence) instead of an explicit MLC particle transport, and (b) handling of tissue heterogeneities (DPE(hetero)) by superposition/convolution (SC) and pencil beam (PB) dose calculation algorithms. Monte Carlo (MC) computed doses are used as reference standards. Eighteen head-and-neck dynamic MLC IMRT treatment plans are investigated. DPEs are evaluated via comparing the dose received by 98% of the GTV (GTV D 98%), the CTV D 95%, the nodal D 90%, the cord and the brainstem D 02%, the parotid D 50%, the parotid mean dose (D (Mean)), and generalized equivalent uniform doses (gEUDs) for the above structures. For the MC-generated intensity grids, DPE(IGfluence) is within +/- 2.1% for all targets and critical structures. The SC algorithm DPE(hetero) is within +/- 3% for 98.3% of the indices tallied, and within +/- 3.4% for all of the tallied indices. The PB algorithm DPE(hetero) is within +/- 3% for 92% of the tallied indices. Statistical equivalence tests indicate that PB DPE(hetero) requires a +/- 3.6% interval to state equivalence with the MC standard, while the intervals are < 1.5% for SC DPE(hetero) and DPE(IGfluence). Overall, these results indicate that SC and MC IMRT dose calculations which use MC-derived intensity matrices for fluence prediction do not introduce significant dose errors compared with full Monte Carlo dose computations; however, PB algorithms may result in clinically significant dose deviations.  相似文献   

10.
The aim of this work is to investigate to what extent it is possible to use the secondary collimator jaws to reduce the transmitted radiation through the multileaf collimator (MLC) during an intensity modulated radiation therapy (IMRT). A method is developed and introduced where the jaws follow the open window of the MLC dynamically (dJAW method). With the aid of three academic cases (Closed MLC, Sliding-gap, and Chair) and two clinical cases (prostate and head and neck) the feasibility of the dJAW method and the influence of this method on the applied dose distributions are investigated. For this purpose the treatment planning system Eclipse and the Research-Toolbox were used as well as measurements within a solid water phantom were performed. The transmitted radiation through the closed MLC leads to an inhomogeneous dose distribution. In this case, the measured dose within a plane perpendicular to the central axis differs up to 40% (referring to the maximum dose within this plane) for 6 and 15 MV. The calculated dose with Eclipse is clearly more homogeneous. For the Sliding-gap case this difference is still up to 9%. Among other things, these differences depend on the depth of the measurement within the solid water phantom and on the application method. In the Chair case, the dose in regions where no dose is desired is locally reduced by up to 50% using the dJAW method instead of the conventional method. The dose inside the chair-shaped region decreased up to 4% if the same number of monitor units (MU) as for the conventional method was applied. The undesired dose in the volume body minus the planning target volume in the clinical cases prostate and head and neck decreased up to 1.8% and 1.5%, while the number of the applied MU increased up to 3.1% and 2.8%, respectively. The new dJAW method has the potential to enhance the optimization of the conventional IMRT to a further step.  相似文献   

11.
Luan S  Wang C  Chen DZ  Hu XS  Naqvi SA  Yu CX  Lee CL 《Medical physics》2004,31(4):695-707
We present a new MLC segmentation algorithm/software for step-and-shoot IMRT delivery. Our aim in this work is to shorten the treatment time by minimizing the number of segments. Our new segmentation algorithm, called SLS (an abbreviation for static leaf sequencing), is based on graph algorithmic techniques in computer science. It takes advantage of the geometry of intensity maps. In our SLS approach, intensity maps are viewed as three-dimensional (3-D) "mountains" made of unit-sized "cubes." Such a 3-D "mountain" is first partitioned into special-structured submountains using a new mixed partitioning scheme. Then the optimal leaf sequences for each submountain are computed by either a shortest-path algorithm or a maximum-flow algorithm based on graph models. The computations of SLS take only a few minutes. Our comparison studies of SLS with CORVUS (both the 4.0 and 5.0 versions) and with the Xia and Verhey segmentation methods on Elekta Linac systems showed substantial improvements. For instance, for a pancreatic case, SLS used only one-fifth of the number of segments required by CORVUS 4.0 to create the same intensity maps, and the SLS sequences took only 25 min to deliver on an Elekta SL 20 Linac system in contrast to the 72 min for the CORVUS 4.0 sequences (a three-fold improvement). To verify the accuracy of our new leaf sequences, we conducted film and ion-chamber measurements on phantom. The results showed that both the intensity distributions as well as dose distributions of the SLS delivery match well with those of CORVUS delivery. SLS can also be extended to other types of Linac systems.  相似文献   

12.
Roy SC  Sandison GA 《Medical physics》2000,27(8):1800-1803
Neutrons are associated with therapeutic high energy x-ray beams as a contaminant that contributes significant unwanted dose to the patient. Measurement of both photon and neutron scattered dose at the position of a fetus from chest irradiation by a large field 18 MV x-ray beam was performed using an ionization chamber and superheated drop detector, respectively. Shielding construction to reduce this scattered dose was investigated using both lead sheet and borated polyethylene slabs. A 7.35 cm lead shield reduced the scattered photon dose by 50% and the scattered neutron dose by 40%. Adding 10 cm of 5% borated polyethylene to this lead shield reduced the scattered neutron dose by a factor of 7.5 from the unshielded value. When the 5% borated polyethylene was replaced by the same thickness of 30% borated polyethylene there was no significant change in the reduction of neutron scatter dose. The most efficient shield studied reduced the neutron scatter dose by a factor of 10. The results indicate that most of the scattered neutrons present at the position of the fetus produced by an 18 MV x-ray beam are of low energy and in the thermal to 0.57 MeV range since lead is almost transparent to neutrons with energies lower than 0.57 MeV. This article constitutes the first report of an effective shield to reduce neutron dose at the fetus when treating a pregnant woman with a high energy x-ray beam.  相似文献   

13.
Inter- and intra-leaf transmission and head scatter can play significant roles in intensity modulated radiation therapy (IMRT)-based treatment deliveries. In order to accurately calculate the dose in the IMRT planning process, it is therefore important that the detailed geometry of the multi-leaf collimator (MLC), in addition to other components in the accelerator treatment head, be accurately modeled. In this paper, we have used the Monte Carlo method (MC) to develop a comprehensive model of the Varian 120 leaf MLC and have compared it against measurements in homogeneous phantom geometries under different IMRT delivery circumstances. We have developed a geometry module within the DPM MC code to simulate the detailed MLC design and the collimating jaws. Tests consisting of leakage, leaf positioning and static MLC shapes were performed to verify the accuracy of transport within the MLC model. The calculations show agreement within 2% in the high dose region for both film and ion-chamber measurements for these static shapes. Clinical IMRT treatment plans for the breast [both segmental MLC (SMLC) and dynamic MLC (DMLC)], prostate (SMLC) and head and neck split fields (SMLC) were also calculated and compared with film measurements. Such a range of cases were chosen to investigate the accuracy of the model as a function of modulation in the beamlet pattern, beamlet width, and field size. The overall agreement is within 2% /2 mm of the film data for all IMRT beams except the head and neck split field, which showed differences up to 5% in the high dose regions. Various sources of uncertainties in these comparisons are discussed.  相似文献   

14.
15.
The possibility of reduced cell kill following intensity-modulated radiation therapy (IMRT) compared to conventional radiation therapy has been debated in the literature. This potential reduction in cell kill relates to prolonged treatment times typical of IMRT dose delivery and consequently increased repair of sublethal lesions. While there is some theoretical support to this reduction in cell kill published in the literature, direct experimental evidence specific to IMRT dose delivery patterns is lacking. In this study we present cell survival data for three cell lines: Chinese hamster V79 fibroblasts, human cervical carcinoma, SiHa and colon adenocarcinoma, WiDr. Cell survival was obtained for 2.1 Gy delivered as acute dose with parallel-opposed pair (POP), irradiation time 75 s, which served as a reference; regular seven-field IMRT, irradiation time 5 min; and IMRT with a break for multiple leaf collimator (MLC) re-initialization after three fields were delivered, irradiation time 10 min. An actual seven-field dynamic MLC IMRT plan for a head and neck patient was used. The IMRT plan was generated for a Varian EX or iX linear accelerator with 120 leaf Millenium MLC. Survival data were also collected for doses 1X, 2X, 3X, 4X, and 5x 2.1 Gy to establish parameters of the linear-quadratic equation describing survival following acute dose delivery. Cells were irradiated inside an acrylic cylindrical phantom specifically designed for this study. Doses from both IMRT and POP were validated using ion chamber measurements. A reproducible increase in cell survival was observed following IMRT dose delivery. This increase varied from small for V79, with a surviving fraction of 0.8326 following POP vs 0.8420 following uninterrupted IMRT, to very pronounced for SiHa, with a surviving fraction of 0.3903 following POP vs 0.5330 for uninterrupted IMRT. When compared to IMRT or IMRT with a break for MLC initialization, cell survival following acute dose delivery was significantly different, p < 0.05, in three out of six cases. In contrast, when cell survival following IMRT was compared to that following IMRT with a break for MLC initialization the difference was always statistically insignificant. When projected to a 30 fraction treatment, dose deficit to bring cell survival to the same value as in POP was calculated as 4.1, 24.9, and 31.1 Gy for V79, WiDr, and SiHa cell lines, respectively. The dose deficit did not relate to the alpha/beta ratio obtained in this study for the three cell lines. Clinical data do not show reduction in local control following IMRT. Possible reasons for this are discussed. The obtained data set can serve as a test data set for models designed to explore the effect of dose delivery prolongation/fractionation in IMRT on radiation therapy outcome.  相似文献   

16.
17.
Phantom tests are performed for pre-clinical evaluation of a commercial inverse planning system (HELAX TMS, V 6.0) for segmented multileaf collimator (MLC) intensity modulated radiotherapy (IMRT) delivery. The optimization module has available two optimization algorithms: the target primary feasibility and the weighted feasibility algorithm, only the latter allows the user to specify weights for structures. In the first series, single beam tests are performed to evaluate the outcome of inverse planning in terms of plausibility for the following situations: oblique incidence, presence of inhomogeneities, multiple targets at different depths and multiple targets with different desired doses. Additionally, for these tests a manual plan is made for comparison. In the absence of organs at risk, both the optimization algorithms are found to assign the highest priority to low dose constraints for targets. In the second series, tests resembling clinical relevant configurations (simultaneous boost and concave target with critical organ) are performed with multiple beam arrangements in order to determine the impact of the system's configuration on inverse planning. It is found that the definition of certain segment number and segment size limitations does not largely compromise treatment plans when using multiple beams. On the other hand, these limitations are important for delivery efficiency and dosimetry. For the number of iterations and voxels per volume of interest, standard values in the system's configuration are considered to be sufficient. Additionally, it is demonstrated that precautions must be taken to precisely define treatment goals when using computerized treatment optimization. Similar phantom tests could be used for a direct dosimetric verification of all steps from inverse treatment planning to IMRT delivery.  相似文献   

18.
Monte Carlo dose calculations for dynamic IMRT treatments   总被引:1,自引:0,他引:1  
Dose calculations for intensity modulated radiation therapy (IMRT) face new challenges due to the complex leaf geometry and time dependent nature of the delivery. A fast method of particle transport through a dynamic multileaf collimator (MLC) geometry that accounts for photon attenuation and first-scattered Compton photon production has been incorporated into an existing Monte Carlo code used for patient dose calculations. Dosimetric agreement between calculation and measurement for two photon energies and MLC types is within experimental error for the sliding window tests. For a patient IMRT field, the Monte Carlo calculations are closer to measured dose than similar superposition or pencil beam calculations.  相似文献   

19.
A new modification of the dynamic multileaf collimator (dMLC) delivery technique for intensity-modulated therapy (IMRT) is outlined. This technique enables the tracking of a target moving through rigid-body translations in a 2D trajectory in the beam's eye view. The accuracy of the delivery versus that of deliveries with no tracking and of 1D tracking techniques is quantified with clinically derived intensity-modulated beams (IMBs). Leaf trajectories calculated in the target-reference frame were iteratively synchronized assuming regular target motion. This allowed the leaves defined in the lab-reference frame to simultaneously follow the target motion and to deliver the required IMB without violation of the leaf maximum-velocity constraint. The leaves are synchronized until the gradient of the leaf position at every instant is less than a calculated maximum. The delivered fluence in the target-reference frame was calculated with a simple primary-fluence model. The new 2D tracking technique was compared with the delivered fluence produced by no-tracking deliveries and by 1D tracking deliveries for 33 clinical IMBs. For the clinical IMBs normalized to a maximum fluence of 200 MUs, the rms difference between the desired and the delivered IMB was 15.6 +/- 3.3 MU for the case of a no-tracking delivery, 7.9 +/- 1.6 MU for the case where only the primary component of motion was corrected and 5.1 +/- 1.1 MU for the 2D tracking delivery. The residual error is due to interpolation and sampling effects. The 2D tracking delivery technique requires an increase in the delivery time evaluated as between 0 and 50% of the unsynchronized delivery time for each beam with a mean increase of 13% for the IMBs tested. The 2D tracking dMLC delivery technique allows an optimized IMB to be delivered to moving targets with increased accuracy and with acceptable increases in delivery time. When combined with real-time knowledge of the target motion at delivery time, this technique facilitates improved target conformality relative to no-tracking deliveries and allows PTV margin reduction.  相似文献   

20.
The clinical implementation of IMRT involves the use of a number of complex software-based systems, typically including an inverse planning system, a leaf sequencer, and a computer-controlled treatment delivery system. The inverse planning system determines the desired fluence patterns, the leaf sequencer translates those fluence maps into leaf trajectories, and the control system delivers those trajectories. While verification of intensity-modulated treatment fields has focused primarily on the dosimetric aspects of delivery, accurate delivery of the intended fluence distribution is dependent upon both the leaf sequencer and delivery control systems. Leaf sequencing algorithms typically do not incorporate many control system limitations, and this can lead to discrepancies between planned and delivered sequences. In this work, simple and complex fields were sequenced for the dynamic sliding window technique using different leaf speeds and tolerance settings to identify various limitations of the accelerator control system. This work was conducted on a Varian 2100 EX equipped with a Millennium 120 leaf MLC. The identified limitations were then incorporated into the sequencing algorithm using a limiting leaf velocity (less than the maximum leaf velocity), the leaf position tolerance, and the communications delay in the control system. Collision avoidance in leaf pairs was found to depend on a control system-enforced minimum gap between leaves and led to acceleration effects. By incorporating these effects into the leaf sequencing algorithm, dynamic sliding-window leaf sequences were produced which did not require beam interruptions or dose rate modulations for the parameter values used in calculating the sequence (dose rate, tolerance, leaf speed, and total monitor units). Incorporation of control system limitations into the leaf sequencing algorithm results in IMRT fields that are delivered with the prescribed constant dose rate, require less time to deliver, and have well-defined, calculable transmission dose characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号