首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early heart anlagen of Xenopus laevis embryos were exposed to purified embryonic galactoside-binding lectin or its potent hapten inhibitor thiodigalactoside (TDG). Heart development was then studied using a variety of microscopical techniques. Conotruncal morphology and positioning with respect to the ventricle are altered in treated animals. In 34% of animals treated with lectin and 35% treated with TDG, the conotruncus leaves the ventricle from an abnormal location. Lectin or TDG treatments are also correlated with altered conotruncal shape, with the conotruncal regions showing greater radii of curvature compared to controls. Conotruncal myocyte differentiation is altered by the test treatments, with lack of development of organized myofibrillar arrays. Conotruncal cushion development is also affected. Changes occur in the shape and size of the primary conotruncal cushion, and alterations of outflow tract septation develop. Less maturation of ventricular myocytes is also observed in test animals. The results suggest that galactose-lectin interactions are important in heart development.  相似文献   

2.
3.
4.
目的:研究过量视黄酸抑制爪蟾早期心形成的机制.方法:用过量视黄酸培养发育到第14期的胚胎.4h后,胚胎用MEMPHA固定进行转录因子Tbx20的胚胎整体原位杂交.取发育第14期胚胎形成心的组织,并分别加入视黄酸和骨形成蛋白进行培养.4h时后,用MEMPHA固定并进行Tbx20的胚胎整体原位杂交.结果:视黄酸降低Tbx2...  相似文献   

5.
The three-dimensional morphology of the membranous labyrinth of Xenopus laevis is presented from embryonic through late tadpole development (stages 28 to 52, inclusive). This was accomplished by paint-filling the endolymphatic spaces of Xenopus ears at a series of stages, beginning with the embryonic otic vesicle and ending with the complex ear of the late tadpole. At stage 52, the inner ear has expanded approximately 23-fold in its anterior/posterior dimension compared with stage 28 and it is a miniature of the adult form. The paint-filling technique illustrates the dramatic changes required to convert a simple ear vesicle into the elaborate form of the adult, including semicircular canal formation and genesis of vestibular and auditory organs, and it can serve as a basis for phenotype identification in experimentally or genetically manipulated ears.  相似文献   

6.
Summary The development of cerebellar afferents has been studied in the clawed toad, Xenopus laevis, from stage 46 to 64, with the horseradish peroxidase retrograde tracer technique. Already in stage 48 tadpoles, i.e. before the formation of the limbs, a distinct set of cerebellar afferents was found. Vestibulocerebellar (mainly arising bilaterally in the nucleus vestibularis caudalis) and contralateral olivocerebellar projections dominate. Secondary trigeminocerebellar (from the descending nucleus of the trigeminal nerve) and reticulocerebellar connections were also found. At stage 50, spinocerebellar projections appear originating from cervical and lower thoracic/upper lumbar levels. The cells of origin of the spinocerebellar projection can be roughly divided in two neuronal types: ipsilaterally projecting large cells, which show a marked resemblance to primary motoneurones (spinal border cells) and smaller contralaterally projecting neurons. Primary spinocerebellar projections from spinal ganglion cells could not be demonstrated.At stage 50, a possible anuran homologue of the mammalian nucleus prepositus hypoglossi was found to project to the cerebellum. In only one of the experiments labeled neurons were found in the contralateral mesencephalic tegmentum. At none of the studied stages a raphecerebellar projection could be demonstrated.It appears that already early in cerebellar development, before the formation of the limbs, most of the cerebellar afferents as found in adult Xenopus laevis are present.  相似文献   

7.
Epithelially expressed type II collagen is thought to play a prominent role in the embryonic patterning and differentiation of the vertebrate skull, primarily on the basis of data derived from amniotes. We describe the spatiotemporal distribution of type II collagen in the embryonic head of the African clawed frog, Xenopus laevis, using whole-mount and serial-section immunohistochemical analysis. We studied embryos spanning Nieuwkoop and Faber (1967) stages 21–39, a period including cranial neural crest cell migration and ending immediately before the onset of neurocranial chondrogenesis. Xenopus displays a transient expression of type II collagen beginning at least as early as stage 21; staining is most intense and widespread at stages 33/34 and 35/36 and subsequently diminishes. Collagen-positive areas include the ventrolateral surface of the brain, sensory vesicles, notochord, oropharynx, and integument. This expression pattern is similar, but not identical, to that reported for the mouse and two bird species (Japanese quail, domestic fowl); thus epithelially expressed type II collagen appears to be a phylogenetically widespread feature of vertebrate cranial development. Consistent with the proposed role of type II collagen in mediating neurocranial differentiation, most collagen-positive areas lie adjacent to subsequent sites of chondrogenesis in the neurocranium but not the visceral skeleton. However, much of the collagen is expressed after the migration of cranial neural crest, including presumptive chondrogenic crest, seemingly too late to pattern the neurocranium by entrapment of these migrating cells.  相似文献   

8.
Mitf is a central regulator of pigment cell development that is essential for the normal development of the melanocyte and retinal pigment epithelium (RPE) lineages. To understand better the role of Mitf, we have used the Xenopus laevis experimental system to allow a rapid examination of the role of Mitf in vivo. Here, we report the function of XlMitfalpha-M on melanophore development and melanization compared with that of Slug that is expressed in neural crest cells. Overexpression of XlMitfalpha-M led to an increase in melanophores that was partly contributed by an increase in Slug-positive cells, indicating that XlMitfalpha-M is a key regulator of melanocyte/melanophore development and melanization. Moreover, overexpression of a dominant-negative form of XlMitfalpha led to a decrease in the number of melanophores and induced abnormal melanoblast migration. We also observed an induction of ectopic RPE and extended RPE by overexpression of XlMitfalpha-M and possible interactions between XlMitfalpha and several eye-related genes essential for normal eye development.  相似文献   

9.
Background: Few attempts have bee made to clarify the relational development of the hypothalamo-adenohypophysial and neurohypophysial systems in species higher than amphibians. Methods: The appearance and Topographical distribution of endocrine and neuroendocrine cells and fibers in these systems were immunohistochemically examined in the larvae of Xenopus laevis: from immediately before hatching (stage 32, Nieuwkoop and Faber's classification) to the end of metamorphosis (stage 66). Results:(1) Each endocrine cell differentiated until the middle premetamorphic period. MSH cells intially appeared in the posterior half of the pituitary anlage at stage 35/36, followed by the fidderentiation of GH cells at stage 39 in the middle part, PRL cells at stage 46 in the anterior half of the pituitary anlage, and LH cells at stage 50 in the posterior two thirds of the pares distalis. With the progression of development, the cells which differentiated at early stages shifted from their intial positions; MSH cells, to the pars intermedia; and GH cells, to the posterior half of the pars distails. 2) oxytocin and vasopression fibers were observed at stage 47/48 in the median eminence, and converged to the pars nervosa at later stages. 3) Neruoenmorphic to prometamorphic peripd: SOM fibes, at stage 45: CRH, 47/48; GRH, 48; dopamine, 58; and LHRH, 60. The cells containing these hormones were observed in the (presumptive) preoptic and/or infundibular nucleei. Conclusion: These results suggest the floowing three chronological steps in the development of hypothalamo-hypophysial systems and their target organs: independent development of target organs at early developmental stages; appearance of hypophysial hormones to control the development of target organs at middle developmental stages; appearances of hypothalamoic hormones to control the function of maturation of the hypophysis at late developmental stages. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The establishment of the undifferentiated gonad was studied in Xenopus laevis and Rana pipiens using high resolution techniques. It was found that the cells of the so-called “mesonephric blastema” had no structural resemblance to the cells of the gonadal medulla in both species. Furthermore, there was no morphological evidence that would suggest a migration of the former cells towards the incipient gonad at the time of its appearance. However, the basal lamina of the coelomic epithelium was interrupted in the region of the genital crest, and there was a definite ultrastructural similarity between the cells of this epithelium and those that first form the medulla. These observations suggest that, in amphibians, the cells of the gonadal medulla come from a cellular line arising from the coelomic epithelium and not from the “mesonephric blastema,” as has been proposed.  相似文献   

11.
12.
The Drosophila Delta gene and its vertebrate homologues are ligands for the Notch receptor and are involved in a variety of developmental processes, including neurogenesis, boundary formation, and axon guidance. This study deals with the ectodermal expression and function of X-Delta-2 during early Xenopus laevis development. X-Delta-2 is expressed, from early neurula stages on, throughout the central nervous system (CNS; forebrain, eyes, midbrain, hindbrain, and spinal cord) and in the majority of the cranial placodes. Loss of function experiments using a morpholino knockdown approach revealed that X-Delta-2 is necessary for hindbrain segmentation and the correct specification of the anterior CNS. X-Delta-2 also seems to be important in the determination of the size of the eyes. Furthermore, our results suggest that X-Delta-2 is involved in the migration of the cranial placodes cells, as well the migration of the cranial neural crest cells.  相似文献   

13.
Summary The Merkel cells in the larval tentacles of Xenopus laevis were examined by TEM. Different forms of Merkel cells were found, depending on the age of the larvae or the location in the tentacles. These forms have the appearance of intermediate states between Merkel cells and superficial epidermal cells; thus an epidermal origin for the Merkel cells seems more likely than an immigration from the neural crest. The forms differ in (1) their location in the epidermis, (2) their shape, (3) the number and extension of their desmosomes, (4) the content and distribution of dense-core granules, and (5) the outgrowth of their finger-like processes. Also the relation to a nerve ending is different. By marking Merkel cells with quinacrine, fluorescence spots were observed between the superficial and basal epidermal cells or, in the very tip, within the superficial epidermal cells. These latter spots represent immature Merkel cells, as confirmed by TEM. This indicates a development of Merkel cells from superficial epidermal cells and migration towards the basal layer. Dermal Merkel cells were nerver observed.Supported by the Deutsche Forschungsgemeinschaft (SFB 4/G1)  相似文献   

14.
15.
16.
17.
18.
Cho K  Lee M  Gu D  Munoz WA  Ji H  Kloc M  McCrea PD 《Developmental dynamics》2011,240(12):2601-2612
The novel adaptor protein Kazrin associates with multifunctional entities including p120-subfamily members (ARVCF-, delta-, and p0071-catenin). Critical contributions of Kazrin to development or homeostasis are indicated with respect to ectoderm formation, integrity and keratinocyte differentiation, whereas its presence in varied tissues suggests broader roles. We find that Kazrin is maternally loaded, is expressed across development and becomes enriched in the forming head. Kazrin's potential contributions to craniofacial development were probed by means of knockdown in the prospective anterior neural region. Cartilaginous head structures as well as eyes on injected sides were reduced in size, with molecular markers suggesting an impact upon neural crest cell establishment and migration. Similar effects followed the depletion of ARVCF (or delta-catenin), with Kazrin:ARVCF functional interplay supported upon ARVCF partial rescue of Kazrin knockdown phenotypes. Thus, Kazrin and its associating ARVCF- and delta-catenins, are required to form craniofacial tissues originating from cranial neural crest and precordal plate.  相似文献   

19.
The formation of the eight independent endorgan compartments (sacculus, utricle, horizontal canal, anterior canal, posterior canal, lagena, amphibian papilla, and basilar papilla) of the Xenopus laevis inner ear is illustrated as the otic vesicle develops into a complex labyrinthine structure. The morphology of transverse sections and whole-mounts of the inner ear was assessed in seven developmental stages (28, 31, 37, 42, 45, 47, 50) using brightfield and laser scanning confocal microscopy. The presence of mechanosensory hair cells in the sensory epithelia was determined by identification of stereociliary bundles in cryosectioned tissue and whole-mounts of the inner ear labeled with the fluorescent F-actin probe Alexa-488 phalloidin. Between stages 28 and 45, the otic vesicle grows in size, stereociliary bundles appear and increase in number, and the pars inferior and pars superior become visible. The initial formation of vestibular compartments with their nascent stereociliary bundles is seen by larval stage 47, and all eight vestibular and auditory compartments with their characteristic sensory fields are present by larval stage 50. Thus, in Xenopus, inner ear compartments are established between stages 45 and 50, a 2-week period during which the ear quadruples in length in the anteroposterior dimension. The anatomical images presented here demonstrate the morphological changes that occur as the otic vesicle forms the auditory and vestibular endorgans of the inner ear. These images provide a resource for investigations of gene expression patterns in Xenopus during inner ear compartmentalization and morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号