首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) take up soluble- or cell-associated antigens and digest them, delivering fragments to the MHC class I pathway to display antigenic peptides to CD8(+) T cells, a process known as cross-presentation. The pathway requires that, in order to be degraded by proteosomes, the extracellular antigens must have access to the cytosol across the endosomal membranes. Although the cross-presentation phenomena was first identified in the 1970s, the molecular mechanism responsible for the translocation is still not fully understood. In this context, we have recently found that cytosolic heat shock protein (HSP)90 translocates internalized antigen to the cytosol in DCs. Our results revealed the important role that cytosolic HSP90 plays in cross-presentation by pulling out endosomal antigen to the cytosol.  相似文献   

2.
Extracellular heat shock protein can deliver associated antigens into the MHC class I presentation pathway of antigen-presenting cells, a process called cross-presentation, thus inducing antigen-specific CD8(+) T-cell responses; however, the precise mechanism for intracellular antigen translocation and the processing pathway has not been fully elucidated. Here we demonstrate that cross-presentation of extracellular Hsp90-ovalbumin (OVA) protein complexes to specific CD8(+) T cells involves both classical proteasome-transporter-associated antigen processing (TAP)-dependent and TAP-independent-endosomal pathways. Using confocal microscopy, we found that the internalized extracellular Hsp90 and OVA co-localized with cytosolic proteasomes. When anti-Hsp90 mAb was introduced to dendritic cells (DCs), we observed that the co-localization of internalized Hsp90-chaperoned OVA and proteasomes was abolished, resulting in the inhibition of TAP-dependent cross-presentation of OVA. Thus, extracellular Hsp90 may play a pivotal role for the translocation of chaperoned antigens for proteasomal degradation in the cytosol. In contrast, OVA chaperoned by Hsp90 was not presented by MHC class II molecules in vitro or in vivo, although the antigen was exogenously loaded onto DCs. Our data indicate that extracellular Hsp90 might be essential for the translocation of chaperoned antigens from the extracellular milieu into cytosol, resulting in proteasomal degradation for cross-presentation.  相似文献   

3.
Immune responses are initiated and primed by dendritic cells (DCs) that cross-present exogenous antigen. The chaperone CD74 (invariant chain) is thought to promote DC priming exclusively in the context of major histocompatibility complex (MHC) class II. However, we demonstrate here a CD74-dependent MHC class I cross-presentation pathway in DCs that had a major role in the generation of MHC class I-restricted, cytolytic T lymphocyte (CTL) responses to viral protein- and cell-associated antigens. CD74 associated with MHC class I in the endoplasmic reticulum of DCs and mediated the trafficking of MHC class I to endolysosomal compartments for loading with exogenous peptides. We conclude that CD74 has a previously undiscovered physiological function in endolysosomal DC cross-presentation for priming MHC class I-mediated CTL responses.  相似文献   

4.
Dendritic cells (DCs) present internalized antigens to CD8 T cells through cross-presentation by major histocompatibility complex class I (MHC-I) molecules. While conventional cDC1 excel at cross-presentation, cDC2 can be licensed to cross-present during infection by signals from inflammatory receptors, most prominently Toll-like receptors (TLRs). At the core of the regulation of cross-presentation by TLRs is the control of subcellular MHC-I traffic. Within DCs, MHC-I are enriched within endosomal recycling compartments (ERC) and traffic to microbe-carrying phagosomes under the control of phagosome-compartmentalized TLR signals to favor CD8 T cell cross-priming to microbial antigens. Viral blockade of the transporter associated with antigen processing (TAP), known to inhibit the classic MHC-I presentation of cytoplasmic protein-derived peptides, depletes the ERC stores of MHC-I to simultaneously also block TLR-regulated cross-presentation. DCs counter this impairment in the two major pathways of MHC-I presentation to CD8 T cells by mobilizing noncanonical cross-presentation, which delivers MHC-I to phagosomes from a new location in the ER-Golgi intermediate compartment (ERGIC) where MHC-I abnormally accumulate upon TAP blockade. Noncanonical cross-presentation thus rescues MHC-I presentation and cross-primes TAP-independent CD8 T cells best-matched against target cells infected with immune evasive viruses. Because noncanonical cross-presentation relies on a phagosome delivery route of MHC-I that is not under TLR control, it risks potential cross-presentation of self-antigens during infection. Here I review these findings to illustrate how the subcellular route of MHC-I to phagosomes critically impacts the regulation of cross-presentation and the nature of the CD8 T cell response to infection and cancer. I highlight important and novel implications to CD8 T cell vaccines and immunotherapy.  相似文献   

5.
T lymphocytes recognize antigen presented on the surface of antigen-presenting cells byMHC class I and class II molecules. Classically, MHC class I molecules present self- or pathogen-derived antigens that are synthesized within the cell, whereas exogenous antigens derived via endocytic uptake are loaded onto MHC class II molecules for presentation to CD4+ T cells. It is becoming increasingly clear that some dendritic cells are also specialized to process exogenous antigens into the MHC class I pathway for presentation to CD8+ T cells. This process is known as cross-presentation. It provides a mechanism that can drive dendritic cells to generate either tolerance to self-antigens or immunity to pathogens. The cells responsible for, and mechanisms underlying, this decision between tolerance and immunity via cross-presentation has become the focus of intense study to determine how various dendritic cell subsets effect the different outcomes.  相似文献   

6.
In dendritic cells (DCs), peptides derived from internalized particulate substrates are efficiently cross-presented by major histocompatibility complex (MHC) class I molecules. Exogenous soluble antigens are also presented by DCs but with substantially lower efficiency. Here we show that particulate and soluble antigens use different transport pathways. Particulate antigens have been shown to access peripheral endoplasmic reticulum (ER)-like phagosomes that are competent for cross-presentation, whereas we show here that soluble proteins that escape proteolysis enter the lumen of the ER. From there, they may be translocated into the cytosol by the pathway established for ER-associated degradation and their derived peptides may be transported back into the ER for binding by MHC class I molecules. MHC class I presentation involving the constitutive retrograde transport of soluble proteins to the ER by DCs may facilitate DC tolerance to components of their extracellular environment.  相似文献   

7.
Development of antigen cross-presentation capacity in dendritic cells   总被引:1,自引:0,他引:1  
Cross-presentation by dendritic cells (DCs) of exogenous antigens on MHC class I is important for the generation of immune responses to intracellular pathogens, as well as for maintenance of self tolerance. In mice, the CD8(+) DC lineage is specialised for this role. However, DCs of this lineage are not born with cross-presentation capacity. Several studies have demonstrated that it must be induced as a later developmental step by cytokines such as granulocyte macrophage colony-stimulating factor (GM-CSF), or by microbial products such as toll-like receptor (TLR) ligands. Increased cross-presentation capacity is thus induced in peripheral CD8 lineage DCs during inflammation or infection. However, this capacity is already fully developed in steady-state thymic CD8(+) DCs, in accordance with their role in the deletion of self-reactive developing T cells.  相似文献   

8.
Dendritic cells (DCs) play a key role in the induction of cellular immune responses by harvesting antigens from peripheral tissue for cross-priming CD8(+) T cells. It has been demonstrated that apoptotic bodies, whole- or degraded-cell-associated or soluble antigens as well as heat shock protein-bound peptides can be taken up, processed and cross-presented by DCs. Since cells are continuously releasing peptides from their surface MHC molecules, DCs in the tissues are exposed to such peptides and might process and present them to T cells as an additional pathway for cross-priming. To investigate this possibility, we compared and characterized the presentation of exogenous peptides by DCs and other cell types employing novel recombinant antibodies with TCR-like specificities for specific peptide-MHC complexes (pMHCs). These analyses reveal that loading of immature and mature DCs with peptide is far less efficient than it is for monocytes, T and B lymphocytes, B-lymphoblastoid, melanoma and TAP-deficient T2 cells. This inefficiency of peptide transfer to the MHC molecules of DCs makes it unlikely that these cells recycle peptides released from the MHC molecules of other cells and may explain why cross-presentation of such peptides has not yet been observed.  相似文献   

9.
Askew D  Harding CV 《Immunology》2008,123(3):447-455
To examine heterogeneity in dendritic cell (DC) antigen presentation function, murine splenic DCs were separated into CD4+ and CD8+ populations and assessed for the ability to process and present particulate antigen to CD4+ and CD8+ T cells. CD4+ and CD8+ DCs both processed exogenous particulate antigen, but CD8+ DCs were much more efficient than CD4+ DCs for both major histocompatibility complex (MHC) class II antigen presentation and MHC class I cross-presentation. While antigen processing efficiency contributed to the superior antigen presentation function of CD8+ DCs, our studies also revealed an important contribution of CD24. CD8+ DCs were also more efficient than CD4+ DCs in inducing naïve T cells to acquire certain effector T-cell functions, for example generation of cytotoxic CD8+ T cells and interferon (IFN)-γ-producing CD4+ T cells. In summary, CD8+ DCs are particularly potent antigen-presenting cells that express critical costimulators and efficiently process exogenous antigen for presentation by both MHC class I and II molecules.  相似文献   

10.
Control of cross-presentation during dendritic cell maturation   总被引:11,自引:0,他引:11  
The initiation of most cytotoxic immune responses requires MHC class I-restricted presentation of internalized antigens to CD8(+) T lymphocytes, a process called cross-presentation. In dendritic cells (DC), the only antigen-presenting cells that activate naive T cells, cross-presentation is particularly efficient after internalization of opsonized antigens or immune complexes, which are cross-presented through a proteasome- and transporter associated with antigen processing (TAP)-dependent MHC class I antigen presentation pathway. We now show that FcgammaR-mediated cross-presentation is tightly regulated during DC maturation. Cross-presentation increases soon after activation by lipopolysaccharides, and it is then inhibited in fully mature cells. The initial induction of cross-presentation results from an increase of both antigen internalization and delivery to the cytosol, and from a slight rise in the activity of the proteasome and TAP. The subsequent block of cross-presentation in mature DC is a consequence of the selective down-modulation of antigen internalization and cytosolic delivery, while proteasome and TAP activities continue to rise. Therefore, FcgammaR-mediated cross-presentation is regulated during DC maturation by the selective control of antigen internalization and transport to the cytosol.  相似文献   

11.
Exosomes are 50-90 nm vesicles with antigen presenting ability carrying major histocompatibility complex (MHC) class I, class II, abundant co-stimulatory molecules and some tetraspan proteins. Although dendritic cells (DCs) are one of the professional antigen presenting cells capable of presenting exogenous antigens in MHC class I-mediated antigen specific manner (cross-presentation), the cross-presentation ability by exosomes from immature or mature DCs are unknown. Here we show that exosomes released from ovalbumin (OVA) protein-pulsed bone marrow derived dendritic cells (BM-DCs) weakly present the peptide determinants to OVA specific MHC class I-restricted CD8(+) T cell hybridomas. The exosomes secreted by OVA(257-264) peptide- or OVA protein-pulsed mature BM-DCs activated OVA specific MHC class I-restricted T cell hybridomas more efficiently than those from immature BM-DCs. Transporters associated with antigen processing (TAP) deficient mice-derived BM-DCs were also used to examine whether functional TAP activity was required for cross-presentation by exosomes. The exosomes obtained from OVA(257-264) peptide-pulsed BM-DCs derived from TAP(-/-) mice showed a significant antigen presenting ability to OVA specific MHC class I-restricted T cell hybridomas. Altogether, our data indicate that BM-DCs secrete exosomes with weak cross-presentation ability.  相似文献   

12.
Exogenous antigens endocytosed in large amounts by antigen-presenting cells (APC) are presented on major histocompatibility complex (MHC) class I molecules as well as on class II molecules, a process called cross-presentation. Among APC, dendritic cells (DC) play a key role in cross-presentation by transporting internalized antigen to the cytosol. The present study shows that ovalbumin (OVA) introduced with negative charges by succinylation (Suc-OVA), maleylation (Mal-OVA) or cis-aconitylation (Aco-OVA) was efficiently taken up by DC via scavenger receptors (SR). Mal-OVA and Aco-OVA were efficiently cross-presented by DC, while cross-presentation of Suc-OVA was hardly observed. MHC class I presentation of acylated OVA introduced directly into the cytosol was inefficient and presentation of exogenous native OVA but not of Aco-OVA was markedly augmented by chloroquine, an inhibitor of endosomal acidification, suggesting that deacylation in endosomes or lysosomes is necessary for cross-presentation of acylated OVA. MHC class I presentation of exogenous native OVA and Aco-OVA by DC was blocked by lactacystin and brefeldin A, demonstrating that exogenous antigens taken up by DC are cross-presented through the conventional cytosolic pathway. Therefore, SR-mediated delivery of antigen to DC leads to efficient cross-presentation, although the pathway of chemical modification should be considered.  相似文献   

13.
Antigen presentation by professional antigen-presenting cells (pAPCs) to cytotoxic CD8(+) T cells can occur via two processing routes - the direct and cross-presentation pathways. Cross-presentation of exogenous antigens in the context of major histocompatibility complex (MHC) class I molecules has recently attracted a lot of research interest because it may prove crucial for vaccine development. This alternative pathway has been implicated in priming CD8(+) T-cell responses to pathogens as well as tumours in vivo (cross-priming). In cross-presentation, the internalized antigens can be processed through diverse intracellular routes. As many unresolved questions regarding the molecular basis that controls the cross-priming process still exist, it is essential to explore the various elements involved therein, to better elucidate this pathway. In this review, we summarize current data that explore how the source and nature of antigens could affect their cross-presentation. Moreover, we will discuss and outline how recent advances regarding pAPCs' properties have increased our appreciation of the complex nature of the cross-priming pathway in vivo. In conclusion, we contemplate how the direct and cross-presentation pathways can function to allow the immune system to deal efficiently with diverse pathogens.  相似文献   

14.
CD8(+) T-cell responses are critical in the immunological control of tumours and infectious diseases. To prime CD8(+) T cells against these cell-associated antigens, exogenous antigens must be cross-presented by professional antigen-presenting cells (APCs). While cross-presentation of soluble antigens by dendritic cells is detectable in vivo, the efficiency is low, limiting the clinical utility of protein-based vaccinations. To enhance the efficiency of presentation, we generated nanoparticles from a biodegradable polymer, poly(D,L-lactide-co-glycolide) (PLGA), to deliver antigen into the major histocompatibility complex (MHC) class I antigen presentation pathway. In primary mouse bone marrow-derived dendritic cells (BMDCs), the MHC class I presentation of PLGA-encapsulated ovalbumin (OVA) stimulated T cell interleukin-2 secretion at 1000-fold lower concentration than soluble antigen and 10-fold lower than antigen-coated latex beads. The microparticles also served as an intracellular antigen reservoir, leading to sustained MHC class I presentation of OVA for 72 hr, decreasing by only 20% after 96 hr, a time at which the presentation of soluble and latex bead-associated antigens was undetectable. Cytosol extraction demonstrated that antigen delivery via PLGA particles increased the amount of protein that escaped from endosomes into the cytoplasm, thereby increasing the access of exogenous antigen to the classic MHC class I loading pathway. These data indicate that the unique properties of PLGA particle-mediated antigen delivery dramatically enhance and sustain exogenous antigen presentation by MHC class I, potentially facilitating the clinical use of these particles in vaccination.  相似文献   

15.
As a population, dendritic cells (DCs) appear to be the best cross-presenters of internalized antigens on major histocompatibility complex class I molecules in the mouse. To do this, DCs have developed a number of unique and dedicated means to control their endocytic and phagocytic pathways: among them, the capacity to limit acidification of their phagosomes, to prevent proteolytic degradation, to delay fusion of phagosomes to lysosomes, to recruit ER proteins to phagosomes, and to export phagocytosed antigens to the cytosol. The regulation of phagocytic functions, and thereby of antigen processing and presentation by innate signaling, represents a critical level of integration of adaptive and innate immune responses. Understanding how innate signals control antigen cross-presentation is critical to define effective vaccination strategies for CD8+ T-cell responses.  相似文献   

16.
Cellular mechanisms governing cross-presentation of exogenous antigens   总被引:8,自引:0,他引:8  
The recent discovery of fusion of endoplasmic reticulum membrane with nascent phagosomes suggests that this peripheral compartment in macrophages and dendritic cells may serve as an organelle optimized for major histocompatibility complex (MHC) class I-restricted cross-presentation of exogenous antigens. The process allows intersection of the endosomal system with the endoplasmic reticulum, the classical site of MHC class I peptide loading, and may reconcile the seemingly conflicting evidence indicating both of these sites are crucial in cross-presentation. Here we discuss the potential mechanisms involved in loading exogenous antigens onto MHC class I molecules and the implications of this new evidence for the in vivo function of dendritic cells.  相似文献   

17.
Kenny K. Tran  Hong Shen 《Biomaterials》2009,30(7):1356-1362
Vaccines able to stimulate CD8+ T cells are crucial in controlling a broad range of infectious diseases and tumors. To induce effective CD8+ T cell responses, exogenous antigen has to be cross-presented onto major histocompatibility complex (MHC) class I molecules by dendritic cells. Although particle size has been recognized as a critical factor of vaccine design, it is unclear how the size of vaccine carriers impacts the intracellular processing of exogenous antigen and cross-presentation onto MHC class I molecules. In this study, by using polystyrene beads with narrowly defined sizes as model antigen carriers, we demonstrate that particle size mediates the efficiency of cross-presentation of exogenous antigens. By examining the intracellular trafficking, kinetics of phagosomal pH and degradation of antigens bounded to beads, we illustrate the possible mechanisms attributed to the profound effect of particle size on the efficiency of cross-presentation. Antigen bounded to 50 nm beads was shuttled rapidly to an acidic environment within half an hour post-exposure to cells, leading to its rapid and unregulated degradation and inefficient cross-presentation. In contrast, antigen bounded to 500 nm and 3 μm beads remained in a more neutral environment, which preserved the majority of antigens, leaving it available for the generation of peptides to be loaded onto MHC class I molecules. We conclude that the size of antigen carriers plays a critical role in directing antigen to the class I antigen presentation pathway. Our results, together with previous in vivo studies on the effect of particle size on CD8+ T cell responses, provide insight into the rational design of vaccines for the stimulation of cell-mediated immunity.  相似文献   

18.
Cross-presentation is the pathway by which exogenous antigens are routed for presentation on MHC class I for activation of CD8+ T cells. This pathway is important for the development of CD8+ cytotoxic T lymphocyte responses against tumors and infectious pathogens that do not directly infect APC. We review studies showing that certain Toll-like receptors mediate cross-presentation by dendritic cells, initiating cytosolic processing of antigen after inducing dendritic cell maturation. The implications of these studies for understanding CD8+ T cell activation and implementing novel vaccine strategies is considered.  相似文献   

19.
Polyreactive immunoglobulins (Ig) and complement components are present in tissues and blood of healthy individuals. They facilitate pathogen uptake and inactivation in lysosomes of phagocytes and thereby provide rapid protection against infection. Dendritic cells (DCs) are phagocytes that can acquire peptides from phagocytosed antigen to elicit cytotoxic immune responses by CD8+ T lymphocytes. The mechanisms that select peptides for cross-presentation are not fully resolved. Here we investigated the role of polyreactive Ig and complement in directing phagosomal antigen processing for cross-presentation. Phagocytosis facilitated by serum opsonization required the presence of Ig for effective antigen cross-presentation of microbe-derived antigen. The presence of complement C3 in serum promoted phagocytosis, yet phagosomes were defective in antigen degradation. The small GTPase Rab27a was recently implicated in antigen cross-presentation and was rapidly recruited to phagosomes only when Ig was present. Our data suggest that prebinding of antigen by polyreactive Ig potentiates the efficiency of antigen cross-presentation to CD8+ T cells through recruitment of Rab27a.  相似文献   

20.
Although plasmacytoid dendritic cells (pDCs) respond to virus replication in a nonspecific way by producing large amounts of type I interferon, a rapid, direct function for pDCs in activating antiviral lymphocytes is less apparent. Here we show that pDCs were able to rapidly initiate antigen-specific antiviral CD8+ T cell responses. After being exposed to virus, pDCs efficiently and rapidly internalized exogenous viral antigens and then presented those antigens on major histocompatibility complex (MHC) class I to CD8+ T cells. Processing of exogenous antigen occurred in endocytic organelles and did not require transit of antigen to the cytosol. Intracellular stores of MHC class I partially localized together with the transferrin receptor and internalized transferrin in endosomes, which suggested that such recycling endosomes are sites for loading peptide onto MHC class I or for peptide transit. Our data demonstrate that pDCs use 'ready-made' stores of MHC class I to rapidly present exogenous antigen to CD8+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号