首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The eggs of black widow spider (L. tredecimguttatus) have been demonstrated to be rich in toxic proteinaceous components. The study on such active components is of theoretical and practical importance. In the present work, using a combination of multiple biochemical and biological strategies, we isolated and characterized the proteinaceous components from the aqueous extract of the black widow spider eggs. After gel filtration of the egg extract, the resulting main protein and peptide peaks were further fractionated by ion exchange chromatography and reversed-phase high performance liquid chromatography. Two proteinaceous components, named latroeggtoxin-III and latroeggtoxin-IV, respectively, were purified to homogeneity. Latroeggtoxin-III was demonstrated to have a molecular weight of about 36 kDa. Activity analysis indicated that latroeggtoxin-III exhibited neurotoxicity against cockroaches but had no obvious effect on mice, suggesting that it is an insect-specific toxin. Latroeggtoxin-IV, with a molecular weight of 3.6 kDa, was shown to be a broad-spectrum antibacterial peptide, showing inhibitory activity against all five species of bacteria tested, with the highest activity against Staphylococcus aureus. Finally, the implications of the proteinaceous toxins in egg protection and their potential applications were analyzed and discussed.  相似文献   

2.
蜘蛛来源于野生动物资源,其毒素和蜘蛛丝均具有较强的生物学活性,在生物学领域和材料工程领域应用广阔。本文对国内外蜘蛛毒素及蜘蛛丝的结构及药理作用研究文献进行了总结分析,综述了近年来蜘蛛毒素在对离子通道的作用、神经保护、抗肿瘤、抗菌及对酶活性作用等方面的研究进展,蜘蛛丝在促凝血、神经修复、作为复合载体方面的应用。为今后蜘蛛毒素及蜘蛛丝的进一步研究提供参考,为发展人工养殖及新药研发打下基础。  相似文献   

3.
4.
Venom compositions include complex mixtures of toxic proteins that evolved to immobilize/dissuade organisms by disrupting biological functions. Venom production is metabolically expensive, and parsimonious use is expected, as suggested by the venom optimisation hypothesis. The decision-making capacity to regulate venom usage has never been demonstrated for the globally invasive Noble false widow Steatoda nobilis (Thorell, 1875) (Theridiidae). Here, we investigated variations of venom quantities available in a wild population of S. nobilis and prey choice depending on venom availability. To partially determine their competitiveness, we compared their attack rate success, median effective dose (ED50) and lethal dose (LD50), with four sympatric synanthropic species: the lace webbed spider Amaurobius similis, the giant house spider Eratigena atrica, the missing sector orb-weaver Zygiella x-notata, and the cellar spider Pholcus phalangioides. We show that S. nobilis regulates its venom usage based on availability, and its venom is up to 230-fold (0.56 mg/kg) more potent than native spiders. The high potency of S. nobilis venom and its ability to optimize its usage make this species highly competitive against native European spiders sharing the same habitats.  相似文献   

5.
6.
Alpha-latrotoxin (alpha-ltx), a component of the venom of black widow spiders (BWSV), binds to higher vertebrates presynaptic nerve terminals, stimulating massive neurotransmitter release. This neurotoxic protein is responsible for most of the symptoms elicited in men by the bite of black widow spider (BWS), i.e. a neurological syndrome named latrodectism. By reasoning that targeting this single component would abrogate most of the effect of BWS envenomation, we took advantage of the antibody phage display technology to generate monoclonal Fab fragments able to bind and neutralize the alpha-ltx. To this aim, we immunized Balb/c mice with purified toxin and cloned their antibody repertoire in the pCombIII phage display vector. By combining a high-stringency affinity selection with a sensitive 45Ca(2+) uptake assay, we isolated a Fab fragment (FM1) able to bind the alpha-ltx in the low nM range and neutralize its ionophore activity, in vitro and in vivo. After the onset of overt symptomatology, administration of FM1 to experimentally envenomed mice induced remission of symptoms and prevented lethality. Since alpha-ltx is the only molecule responsible for the great toxicity of BWS bites in mammals, the FM1 Fab, highly effective in neutralizing the toxin in vivo, represents a promising immunotherapy reagent for treating latrodectic patients.  相似文献   

7.
Extracellular vesicles (EVs), including exosomes and microvesicles, are membranous vesicles released from nearly all cellular types. They contain various bioactive molecules, and their molecular composition varies depending on their cellular origin. As research into venomous animals has progressed, EVs have been discovered in the venom of snakes and parasitic wasps. Although vesicle secretion in spider venom glands has been observed, these secretory vesicles’ origin and biological properties are unknown. In this study, the origin of the EVs from Ornithoctonus hainana venom was observed using transmission electron microscopy (TEM). The Ornithoctonus hainana venom extracellular vesicles (HN-EVs) were isolated and purified by density gradient centrifugation. HN-EVs possess classic membranous vesicles with a size distribution ranging from 50 to 150 nm and express the arthropod EV marker Tsp29Fb. The LC-MS/MS analysis identified a total of 150 proteins, which were divided into three groups according to their potential function: conservative vesicle transport-related proteins, virulence-related proteins, and other proteins of unknown function. Functionally, HN-EVs have hyaluronidase activity and inhibit the proliferation of human umbilical vein endothelial cells (HUVECs) by affecting the cytoskeleton and cell cycle. Overall, this study investigates the biological characteristics of HN-EVs for the first time and sheds new light on the envenomation process of spider venom.  相似文献   

8.
Nature’s library of venoms is a vast and untapped resource that has the potential of becoming the source of a wide variety of new drugs and therapeutics. The discovery of these valuable molecules, hidden in diverse collections of different venoms, requires highly specific genetic and proteomic sequencing techniques. These have been used to sequence a variety of venom glands from species ranging from snakes to scorpions, and some marine species. In addition to identifying toxin sequences, these techniques have paved the way for identifying various novel evolutionary links between species that were previously thought to be unrelated. Furthermore, proteomics-based techniques have allowed researchers to discover how specific toxins have evolved within related species, and in the context of environmental pressures. These techniques allow groups to discover novel proteins, identify mutations of interest, and discover new ways to modify toxins for biomimetic purposes and for the development of new therapeutics.  相似文献   

9.
Parasitoid wasps represent the plurality of venomous animals, but have received extremely little research in proportion to this taxonomic diversity. The lion’s share of investigation into insect venoms has focused on eusocial hymenopterans, but even this small sampling shows great promise for the development of new active substances. The family Pompilidae is known as the spider wasps because of their reproductive habits which include hunting for spiders, delivering a paralyzing sting, and entombing them in burrows with one of the wasp’s eggs to serve as food for the developing larva. The largest members of this family, especially the tarantula hawks of the genus Pepsis, have attained notoriety for their large size, dramatic coloration, long-term paralysis of their prey, and incredibly painful defensive stings. In this paper we review the existing research regarding the composition and function of pompilid venoms, discuss parallels from other venom literatures, identify possible avenues for the adaptation of pompilid toxins towards human purposes, and future directions of inquiry for the field.  相似文献   

10.
Oral tolerance is defined as a specific suppression of cellular and humoral immune responses to a particular antigen through prior oral administration of an antigen. It has unique immunological importance since it is a natural and continuous event driven by external antigens. It is characterized by low levels of IgG in the serum of animals after immunization with the antigen. There is no report of induction of oral tolerance to Bothrops jararaca venom. Here, we induced oral tolerance to B. jararaca venom in BALB/c mice and evaluated the specific tolerance and cross-reactivity with the toxins of other Bothrops species after immunization with the snake venoms adsorbed to/encapsulated in nanostructured SBA-15 silica. Animals that received a high dose of B. jararaca venom (1.8 mg) orally responded by showing antibody titers similar to those of immunized animals. On the other hand, mice tolerized orally with three doses of 1 µg of B. jararaca venom showed low antibody titers. In animals that received a low dose of B. jararaca venom and were immunized with B. atrox or B. jararacussu venom, tolerance was null or only partial. Immunoblot analysis against the venom of different Bothrops species provided details about the main tolerogenic epitopes and clearly showed a difference compared to antiserum of immunized animals.  相似文献   

11.
12.
Arthropod venoms offer a promising resource for the discovery of novel bioactive peptides and proteins, but the limited size of most species translates into minuscule venom yields. Bioactivity studies based on traditional fractionation are therefore challenging, so alternative strategies are needed. Cell-free synthesis based on synthetic gene fragments is one of the most promising emerging technologies, theoretically allowing the rapid, laboratory-scale production of specific venom components, but this approach has yet to be applied in venom biodiscovery. Here, we tested the ability of three commercially available cell-free protein expression systems to produce venom components from small arthropods, using U2-sicaritoxin-Sdo1a from the six-eyed sand spider Hexophtalma dolichocephala as a case study. We found that only one of the systems was able to produce an active product in low amounts, as demonstrated by SDS-PAGE, mass spectrometry, and bioactivity screening on murine neuroblasts. We discuss our findings in relation to the promises and limitations of cell-free synthesis for venom biodiscovery programs in smaller invertebrates.  相似文献   

13.
安静  王墨 《中国药业》2010,19(8):19-21
IgA肾病是儿童最常见的原发性肾小球疾病,其临床表现和预后有较大异质性,部分患儿甚至可能发展为终末期肾病。该文简述了影响IgA肾病预后的相关因素,如遗传、蛋白尿程度、高血压、血肌酐水平、肾小球硬化、免疫病理、肾小管间质病变等方面的研究进展。  相似文献   

14.
15.
1. The spiders of medical importance in the Asia-Pacific region include widow (family Theridiidae) and Australian funnel-web spiders (subfamily Atracinae). In addition, cupboard (family Theridiidae) and Australian mouse spiders (family Actinopodidae) may contain neurotoxins responsible for serious systemic envenomation. Fortunately, there appears to be extensive cross-reactivity of species-specific widow spider antivenom within the family Theridiidae. Moreover, Sydney funnel-web antivenom has been shown to be effective in the treatment of mouse spider envenomation. 2. alpha-Latrotoxin (alpha-LTx) appears to be the main neurotoxin responsible for the envenomation syndrome known as "latrodectism" following bites from widow spiders. This 120 kDa protein binds to distinct receptors (latrophilin 1 and neurexins) to induce neurotransmitter vesicle exocytosis via both Ca2+-dependent and -independent mechanisms, resulting in vesicle depletion. This appears to involve disruption to a process that normally inhibits vesicle fusion in the absence of Ca2+. Precise elucidation of the mechanism of action of alpha-LTx will lead to a major advancement in our understanding of vesicle exocytosis. 3. delta-Atracotoxins (delta-ACTX) are responsible for the primate-specific envenomation syndrome seen following funnel-web spider envenomation. These peptides induce spontaneous repetitive firing and prolongation of action potentials in excitable cells. This results from a hyperpolarizing shift of the voltage-dependence of activation and a slowing of voltage-gated Na+ channel inactivation. This action is due to voltage-dependent binding to neurotoxin receptor site-3 on insect and mammalian voltage-gated Na+ channels in a manner similar, but not identical, to scorpion alpha-toxins and sea anemone toxins. delta-Atracotoxins provide us with highly specific tools to study Na+ channel structure and function 4. omega- and Janus-faced ACTX, from funnel-web spider venom, are novel neurotoxins that show selective toxicity to insects. In particular omega-ACTX define a new insecticide target due to a specific action to block insect voltage-gated Ca2+ channels. Both these ACTX show promise for the development of baculoviral recombinant biopesticides expressing these toxins for the control of insecticide-resistant agricultural pests. In addition, they should provide valuable tools for the pharmacological and structural characterization of insecticide targets.  相似文献   

16.
目的:从原料合成、抗菌活性、体内药动学、适应证、不良反应等方面全面介绍第2代头孢菌素类抗生素——头孢替坦的研究进展,并简略介绍其制剂发展情况,为深入研究提供参考。方法:根椐国内外资料进行分析,归纳,加以综述。结果:头孢替坦是1种半合成长效抗生素,具有广谱抗菌作用,尤其对于革兰阴性菌及厌氧茵作用突出。结论:头孢替坦具有重要的科研和应用价值。  相似文献   

17.
18.
A. Grasso  M. Pelliccia  S. Alemà 《Toxicon》1982,20(1):149-156
α-latrotoxin, a polypeptide neurotoxin purified from the venom of the spider Latrodectus mactans tredecimguttatus, induces a massive release of a variety of neurotransmitters from rat brain synaptosomes and a clonal pheochromocytoma cell line (PC12 cells). In both systems secretion of catecholamines is dose- and calcium-dependent. Efflux of catecholamines is coupled with a substantial release of intracellular ATP. Interaction of α-latrotoxin with PC12 cells is followed by a rapid influx of calcium and sodium ions, the rate being dependent on toxin and calcium concentrations.By reductive methylation it is possible to radioactively label α-latrotoxin without appreciable loss of neurotoxicity. A sensitive binding assay in vitro allows the identification of a limited number of specific binding sites in central nervous system synaptic membranes and PC12 cells, for which tritiated α-latrotoxin displays nanomolar affinity.  相似文献   

19.
Snakes of the genera Pseudocerastes and Eristicophis (Viperidae: Viperinae) are known as the desert vipers due to their association with the arid environments of the Middle East. These species have received limited research attention and little is known about their venom or ecology. In this study, a comprehensive analysis of desert viper venoms was conducted by visualising the venom proteomes via gel electrophoresis and assessing the crude venoms for their cytotoxic, haemotoxic, and neurotoxic properties. Plasmas sourced from human, toad, and chicken were used as models to assess possible prey-linked venom activity. The venoms demonstrated substantial divergence in composition and bioactivity across all experiments. Pseudocerastes urarachnoides venom activated human coagulation factors X and prothrombin and demonstrated potent procoagulant activity in human, toad, and chicken plasmas, in stark contrast to the potent neurotoxic venom of P. fieldi. The venom of E. macmahonii also induced coagulation, though this did not appear to be via the activation of factor X or prothrombin. The coagulant properties of P. fieldi and P. persicus venoms varied among plasmas, demonstrating strong anticoagulant activity in the amphibian and human plasmas but no significant effect in that of bird. This is conjectured to reflect prey-specific toxin activity, though further ecological studies are required to confirm any dietary associations. This study reinforces the notion that phylogenetic relatedness of snakes cannot readily predict venom protein composition or function. The significant venom variation between these species raises serious concerns regarding antivenom paraspecificity. Future assessment of antivenom is crucial.  相似文献   

20.
声动力疗法和声敏剂研究进展   总被引:1,自引:1,他引:0  
本文综述了声动力疗法(SDT)产生至今,声敏剂药物研究开发情况。同时对声动力的研究进展进行概述,分析了声动力治疗肿瘤的研究趋势,指出SDT作为临床治疗肿瘤的新方法,有着广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号