共查询到20条相似文献,搜索用时 15 毫秒
1.
K Umezu K Nakayama H Nakayama 《Proceedings of the National Academy of Sciences of the United States of America》1990,87(14):5363-5367
The Escherichia coli recQ gene, a member of the RecF recombination gene family, was set in an overexpression plasmid, and its product was purified to near-homogeneity. The purified RecQ protein exhibited a DNA-dependent ATPase and a helicase activity. Without DNA, no ATPase activity was detected. The capacity as ATPase cofactor varied with the type of DNA in the following order: circular single strand greater than linear single strand much greater than circular or linear duplex. As a helicase, RecQ protein displaced an annealed 71-base or 143-base single-stranded fragment from circular or linear phage M13 DNA, and the direction of unwinding seemed to be 3'----5' with respect to the DNA single strand to which the enzyme supposedly bound. Furthermore, the protein could unwind 143-base-pair blunt-ended duplex DNA at a higher enzyme concentration. It is concluded that RecQ protein is a previously unreported helicase, which might possibly serve to generate single-stranded tails for a strand transfer reaction in the process of recombination. 相似文献
2.
Katsuhiro Hanada Toshiyuki Ukita Yuko Kohno Kazue Saito Jun-ichi Kato Hideo Ikeda 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(8):3860-3865
Bloom syndrome and Werner syndrome are genetic disorders in which an increased rate of chromosomal abnormality is observed. The genes responsible for these diseases, BLM and WRN, have been cloned and identified as homologs of the Escherichia coli recQ genes. We studied the effect of recQ mutations on illegitimate recombination, which is an aberrant biological event related to the chromosomal abnormality in humans, and found that a variety of recQ mutations increased spontaneous illegitimate recombination by 20- to 300-fold and increased UV light-induced illegitimate recombination by 10- to 100-fold. Most λbio or λpro transducing phages are formed by the recombination events at several hot spots, which are enhanced by the recQ mutation. The analysis of nucleotide sequences at the recombination junction in the transducing phages indicates that recombination at the hot spot sites as well as the non-hot spot sites takes place between short homologous sequences. Enhancement of the recombination in the recQ mutants also occurs in the recA, recBC sbcBC, or recBC sbcA backgrounds, indicating that these recombination events are mediated by none of the known recombination pathways, RecBC, RecF, and RecE. We therefore concluded that the RecQ function suppresses illegitimate recombination that depends on short homologous regions. We discuss a model, based on the 3′-to-5′ helicase activity of RecQ, to explain the role of this protein as a suppressor of illegitimate recombination. 相似文献
3.
Sarlós K Gyimesi M Kovács M 《Proceedings of the National Academy of Sciences of the United States of America》2012,109(25):9804-9809
Maintenance of genome integrity is the major biological role of RecQ-family helicases via their participation in homologous recombination (HR)-mediated DNA repair processes. RecQ helicases exert their functions by using the free energy of ATP hydrolysis for mechanical movement along DNA tracks (translocation). In addition to the importance of translocation per se in recombination processes, knowledge of its mechanism is necessary for the understanding of more complex translocation-based activities, including nucleoprotein displacement, strand separation (unwinding), and branch migration. Here, we report the key properties of the ssDNA translocation mechanism of Escherichia coli RecQ helicase, the prototype of the RecQ family. We monitored the pre-steady-state kinetics of ATP hydrolysis by RecQ and the dissociation of the enzyme from ssDNA during single-round translocation. We also gained information on the translocation mechanism from the ssDNA length dependence of the steady-state ssDNA-activated ATPase activity. We show that RecQ occludes 18 ± 2 nt on ssDNA during translocation. The hydrolysis of ATP is noncooperative in the presence of ssDNA, indicating that RecQ active sites work independently during translocation. In the applied conditions, the enzyme hydrolyzes 35 ± 4 ATP molecules per second during ssDNA translocation. RecQ translocates at a moderate processivity, with a mean run length of 100-320 nt on ssDNA. The determined tight mechanochemical coupling of 1.1 ± 0.2 ATP consumed per nucleotide traveled indicates an inchworm-type mechanism. 相似文献
4.
5.
Katsumi Morimatsu Stephen C. Kowalczykowski 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(48):E5133-E5142
Recombinational DNA repair by the RecF pathway of Escherichia coli requires the coordinated activities of RecA, RecFOR, RecQ, RecJ, and single-strand DNA binding (SSB) proteins. These proteins facilitate formation of homologously paired joint molecules between linear double-stranded (dsDNA) and supercoiled DNA. Repair starts with resection of the broken dsDNA by RecQ, a 3′→5′ helicase, RecJ, a 5′→3′ exonuclease, and SSB protein. The ends of a dsDNA break can be blunt-ended, or they may possess either 5′- or 3′-single-stranded DNA (ssDNA) overhangs of undefined length. Here we show that RecJ nuclease alone can initiate nucleolytic resection of DNA with 5′-ssDNA overhangs, and that RecQ helicase can initiate resection of DNA with blunt-ends or 3′-ssDNA overhangs by DNA unwinding. We establish that in addition to its well-known ssDNA exonuclease activity, RecJ can display dsDNA exonuclease activity, degrading 100–200 nucleotides of the strand terminating with a 5′-ssDNA overhang. The dsDNA product, with a 3′-ssDNA overhang, is an optimal substrate for RecQ, which unwinds this intermediate to reveal the complementary DNA strand with a 5′-end that is degraded iteratively by RecJ. On the other hand, RecJ cannot resect duplex DNA that is either blunt-ended or terminated with 3′-ssDNA; however, such DNA is unwound by RecQ to create ssDNA for RecJ exonuclease. RecJ requires interaction with SSB for exonucleolytic degradation of ssDNA but not dsDNA. Thus, complementary action by RecJ and RecQ permits initiation of recombinational repair from all dsDNA ends: 5′-overhangs, blunt, or 3′-overhangs. Such helicase–nuclease coordination is a common mechanism underlying resection in all organisms.Homologous recombination is a relatively error-free mechanism to repair double-stranded DNA (dsDNA) breaks (DSBs) and single-stranded DNA (ssDNA) gaps, which are produced by UV light, γ-irradiation, and chemical mutagens (1). In wild-type Escherichia coli, the labor of recombinational repair is divided between the RecBCD and RecF pathways of recombination, which are responsible for the repair of DSBs and ssDNA gaps, respectively (2–5). However, the proteins of the RecF pathway are capable of DSB repair, as well as ssDNA gap repair: in recBC mutant cells containing the suppressor mutations, sbcB and sbcC (suppressors of recBC), the proteins of the RecF pathways provide the needed recombinational DNA repair functions (2, 6).The RecF pathway in E. coli involves the functions of RecA, RecF, RecG, RecJ, RecN, RecO, RecQ, RecR, RuvA, RuvB, RuvC, and single-strand DNA binding (SSB) proteins (1, 7). The RecF pathway of recombination is evolutionarily conserved across Bacteria, with most of components present in all bacteria (8). In addition, orthologs of RecF pathway proteins are found in Eukarya. RecA promotes DNA strand invasion and exchange (9–11), as does eukaryotic Rad51 (12, 13). RecO can both anneal SSB–ssDNA complexes (14, 15) and, in conjunction with RecR (and RecF), mediate loading of RecA onto SSB–ssDNA complexes (16–18). Saccharomyces cerevisiae Rad52 is a functional homolog of RecO in that it also displays both DNA-annealing and Rad51-loading activities (19–22). The RecFOR complex promotes the loading of RecA onto SSB-coated gapped DNA at ssDNA–dsDNA junctions (17, 18) and, when mutated, is suppressed by hyperactive alleles of recA (23), a property that is shared with the yeast Rad55/57 proteins (24). Furthermore, human BRCA2 protein and a fungal analog, Brh2, are partial functional analogs of the RecFOR proteins (25–27).RecQ helicase plays several roles in both early and late steps of recombination (28, 29), as do the RecQ-family helicases in Eukarya [e.g., Sgs1 and Bloom Syndrome helicase (BLM)] (30–32). In addition, eukaryotic Exonuclease 1 (Exo1) and Dna2 helicase/nuclease function somewhat analogously, although not identically, to RecJ nuclease (33–36). The in vitro reconstitution of DSB repair in E. coli, yeast, and human have shown that resection involves specific pairs of a helicase and nuclease for DNA end resection: RecQ/RecJ, Sgs1/Dna2, BLM/DNA2, and BLM/EXO1 (28, 37–39).A comparison of DSB repair by the RecBCD and RecF pathways shows that repair starts with the processing a DSB into resected dsDNA with a 3′-ssDNA overhang (7). RecJ has a 5′ to 3′ exonuclease activity on ssDNA and the action of RecJ is facilitated by RecQ, which has a 3′ to 5′ helicase activity (40, 41). The resulting processed DNA has a 3′-ssDNA overhang. The RecFOR complex binds to the 5′-end at the junction between ssDNA and dsDNA, and loads RecA protein onto the adjacent ssDNA (17, 18). Finally, the RecA nucleoprotein filament promotes pairing with homologous dsDNA (9). These steps have been reconstituted in vitro in a coordinated reaction using RecAFORQJ and SSB proteins (28).Despite progress, most studies have used DNA substrates with simple blunt-ends. However, in vivo, there are many potential structures at the end of a DSB. When the DSB is created by a replication fork encountering nicked DNA, the break can be blunt-ended (5). However, related mechanisms can produce dsDNA with either 5′- or 3′-ssDNA overhangs. Similarly, the actual intermediates of DNA processing may result in dsDNA with either 5′- or 3′-ssDNA ends. Clearly, a DNA repair pathway must be capable of dealing with such a variety of DNA end structures. In this study, we investigated the processing of DSBs by RecJ and RecQ, both individually and together. We found that a DNA with a 5′-ssDNA overhang end was degraded by RecJ nuclease and converted into an intermediate with a 3′-ssDNA overhang. Although this intermediate was no longer a substrate for RecJ, RecQ could bind to this intermediate and initiate unwinding, thereby supplying 5′-tailed ssDNA for further resection by RecJ. In addition, we established that RecQ allows RecJ to initiate nucleolytic resection on otherwise poor substrates (e.g., blunt-end DNA or DNA with 3′-ssDNA overhangs). Thus, RecQ and RecJ cooperate biochemically to create DNA intermediates for one another that enable resection of all types of broken DNA molecules. 相似文献
6.
Irina Bruck Daniel L. Kaplan 《Proceedings of the National Academy of Sciences of the United States of America》2015,112(36):11223-11228
Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase.The replication fork helicase in eukaryotes is composed of Cdc45, the Mcm2-7 heterohexameric ATPase, and the tetrameric GINS (Go, Ichi, Ni, and San) complex (CMG assembly) (1). The replication fork helicase (CMG) assembles in S phase in a manner that is dependent upon the replication initiation factors Sld2, Sld3, and Dpb11 (2). Sld3 (Treslin/TICRR in humans), Sld2 (RecQL4/RecQ4 in humans), and Dpb11 (TopBP1 in humans) are required for the initiation of DNA replication, but these proteins do not travel with the replication fork (3). The S-phase-specific kinases, cyclin-dependent kinase (CDK) and the Dbf4-dependent kinase (DDK), are also required for CMG assembly and origin activation (4, 5). In late M and G1 phases, the Mcm2-7 complex loads to encircle dsDNA as a double hexamer (6, 7). During S phase, a single strand of DNA is extruded from the central channel of Mcm2-7, and this event is required because the CMG complex unwinds DNA by a steric exclusion mechanism (8).Central to the initiation of DNA replication is the coordination of entry into S phase with origin firing (4, 5). Levels of the S phase-specific kinases, S-CDK and DDK, rise during the onset of S phase, and these two kinases are central to coordinating S-phase entry with origin firing (4, 5). S-CDK phosphorylates Sld2 and Sld3, and these phosphorylation events are the essential functions of S-CDK (9, 10). S-CDK phosphorylation of Sld3 is conserved in human Treslin (11). S-CDK phosphorylation of Sld2 promotes the association of Sld2 with yeast Dpb11 (12), and also the association of Sld2 with T-rich ssDNA (13). S-CDK phosphorylation of Sld3 stimulates the association of Sld3 with Dpb11 (9, 10). The associations of Sld2 with Dpb11 and Sld3 with Dpb11 have been proposed to be important for the recruitment of GINS to origins, through the generation of a preloading complex (Pre-LC), composed of Sld2, GINS, Polε, and Dpb11 (14). S-CDK–catalyzed formation of an Sld3-Dpb11-Sld2 complex has also been proposed to be important to generate a ternary ssDNA-binding complex of high affinity, because Sld2, Sld3, and Dpb11 bind to T-rich ssDNA (13, 15, 16).The essential role of DDK in yeast cells is the phosphorylation of subunits of the Mcm2-7 complex (17). DDK phosphorylation of Mcm4 is important for cell growth, and this phosphorylation event alleviates an inhibitory function of the N terminus of Mcm4 (18). DDK phosphorylation of Mcm4 may also promote the interaction between Cdc45 and Mcm2-7 (18). DDK phosphorylation of Mcm6 may also be important for cell growth (19). Mcm2 is also a target for DDK (20), and DDK phosphorylation of Mcm2 is also required for DNA replication under normal growth conditions (21). Furthermore, expression of a mutant of mcm2 (mcm2-S164A,S170A) that is not phosphorylated by DDK exerts a dominant-negative severe growth defect in budding yeast that is bypassed by the mcm5-bob1 (mcm5-P83L) mutation (21). The biochemical mechanism of this genetic suppression has also been examined. DDK phosphorylation of Mcm2 reduces the affinity of budding yeast Mcm2 for Mcm5, and the mcm5-bob1 mutation also reduces this affinity (21). This reduced affinity may help open the “Mcm2-Mcm5 gate,” which may be important for the extrusion of ssDNA from the central channel of Mcm2-7 during S phase, a requirement for origin activation (22).Cdc45 binds weakly to Mcm2-7 in the absence of accessory factors (23). Sld3 binds tightly to Mcm2-7 and Cdc45, and thus Sld3 recruits Cdc45 to Mcm2-7 complexes (2, 23). This step may further require DDK and involve the nonessential initiation factor Sld7 (24). During origin activation, Sld3 is removed from Mcm2-7, presumably through the exposure of sequestering T-rich ssDNA (16). GINS can substitute for Sld3 as a factor that promotes the association of Cdc45 with Mcm2-7, thereby forming the stable Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex (23, 25).The mechanism of GINS recruitment may involve the formation of the S-CDK–dependent preloading complex, wherein the pre-LC recruits GINS to Mcm2-7, analogous to how Sld3 recruits Cdc45 to Mcm2-7 (14). A second proposal posits that Sld3, Sld2, and Dpb11 compete with GINS for binding to Mcm2-7 before origin activation, blocking the premature interaction between GINS and Mcm2-7 before origin activation (15, 16, 26). However, when T-rich ssDNA is extruded from the central channel of Mcm2-7, an ssDNA binding surface for Sld3-Sld2-Dpb11 is generated (15, 16, 26). Sld3-Sld2-Dpb11 dissociates from Mcm2-7 once the origin is melted, because Sld3-Sld2-Dpb11 has a higher affinity for ssDNA then Mcm2-7 (15, 16, 26). The dissociation of Sld3-Sld2-Dpb11 from Mcm2-7 allows GINS to bind Mcm2-7 by a passive, sequestration mechanism (15, 16, 26). The two models are not incompatible with one another, and they may both be correct.There is an excess of Mcm2-7 double hexamer complexes loaded onto dsDNA in M phase and G1 relative to the number of Mcm2-7 double hexamer complexes that actually fire. Remarkably, the activated Mcm2-7 complexes share several features in common: DDK phosphorylation of Mcm2-7, initiation factor (Sld3, Sld2, Dpb11, Mcm10, and Sld7) binding to Mcm2-7, and Cdc45/GINS attachment to Mcm2-7. What coordinates these different activities at a particular Mcm2-7 double hexamer? In other words, what prevents Cdc45 from binding to one Mcm2-7 double hexamer while DDK phosphorylates a different Mcm2-7 double hexamer? We sought to address this fundamental question in this paper.We show that DDK-phosphorylated Mcm2 preferentially interacts with Cdc45 in vivo compared with Mcm2 (all Mcm2 in cell, phosphorylated and unphosphorylated), suggesting that Cdc45 recruitment to Mcm2-7 is correlated with DDK phosphorylation of Mcm2. We also show that Sld3 substantially stimulates DDK phosphorylation of Mcm2 in vitro. We identified a mutant of Sld3, sld3-m16, that is defective in the stimulation of DDK phosphorylation of Mcm2. When sld3-m16 is expressed in budding yeast cells, a dominant negative severe growth defect is observed that is bypassed by mcm5-bob1. Wild-type expression levels of sld3-m16 confer a growth and DNA replication defect, with decreased DDK phosphorylation of Mcm2. Furthermore, expression of sld3-m16 results in diminished replication protein A (RPA)-ChIP signal at an origin, and decreased GINS interaction with Mcm2-7. Furthermore, human Treslin substantially stimulates DDK phosphorylation of Mcm2 at serines 53 and 108. Finally, a mutant of human Mcm2 that mimics DDK-phosphorylated Mcm2 exhibits diminished interaction with human Mcm5, suggesting a mechanism for “gate” opening. We conclude that Sld3 coordinates helicase phosphorylation with helicase assembly. 相似文献
7.
Goto M Okawa-Takatsuji M Aotsuka S Nakai H Shimizu M Goto H Shimamoto A Furuichi Y 《Modern rheumatology / the Japan Rheumatism Association》2006,16(4):229-234
Werner syndrome, caused by the homologous mutation of RecQ3 RNA/DNA helicase (WRN), is often misdiagnosed as systemic sclerosis
(SSc) because of apparent similar skin changes and its relatively high frequency in Japan. The present study was undertaken
to determine whether anti-WRN antibodies assayed by specific enzyme-linked immunosorbent assay occur in 41 SSc patients (30
diffuse and 11 limited types) and, if so, to determine any clinical association, such as skin sclerosis. Serum level of IgG
anti-WRN antibody in SSc was significantly higher than that from 30 age- and sex-matched normal volunteers (P < 0.001). The serum level of IgG anti-WRN antibody in diffuse type SSc was significantly higher than the limited type (P < 0.05). A significant correlation was observed between serum levels of IgG anti-topoisomerase I antibody and IgG anti-WRN
antibody in the same samples from SSc (P < 0.05). Moreover, in 119 normal healthy individuals aged from 0 to 99 years, a statistically significant correlation (P < 0.001) existed between serum level of IgG anti-WRN antibody and advancing age. A significantly higher level of IgG autoantibody
specific for WRN detected in diffuse than in limited type SSc and normal may contribute to the pathogenesis of skin sclerosis
in SSc. 相似文献
8.
9.
《Modern rheumatology / the Japan Rheumatism Association》2013,23(4):229-234
AbstractWerner syndrome, caused by the homologous mutation of RecQ3 RNA/DNA helicase (WRN), is often misdiagnosed as systemic sclerosis (SSc) because of apparent similar skin changes and its relatively high frequency in Japan. The present study was undertaken to determine whether anti-WRN antibodies assayed by specific enzyme-linked immunosorbent assay occur in 41 SSc patients (30 diffuse and 11 limited types) and, if so, to determine any clinical association, such as skin sclerosis. Serum level of IgG anti-WRN antibody in SSc was significantly higher than that from 30 age- and sex-matched normal volunteers (P < 0.001). The serum level of IgG anti-WRN antibody in diffuse type SSc was significantly higher than the limited type (P < 0.05). A significant correlation was observed between serum levels of IgG anti-topoisomerase I antibody and IgG anti-WRN antibody in the same samples from SSc (P < 0.05). Moreover, in 119 normal healthy individuals aged from 0 to 99 years, a statistically significant correlation (P < 0.001) existed between serum level of IgG anti-WRN antibody and advancing age. A significantly higher level of IgG autoantibody specific for WRN detected in diffuse than in limited type SSc and normal may contribute to the pathogenesis of skin sclerosis in SSc. 相似文献
10.
D Jose SE Weitzel PH von Hippel 《Proceedings of the National Academy of Sciences of the United States of America》2012,109(36):14428-14433
We previously used changes in the near-UV circular dichroism and fluorescence spectra of DNA base analogue probes placed site specifically to show that the first three base pairs at the fork junction in model replication fork constructs are significantly opened by "breathing" fluctuations under physiological conditions. Here, we use these probes to provide mechanistic snapshots of the initial interactions of the DNA fork with a tight-binding replication helicase in solution. The primosome helicase of bacteriophage T4 was assembled from six (gp41) helicase subunits, one (gp61) primase subunit, and nonhydrolyzable GTPγS. When bound to a DNA replication fork construct this complex advances one base pair into the duplex portion of the fork and forms a stably bound helicase "initiation complex." Replacement of GTPγS with GTP permits the completion of the helicase-driven unwinding process. Our spectroscopic probes show that the primosome in this stable helicase initiation complex binds the DNA of the fork primarily via backbone contacts and holds the first complementary base pair of the fork in an open conformation, whereas the second, third, and fourth base pairs of the duplex show essentially the breathing behavior that previously characterized the first three base pairs of the free fork. These spectral changes, together with dynamic fluorescence quenching results, are consistent with a primosome-binding model in which the lagging DNA strand passes through the central hole of the hexagonal helicase, the leading strand binds to the "outside" surfaces of subunits of the helicase hexamer, and the single primase subunit interacts with both strands. 相似文献
11.
12.
13.
M T Howard S H Neece S W Matson K N Kreuzer 《Proceedings of the National Academy of Sciences of the United States of America》1994,91(25):12031-12035
The type II DNA topoisomerases are targets for a variety of chemotherapeutic agents, including the antibacterial quinolones and several families of antitumor drugs. These agents stabilize an enzyme-DNA cleavage complex that consists of the topoisomerase covalently linked to the 5' phosphates of a double-stranded DNA break. Although the drug-stabilized cleavage complex is readily reversible, it can result in cell death by a mechanism that remains uncertain. Here we demonstrate that the action of a DNA helicase can convert the cleavage complex into a nonreversible DNA break by displacing DNA strands from the complex. Formation of a nonreversible DNA break, induced by a DNA helicase, could explain the cytotoxicity of these topoisomerase poisons. 相似文献
14.
Yi-Jun Sheu Justin B. Kinney Armelle Lengronne Philippe Pasero Bruce Stillman 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(18):E1899-E1908
Eukaryotic DNA synthesis initiates from multiple replication origins and progresses through bidirectional replication forks to ensure efficient duplication of the genome. Temporal control of initiation from origins and regulation of replication fork functions are important aspects for maintaining genome stability. Multiple kinase-signaling pathways are involved in these processes. The Dbf4-dependent Cdc7 kinase (DDK), cyclin-dependent kinase (CDK), and Mec1, the yeast Ataxia telangiectasia mutated/Ataxia telangiectasia mutated Rad3-related checkpoint regulator, all target the structurally disordered N-terminal serine/threonine-rich domain (NSD) of mini-chromosome maintenance subunit 4 (Mcm4), a subunit of the mini-chromosome maintenance (MCM) replicative helicase complex. Using whole-genome replication profile analysis and single-molecule DNA fiber analysis, we show that under replication stress the temporal pattern of origin activation and DNA replication fork progression are altered in cells with mutations within two separate segments of the Mcm4 NSD. The proximal segment of the NSD residing next to the DDK-docking domain mediates repression of late-origin firing by checkpoint signals because in its absence late origins become active despite an elevated DNA damage-checkpoint response. In contrast, the distal segment of the NSD at the N terminus plays no role in the temporal pattern of origin firing but has a strong influence on replication fork progression and on checkpoint signaling. Both fork progression and checkpoint response are regulated by the phosphorylation of the canonical CDK sites at the distal NSD. Together, our data suggest that the eukaryotic MCM helicase contains an intrinsic regulatory domain that integrates multiple signals to coordinate origin activation and replication fork progression under stress conditions.Eukaryotic DNA replication initiates from multiple replication origins within each chromosome to duplicate the large genome efficiently. To ensure DNA synthesis occurs once and only once across the genome, cells adopt a two-step process to activate replication origins during two separate stages of the cell-division cycle. The first step is licensing of replication origins, which occurs only when cyclin-dependent kinase (CDK) activity is low. In Saccharomyces cerevisiae, origins of DNA replication are licensed in G1 by the formation of a prereplicative complex (pre-RC). The process begins with the origin recognition complex binding to replication origins and recruiting the licensing factor Cdc6, which facilitates loading of the Cdt1-bound minichromosome maintenance (MCM) complex composed of Mcm2–Mcm7 (Mcm2–7). The hexameric Mcm2–7 is the core of the replicative helicase that unwinds DNA during replication. Within the pre-RC Mcm2–7 is loaded as an inactive double hexamer. The next step, activation of licensed origins (origin firing), occurs throughout the S phase and requires the continuous presence of two kinases, the S phase CDKs and the Dbf4-dependent Cdc7 kinase (DDK). CDK phosphorylates Sld2 and Sld3 to allow their binding to Dpb11 (1, 2), facilitating recruitment of Cdc45 and GINS (composed of protein subunits Sld5, Psf1, Psf2 and Psf3; Go, Ichi, Nii, and San stand for five, one, two, and three in Japanese, respectively) to Mcm2–7 to create an active helicase. DDK phosphorylates Mcm2–7 and blocks an intrinsic initiation inhibitory activity residing in the N terminus of the Mcm4 subunit (3). The concerted action of these S-phase kinases transforms the inactive Mcm2–7 double hexamer into the active helicase complex composed of Cdc45, Mcm2-7, and GINS (the CMG complex) (4–6). Upon initiation, DNA polymerases and other components of the replication machinery are recruited to form replisomes and establish replication forks, where DNA synthesis ensues.Kinase-signaling pathways target various components of the replication machinery. Both CDK and DDK target replication proteins in addition to their essential targets described above. Furthermore, Ataxia telangiectasia mutated/Ataxia telangiectasia mutated Rad3-related (ATM/ATR) signaling targets components of the CMG helicase complex under replication stress (7–10). In the yeast S. cerevisiae, DNA damage activates the checkpoint kinase Rad53, which phosphorylates both Sld3 and Dbf4 to inhibit late origin firing (11, 12). The yeast ATM/ATR homolog Mec1 also targets Mcm4 (13). The stress-activated protein kinase Hog1 targets an auxiliary replisome component Mrc1 to regulate both origin firing and fork progression (14). Although we now have a better understanding of the essential functions of protein kinases in controlling the initiation of replication, we do not completely understand how the separate kinase signaling pathways are coordinated to regulate both initiation and replication fork progression.The structurally disordered N-terminal serine/threonine-rich domain (NSD) of Mcm4 is a target of multiple kinases, including DDK, CDK, and Mec1 (3, 13, 15, 16). Within this region we have identified two functionally distinct domains that exert different functions and are regulated by different kinase systems even though they overlap extensively in primary amino acid sequences. The segment of the Mcm4 NSD proximal to the DDK-docking domain (DDD) (15), and hence termed “proximal NSD,” blocks initiation until it is phosphorylated by DDK. In contrast, the distal segment of the NSD at the N terminus, away from the DDD, is targeted by additional kinases and contributes positively to promote S-phase progression. In this study we present a comprehensive analysis of the pattern of origin activation, replication fork progression, and the checkpoint response in cells under replication stress caused by the inhibition of ribonucleotide reductase (RNR). We show that the distal and proximal NSD segments contribute differently to origin activation and DNA replication fork progression. Furthermore, they exert opposing effects on checkpoint signaling under replication stress. All these effects are regulated by phosphorylation. We suggest that the Mcm4 NSD, a regulatory domain intrinsic to the replicative helicase, mediates the control of multiple aspects of DNA replication. Our data reveal a sophisticated mechanism to fine-tune S-phase progression in response to changing environments. 相似文献
15.
16.
Behzad Rad Anthony L. Forget Ronald J. Baskin Stephen C. Kowalczykowski 《Proceedings of the National Academy of Sciences of the United States of America》2015,112(50):E6852-E6861
DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase activity of RecQ was visualized on single molecules of DNA using a fluorescent sensor that directly detects ssDNA. By monitoring the formation and progression of individual unwinding forks, we observed that both the frequency of initiation and the rate of unwinding are highly dependent on RecQ concentration. We establish that unwinding forks can initiate internally by melting dsDNA and can proceed in both directions at up to 40–60 bp/s. The findings suggest that initiation requires a RecQ dimer, and that continued processive unwinding of several kilobases involves multiple monomers at the DNA unwinding fork. We propose a distinctive model wherein RecQ melts dsDNA internally to initiate unwinding and subsequently assembles at the fork into a distribution of multimeric species, each encompassing a broad distribution of rates, to unwind DNA. These studies define the species that promote resection of DNA, proofreading of homologous pairing, and migration of Holliday junctions, and they suggest that various functional forms of RecQ can be assembled that unwind at rates tailored to the diverse biological functions of RecQ helicase.DNA helicases are ubiquitous enzymes involved in many aspects of DNA metabolism, including DNA replication, repair, and recombination. These enzymes work by coupling the hydrolysis of nucleoside triphosphates (NTPs) to unwinding of double-stranded DNA (dsDNA) to produce single-stranded DNA (ssDNA) (1). This activity allows the cell’s machinery to access the information stored within the bases of the double helix. RecQ helicase from Escherichia coli is the founding member of the RecQ family of helicases (2). These enzymes belong to the superfamily 2 (SF2) group of helicases, yet share greater sequence homology with their own family members, and they play important roles in the maintenance of genomic integrity by DNA recombination and repair (1, 3). Mutations in the human RecQ-like helicases, Bloom (BLM), Werner (WRN), and RecQ4 proteins, lead to Bloom’s, Werner’s, and Rothmund–Thomson syndromes, respectively. These genetic disorders are characterized by genomic instability and an increased incidence of cancers (4).E. coli RecQ is a 3′ → 5′ helicase that functions in DNA-break repair by homologous recombination (2, 5, 6). RecQ and RecJ, a 5′ → 3′ exonuclease, process ssDNA gaps or dsDNA breaks into ssDNA for recombinational repair by RecA (7–10). In addition, RecQ ensures recombination fidelity in vivo by removing inappropriately paired joint molecules to prevent illegitimate recombination and also by disrupting joint molecule intermediates to facilitate repair by synthesis-dependent strand annealing, preventing chromosomal crossing over (7, 9, 11, 12). RecQ also functions with topoisomerase III (Topo III), a type I topoisomerase, to catenate and decatenate DNA molecules and to separate converged replication forks (13, 14). RecQ and Topo III provide an alternative to the RuvABC pathway for disengaging double Holliday junctions and do so without producing chromosomal crossovers (15).In vitro, RecQ can unwind a multitude of DNA substrates and does not require a ssDNA tail, or even a dsDNA end, to initiate unwinding; consequently, it is distinctive in being able to unwind covalently closed circular plasmid DNA (16, 17). The winged-helix domain of RecQ is important for the recognition of this broad array of DNA substrates (18). This domain binds to dsDNA yet it adopts a flexible conformation that allows it to adapt to many DNA structures. A curious feature of RecQ is that maximal unwinding requires nearly stoichiometric amounts of protein relative to the DNA (one protein per ∼10 bp), which can be partially mitigated (one protein per ∼30 bp) by including the ssDNA binding protein, SSB (5, 6, 16, 19). This behavior is compatible with the low processivity of ssDNA translocation (∼30–100 nucleotides) by RecQ (20–22) and other RecQ members (23). Paradoxically, at limiting concentrations, most RecQ helicases nonetheless efficiently unwind several kilobases of dsDNA in the course of their normal functions (9, 16, 24–26), suggesting a dynamic unwinding process. Although RecQ can unwind DNA as a monomer, it also shows a functional cooperativity when unwinding DNA with an ssDNA tail (27–29). Thus, multiple monomers can bind to ssDNA to unwind long dsDNA regions.Fluorescence techniques coupled with single-molecule microscopy have emerged as a powerful method for studying the unwinding mechanism of helicases (30–35). These assays measure individual enzymes directly or indirectly through their actions on individual DNA molecules, thus alleviating many of the drawbacks of ensemble experiments. In particular, total internal reflection fluorescence (TIRF) microscopy permits the detection of individual fluorophores with high sensitivity in the presence of a high background (30). To visualize the activity of DNA binding proteins and helicases, TIRF microscopy can be coupled with microfluidic techniques to facilitate visualization of molecules and exchange of solution components (36–39).Ensemble assays have elucidated many features of DNA unwinding by the RecQ helicase family, but the need to average over a heterogeneous and unsynchronized population of enzymes has precluded a thorough understanding of this diverse and universally important helicase family. To permit a more insightful analysis, we directly visualized unwinding of individual molecules of DNA by RecQ helicase. Unwinding was monitored using fluorescent SSB to visualize generation of ssDNA. On single DNA molecules, we could see tracks of the fluorescent SSB binding to ssDNA produced by the helicase activity of RecQ. We show that RecQ initiates DNA unwinding via melting of duplex DNA at internal sites. Once initiated, DNA unwinding propagates either uni- or bidirectionally via the cooperative action of multiple RecQ molecules at the junction of ssDNA with dsDNA. Collectively, these observations define a stable oligomeric complex of subunits involved in processive helicase action, which is concordant with both biochemical and biological function of RecQ helicases and other helicases. 相似文献
17.
18.
AIMS: The aim of the study was to investigate the predictive value of the Rydel-Seiffer tuning fork for detecting diabetic neuropathy and to compare it with an electronic neurothesiometer. METHODS: In 2022 consecutive diabetic subjects, peripheral polyneuropathy was diagnosed by vibration perception threshold (VPT) at the tip of both great toes using a 128-Hz tuning fork and a neurothesiometer, by simple bedside tests and by the presence of neuropathic symptoms. These evaluations were further combined to diagnose peripheral nerve dysfunction (abnormal bedside tests) and symptomatic neuropathy. VPT was also measured in 175 non-diabetic control subjects to define normal values. RESULTS: VPT was normal in 1917 subjects and abnormal in 105 (5.2%) patients when measured by the tuning fork. Patients with an abnormal vibration test were significantly (P < 0.0001) older than subjects with a normal vibration sense, while diabetes duration and HbA(1c) of the former were also significantly elevated. The same was true for the percentages of an abnormal 10-g monofilament test (66.7% vs. 7.2%, P < 0.0001) and a missing Achilles' tendon reflex (68.6% vs. 24.8%, P < 0.0001). Finally, the VPT measured by the neurothesiometer was 2.5 times higher in patients with an abnormal tuning fork test (32.0 +/- 9.8 vs. 12.5 +/- 6.4 V, P < 0.0001). The plot of the difference of both methods against their mean yielded a good agreement of the two VPT measurements, and the tuning fork had a high sensitivity and positive predictive value for the diagnosis of abnormal bedside tests and for symptomatic neuropathy. CONCLUSION: The tuning fork reliably detected peripheral neuropathy in comparison with the neurothesiometer. A tuning fork is a useful screening test for diabetic neuropathy. 相似文献
19.
Moyer SE Lewis PW Botchan MR 《Proceedings of the National Academy of Sciences of the United States of America》2006,103(27):10236-10241
The protein Cdc45 plays a critical but poorly understood role in the initiation and elongation stages of eukaryotic DNA replication. To study Cdc45's function in DNA replication, we purified Cdc45 protein from Drosophila embryo extracts by a combination of traditional and immunoaffinity chromatography steps and found that the protein exists in a stable, high-molecular-weight complex with the Mcm2-7 hexamer and the GINS tetramer. The purified Cdc45/Mcm2-7/GINS complex is associated with an active ATP-dependent DNA helicase function. RNA interference knock-down experiments targeting the GINS and Cdc45 components establish that the proteins are required for the S phase transition in Drosophila cells. The data suggest that this complex forms the core helicase machinery for eukaryotic DNA replication. 相似文献
20.
Facciotti F Cavallari M Angénieux C Garcia-Alles LF Signorino-Gelo F Angman L Gilleron M Prandi J Puzo G Panza L Xia C Wang PG Dellabona P Casorati G Porcelli SA de la Salle H Mori L De Libero G 《Proceedings of the National Academy of Sciences of the United States of America》2011,108(34):14228-14233
CD1e is a member of the CD1 family that participates in lipid antigen presentation without interacting with the T-cell receptor. It binds lipids in lysosomes and facilitates processing of complex glycolipids, thus promoting editing of lipid antigens. We find that CD1e may positively or negatively affect lipid presentation by CD1b, CD1c, and CD1d. This effect is caused by the capacity of CD1e to facilitate rapid formation of CD1-lipid complexes, as shown for CD1d, and also to accelerate their turnover. Similar results were obtained with antigen-presenting cells from CD1e transgenic mice in which lipid complexes are assembled more efficiently and show faster turnover than in WT antigen-presenting cells. These effects maximize and temporally narrow CD1-restricted responses, as shown by reactivity to Sphingomonas paucimobilis-derived lipid antigens. CD1e is therefore an important modulator of both group 1 and group 2 CD1-restricted responses influencing the lipid antigen availability as well as the generation and persistence of CD1-lipid complexes. 相似文献