首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abnormalities of cerebellar function have been implicated in the pathophysiology of schizophrenia. Since the cerebellum has afferent and efferent projections to diverse brain regions, abnormalities in cerebellar lobules could affect functional connectivity with multiple functional systems in the brain. Prior studies, however, have not examined the relationship of individual cerebellar lobules with motor and nonmotor resting‐state functional networks. We evaluated these relationships using resting‐state fMRI in 30 patients with a schizophrenia‐spectrum disorder and 37 healthy comparison participants. For connectivity analyses, the cerebellum was parcellated into 18 lobular and vermal regions, and functional connectivity of each lobule to 10 major functional networks in the cerebrum was evaluated. The relationship between functional connectivity measures and behavioral performance on sensorimotor tasks (i.e., finger‐tapping and postural sway) was also examined. We found cerebellar–cortical hyperconnectivity in schizophrenia, which was predominantly associated with Crus I, Crus II, lobule IX, and lobule X. Specifically, abnormal cerebellar connectivity was found to the cerebral ventral attention, motor, and auditory networks. This cerebellar–cortical connectivity in the resting‐state was differentially associated with sensorimotor task‐based behavioral measures in schizophrenia and healthy comparison participants—that is, dissociation with motor network and association with nonmotor network in schizophrenia. These findings suggest that functional association between individual cerebellar lobules and the ventral attentional, motor, and auditory networks is particularly affected in schizophrenia. They are also consistent with dysconnectivity models of schizophrenia suggesting cerebellar contributions to a broad range of sensorimotor and cognitive operations.  相似文献   

2.
The cerebellum plays a key role not only in motor function but also in affect and cognition. Although several psychopathological disorders have been associated with overall cerebellar dysfunction, it remains unclear whether different regions of the cerebellum contribute uniquely to psychopathology. Accordingly, we compared seed‐based resting‐state functional connectivity of the anterior cerebellum (lobule IV–V), of the posterior cerebellum (Crus I), and of the anterior vermis across posttraumatic stress disorder (PTSD; n = 65), its dissociative subtype (PTSD + DS; n = 37), and non‐trauma‐exposed healthy controls (HC; n = 47). Here, we observed decreased functional connectivity of the anterior cerebellum and anterior vermis with brain regions involved in somatosensory processing, multisensory integration, and bodily self‐consciousness (temporo‐parietal junction, postcentral gyrus, and superior parietal lobule) in PTSD + DS as compared to PTSD and HC. Moreover, the PTSD + DS group showed increased functional connectivity of the posterior cerebellum with cortical areas related to emotion regulation (ventromedial prefrontal and orbito‐frontal cortex, subgenual anterior cingulum) as compared to PTSD. By contrast, PTSD showed increased functional connectivity of the anterior cerebellum with cortical areas associated with visual processing (fusiform gyrus), interoceptive awareness (posterior insula), memory retrieval, and contextual processing (hippocampus) as compared to HC. Finally, we observed decreased functional connectivity between the posterior cerebellum and prefrontal regions involved in emotion regulation, in PTSD as compared to HC. These findings not only highlight the crucial role of each cerebellar region examined in the psychopathology of PTSD but also reveal unique alterations in functional connectivity distinguishing the dissociative subtype of PTSD versus PTSD.  相似文献   

3.
Patients with cerebellar damage often present with the cerebellar motor syndrome of dysmetria, dysarthria and ataxia, yet cerebellar lesions can also result in the cerebellar cognitive affective syndrome (CCAS), including executive, visual spatial, and linguistic impairments, and affective dysregulation. We have hypothesized that there is topographic organization in the human cerebellum such that the anterior lobe and lobule VIII contain the representation of the sensorimotor cerebellum; lobules VI and VII of the posterior lobe comprise the cognitive cerebellum; and the posterior vermis is the anatomical substrate of the limbic cerebellum. Here we analyze anatomical, functional neuroimaging, and clinical data to test this hypothesis. We find converging lines of evidence supporting regional organization of motor, cognitive, and limbic behaviors in the cerebellum. The cerebellar motor syndrome results when lesions involve the anterior lobe and parts of lobule VI, interrupting cerebellar communication with cerebral and spinal motor systems. Cognitive impairments occur when posterior lobe lesions affect lobules VI and VII (including Crus I, Crus II, and lobule VIIB), disrupting cerebellar modulation of cognitive loops with cerebral association cortices. Neuropsychiatric disorders manifest when vermis lesions deprive cerebro-cerebellar-limbic loops of cerebellar input. We consider this functional topography to be a consequence of the differential arrangement of connections of the cerebellum with the spinal cord, brainstem, and cerebral hemispheres, reflecting cerebellar incorporation into the distributed neural circuits subserving movement, cognition, and emotion. These observations provide testable hypotheses for future investigations.  相似文献   

4.
We performed cerebellum segmentation and parcellation on magnetic resonance images from right-handed boys, aged 6–13 years, including 22 boys with autism [16 with language impairment (ALI)], 9 boys with Specific Language Impairment (SLI), and 11 normal controls. Language-impaired groups had reversed asymmetry relative to unimpaired groups in posterior-lateral cerebellar lobule VIIIA (right side larger in unimpaired groups, left side larger in ALI and SLI), contralateral to previous findings in inferior frontal cortex language areas. Lobule VIIA Crus I was smaller in SLI than in ALI. Vermis volume, particularly anterior I–V, was decreased in language-impaired groups. Language performance test scores correlated with lobule VIIIA asymmetry and with anterior vermis volume. These findings suggest ALI and SLI subjects show abnormalities in neurodevelopment of fronto-corticocerebellar circuits that manage motor control and the processing of language, cognition, working memory, and attention.  相似文献   

5.
Cerebellar deficits and subsequent impairment in procedural learning may contribute to both motor difficulties and reading impairment in dyslexia. We used quantitative magnetic resonance imaging to investigate the role of regional variation in cerebellar anatomy in children with single-word decoding impairments (N?=?23), children with impairment in fluency alone (N?=?8), and typically developing children (N?=?16). Children with decoding impairments (dyslexia) demonstrated no statistically significant differences in overall grey and white matter volumes or cerebellar asymmetry; however, reduced volume in the anterior lobe of the cerebellum relative to typically developing children was observed. These results implicate cerebellar involvement in dyslexia and establish an important foundation for future research on the connectivity of the cerebellum and cortical regions typically associated with reading impairment.  相似文献   

6.
Consistent findings have shown that the cerebellum is critically implicated in a broad range of cognitive processes including executive functions. Of note, cerebellar symptoms and a number of cognitive deficits have been widely reported in patients with multiple sclerosis (MS). This study investigated for the first time the role of cerebellar symptoms in modulating the neural networks associated with a cognitive task broadly used in MS patients (Paced Visual Serial Addition Test (PVSAT)). Twelve relapsing-remitting (RR) MS patients with prevalent cerebellar signs and symptoms (RR-MSc), 15 RR-MS patients without cerebellar manifestation (RR-MSnc) and 16 matched-healthy controls were examined during functional magnetic resonance imaging (fMRI). We tested whether the RR-MSc patients displayed abnormal activations within "cognitive" cerebellar regions and other areas typically engaged in working memory and tightly connected with the cerebellum. Despite similar behavioral performances during fMRI, RR-MSc patients displayed, relatively to both RR-MSnc patients and controls, significantly greater responses in the left cerebellar Crus I/Lobule VI. RR-MSc patients also displayed reduced functional connectivity between the left cerebellar Crus I and the right superior parietal lobule (FWE<.05). These results demonstrated that the presence of the cerebellar signs drastically impacts on the neurofunctional networks underlying working memory in MS. The altered communication between the cerebellum and a cortical area implicated in short-term buffering and storage of relevant information, offer new insights into the pathophysiological mechanisms of cognition in MS.  相似文献   

7.
Growing evidence suggests that posterior cerebellar lobe contributes to social perception in healthy adults. However, they know little about how this process varies across age and with development. Using cross‐sectional fMRI data, they examined cerebellar response to biological (BIO) versus scrambled (SCRAM) motion within typically developing (TD) and autism spectrum disorder (ASD) samples (age 4–30 years old), characterizing cerebellar response and BIO > SCRAM‐selective effective connectivity, as well as associations with age and social ability. TD individuals recruited regions throughout cerebellar posterior lobe during BIO > SCRAM, especially bilateral lobule VI, and demonstrated connectivity with right posterior superior temporal sulcus (RpSTS) in left VI, Crus I/II, and VIIIb. ASD individuals showed BIO > SCRAM activity in left VI and left Crus I/II, and bilateral connectivity with RpSTS in Crus I/II and VIIIb/IX. No between‐group differences emerged in well‐matched subsamples. Among TD individuals, older age predicted greater BIO > SCRAM response in left VIIb and left VIIIa/b, but reduced connectivity between RpSTS and widespread regions of the right cerebellum. In ASD, older age predicted greater response in left Crus I and bilateral Crus II, but decreased effective connectivity with RpSTS in bilateral Crus I/II. In ASD, increased BIO > SCRAM signal in left VI/Crus I and right Crus II, VIIb, and dentate predicted lower social symptomaticity; increased effective connectivity with RpSTS in right Crus I/II and bilateral VI and I–V predicted greater symptomaticity. These data suggest that posterior cerebellum contributes to the neurodevelopment of social perception in both basic and clinical populations. Hum Brain Mapp 38:1914–1932, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
In this study, we used manual delineation of high-resolution magnetic resonance imaging (MRI) to determine the spatial and temporal characteristics of the cerebellar atrophy in spinocerebellar ataxia type 2 (SCA2). Ten subjects with SCA2 were compared to ten controls. The volume of the pons, the total cerebellum, and the individual cerebellar lobules were calculated via manual delineation of structural MRI. SCA2 showed substantial global atrophy of the cerebellum. Furthermore, the degeneration was lobule specific, selectively affecting the anterior lobe, VI, Crus I, Crus II, VIII, uvula, corpus medullare, and pons, while sparing VIIB, tonsil/paraflocculus, flocculus, declive, tuber/folium, pyramis, and nodulus. The temporal characteristics differed in each cerebellar subregion: (1) duration of disease: Crus I, VIIB, VIII, uvula, corpus medullare, pons, and the total cerebellar volume correlated with the duration of disease; (2) age: VI, Crus II, and flocculus correlated with age in control subjects; and (3) clinical scores: VI, Crus I, VIIB, VIII, corpus medullare, pons, and the total cerebellar volume correlated with clinical scores in SCA2. No correlations were found with the age of onset. Our extrapolated volumes at the onset of symptoms suggest that neurodegeneration may be present even during the presymptomatic stages of disease. The spatial and temporal characteristics of the cerebellar degeneration in SCA2 are region specific. Furthermore, our findings suggest the presence of presymptomatic atrophy and a possible developmental component to the mechanisms of pathogenesis underlying SCA2. Our findings further suggest that volumetric analysis may aid in the development of a non-invasive, quantitative biomarker.  相似文献   

9.
The present study was conducted in MRI-based volumetry to characterize the sexual dimorphism of the cerebellum in young adult ferrets. High spatial resolution 3D anatomical MRI at 7-tesla were acquired ex vivo from fixed cerebella of 90-day-old male and female ferrets. The 3D morphology and topology of cerebellar structures were reproduced well by volume-rendered images obtained from MRI. Volume of the whole cerebellum was significantly larger in males than in females. The cerebellar cortex was further divided into five transverse domains: the anterior zone (AZ; lobules I-V), central zone anterior (lobule VI), central zone posterior (CZp; lobule VII), posterior zone (PZ; lobules VIII-IXa) and nodular zone (NZ; lobules IXb -X). Significantly greater volumes in males than in females were detected bilaterally in the AZ, CZp, and NZ, and leftward in PZ. Notably, the significant volume asymmetry was detected leftward in the CZp of males. By asymmetry quotient analysis, the counterclockwise torque asymmetry of the cerebellum was revealed, and it was more striking in males than in females. The present results suggest that sexual dimorphism of the ferret cerebellum is characterized by enhancing the leftward laterality in the CZp in males, forming the distinctive counterclockwise torque asymmetry.  相似文献   

10.
目的比较成年早发抑郁症(EOD)和成年晚发抑郁症(LOD)患者默认网络(DMN)内部功能连接的差异,探究不同发病年龄的抑郁症患者是否有不同的发病机制。方法选取在昆明医科大学第一附属医院精神科门诊或住院的EOD患者(n=58)和LOD患者(n=62)为研究对象,同期招募年轻健康对照组(n=60)和年老健康对照组(n=52)。对受试者进行静息态功能磁共振扫描,选择左侧楔前叶为种子点,计算该种子点与全脑的功能连接,并比较各组间该种子点的功能连接差异。结果四组之间功能连接具有差异的脑区涉及双侧额叶、颞叶、基底节、枕叶、顶叶及小脑等脑区。EOD组左侧楔前叶与左侧小脑Crus1区、左侧小脑IX区、左侧颞中回、右侧楔前叶、右侧前扣带回、右侧额中回、右侧角回、右侧脑岛、右侧内侧额上回、右侧颞中回的功能连接均高于年轻健康对照组(Z=3. 752 4~5. 867 8,P均0. 05);而左侧楔前叶与左侧额中回、左侧中央旁小叶、右侧缘上回、右侧额上回、右侧颞下回、右侧中央后回、右侧中央前回、右侧枕上回的功能连接均低于年轻健康对照组(Z=-5. 007 6~-3. 797 7,P均0. 05)。LOD组左侧楔前叶与左侧小脑Crus2区、左侧尾状核、左侧颞下回、左侧小脑Crus1区、左侧角回、左侧额中回、右侧额中回、右侧角回、右侧眶额部额中回的功能连接均高于年老健康对照组(Z=4. 122 8~6. 579 4,P均0. 05);与左侧海马旁回、左侧额上回、右侧枕中回、右侧中央前回、右侧内侧额上回、右侧锯状回、右侧颞下回、右侧中央旁小叶、右侧梭状回、右侧后扣带回的功能连接均低于年老健康对照组(Z=-5. 884 0~-3. 617 2,P均0. 05)。EOD组左侧楔前叶与左侧锯状回、左侧小脑IV-VI区、左侧小脑Crus2区的功能连接比LOD组高(Z=4. 087 7、3. 937 4、3. 672 1,P均0. 05);EOD组左侧楔前叶与右侧额中回、右侧眶额部额下回、右侧额上回的功能连接比LOD组低(Z=-4. 274 8、-3. 956 8、-4. 724 3、-3. 663 2,P均0. 05)。结论 DMN内部功能连接增高及额顶网络功能连接降低可能与EOD的发病机制相关,而DMN前部功能连接增高和后部功能连接降低可能与LOD的发病机制相关,不同发病年龄的成年抑郁症患者可能有不同的发病机制。  相似文献   

11.
There is evidence to support that the cerebellum contributes to the neural processing of both emotions and painful stimuli. This could be particularly relevant in conditions associated with chronic abdominal pain, such as the irritable bowel syndrome (IBS), which are often also characterized by affective disturbances. We aimed to test the hypothesis that in IBS, symptoms of anxiety and depression modulate brain activation during visceral stimulation within the cerebellum. We reanalyzed a previous data set from N?=?15 female IBS patients and N?=?12 healthy women with a specific focus on the cerebellum using advanced normalization methods. Rectal distension-induced brain activation was measured with functional magnetic resonance imaging using non-painful and painful rectal distensions. Symptoms of anxiety and depression, assessed with the Hospital Anxiety and Depression scale, were correlated with cerebellar activation within IBS patients. Within IBS, depression scores were associated with non-painful distension-induced activation in the right cerebellum primarily in Crus II and lobule VIIIb, and additionally in Crus I. Depression scores were also associated with painful distension-induced activation predominantly in vermal lobule V with some extension to the intermediate cerebellum. Anxiety scores correlated significantly with non-painful induced activation in Crus II. Symptoms of anxiety and depression, which are frequently found in chronic pain conditions like IBS, modulate activation during visceral sensory signals not only in cortical and subcortical brain areas but also in the cerebellum.  相似文献   

12.
The cerebellum is involved in a wide range of behaviours. A key organisational principle from animal studies is that somatotopically corresponding sensory input and motor output reside in the same cerebellar cortical areas. However, compelling evidence for a similar arrangement in humans and whether it extends to cognitive functions is lacking. To address this, we applied cerebellar optimised whole‐brain functional MRI in 20 healthy subjects. To assess spatial overlap within the sensorimotor and cognitive domains, we recorded activity to a sensory stimulus (vibrotactile) and a motor task; the Sternberg verbal working memory (VWM) task; and a verb generation paradigm. Consistent with animal data, sensory and motor activity overlapped with a somatotopic arrangement in ipsilateral areas of the anterior and posterior cerebellum. During the maintenance phase of the Sternberg task, a positive linear relationship between VWM load and activity was observed in right Lobule VI, extending into Crus I bilaterally. Articulatory movement gave rise to bilateral activity in medial Lobule VI. A conjunction of two independent language tasks localised activity during verb generation in right Lobule VI‐Crus I, which overlapped with activity during VWM. These results demonstrate spatial compartmentalisation of sensorimotor and cognitive function in the human cerebellum, with each area involved in more than one aspect of a given behaviour, consistent with an integrative function. Sensorimotor localisation was uniform across individuals, but the representation of cognitive tasks was more variable, highlighting the importance of individual scans for mapping higher order functions within the cerebellum.  相似文献   

13.
Recent studies indicate that morphological and functional abnormalities of the cerebellum are associated with schizophrenia. Since the cerebellum is crucial for motor coordination, one may ask whether the respective changes are associated with motor dysfunction in the disease. To test these hypotheses in a clinical study, we investigated cerebellar volumes derived from volumetric magnetic resonance imaging of 37 first-episode patients with schizophrenia, schizophreniform or schizoaffective disorder and 18 healthy controls matched for age, gender and handedness. To control for potential interindividual differences in head size, intracranial volume was entered as a covariate. Neurological soft signs (NSS) were examined after remission of acute symptoms. Compared with the controls, patients had significantly smaller cerebellar volumes for both hemispheres. Furthermore, NSS in patients were inversely correlated with tissue volume of the right cerebellar hemisphere partialling for intracranial volume. No associations were detected between cerebellar volumes and psychopathological measures obtained at hospital admission when patients were in the acute psychotic state or after remission, treatment duration until remission, treatment response or prognostic factors, respectively. These findings support the hypothesis of cerebellar involvement in schizophrenia and indicate that the respective changes are associated with NSS.  相似文献   

14.
Recent studies indicate that morphological and functional abnormalities of the cerebellum are associated with schizophrenia. Since the cerebellum is crucial for motor coordination, one may ask whether the respective changes are associated with motor dysfunction in the disease. To test these hypotheses in a clinical study, we investigated cerebellar volumes derived from volumetric magnetic resonance imaging of 37 first-episode patients with schizophrenia, schizophreniform or schizoaffective disorder and 18 healthy controls matched for age, gender and handedness. To control for potential interindividual differences in head size, intracranial volume was entered as a covariate. Neurological soft signs (NSS) were examined after remission of acute symptoms. Compared with the controls, patients had significantly smaller cerebellar volumes for both hemispheres. Furthermore, NSS in patients were inversely correlated with tissue volume of the right cerebellar hemisphere partialling for intracranial volume. No associations were detected between cerebellar volumes and psychopathological measures obtained at hospital admission when patients were in the acute psychotic state or after remission, treatment duration until remission, treatment response or prognostic factors, respectively. These findings support the hypothesis of cerebellar involvement in schizophrenia and indicate that the respective changes are associated with NSS.  相似文献   

15.
Some intrinsic connectivity networks including the default mode network (DMN) and executive control network (ECN) may underlie social anxiety disorder (SAD). Although the cerebellum has been implicated in the pathophysiology of SAD and several networks relevant to higher-order cognition, it remains unknown whether cerebellar areas involved in DMN and ECN exhibit altered resting-state functional connectivity (rsFC) with cortical networks in SAD. Forty-six patients with SAD and 64 healthy controls (HC) were included and submitted to the baseline resting-state functional magnetic resonance imaging (fMRI). Seventeen SAD patients who completed post-treatment clinical assessments were included after group cognitive behavior therapy (CBT). RsFC of three cerebellar subregions in both groups was assessed respectively in a voxel-wise way, and these rsFC maps were compared by two-sample t tests between groups. Whole-brain voxel-wise regression was performed to examine whether cerebellar connectivity networks can predict response to CBT. Lower rsFC circuits of cerebellar subregions compared with HC at baseline (p < 0.05, corrected by false discovery rate) were revealed. The left Crus I rsFC with dorsal medial prefrontal cortex was negatively correlated with symptom severity. The clinical assessments in SAD patients were significantly decreased after CBT. Higher pretreatment cerebellar rsFC with angular gyrus and dorsal lateral frontal cortex corresponded with greater symptom improvement following CBT. Cerebellar rsFC circuits involving DMN and ECN are possible neuropathologic mechanisms of SAD. Stronger pretreatment cerebellar rsFC circuits involving ECN suggest potential neural markers to predict CBT response.  相似文献   

16.
Cerebellar morphology in developmental dyslexia   总被引:5,自引:0,他引:5  
Recent evidence has suggested cerebellar anomalies in developmental dyslexia. Therefore, we investigated cerebellar morphology in subjects with documented reading disabilities. We obtained T1-weighted magnetic resonance images in the coronal and sagittal planes from 11 males with prior histories of developmental dyslexia, and nine similarly-aged male controls. Proton magnetic resonance spectra (TE=136ms, TR=2.4s) were obtained bilaterally in the cerebellum. Phonological decoding skill was measured using non-word reading. Handedness was assessed using both the Annett questionnaire of hand preference and Annett's peg moving task.Cerebellar symmetry was observed in the dyslexics but there was significant asymmetry (right grey matter>left grey matter) in controls. The interpretation of these results depended whether a motor- or questionnaire-based method was used to determine handedness. The degree of cerebellar symmetry was correlated with the severity of dyslexics' phonological decoding deficit. Those with more symmetric cerebella made more errors on a nonsense word reading measure of phonological decoding ability. Left cerebellar metabolite ratios were shown to correlate significantly with the degree of cerebellar asymmetry (P<0.05) in controls. This relationship was absent in developmental dyslexics.Cerebellar morphology reflects the higher degree of symmetry found previously in the temporal and parietal cortex of dyslexics. The relationship of cerebellar asymmetry to phonological decoding ability and handedness, together with our previous finding of altered metabolite ratios in the cerebellum of dyslexics, lead us to suggest that there are alterations in the neurological organisation of the cerebellum which relate to phonological decoding skills, in addition to motor skills and handedness.  相似文献   

17.
Theories positing that the cerebellum contributes to cognitive as well as motor control are driven by two sources of information: (1) studies highlighting connections between the cerebellum and both prefrontal and motor territories, (2) functional neuroimaging studies demonstrating cerebellar activations evoked during the performance of both cognitive and motor tasks. However, almost no studies to date have combined these two sources of information and investigated cortico‐cerebellar connectivity during task performance. Through the use of a novel neuroimaging tool (Meta‐Analytic Connectivity Modelling) we demonstrate for the first time that cortico‐cerebellar connectivity patterns seen in anatomical studies and resting fMRI are also present during task performance. Consistent with human and nonhuman primate anatomical studies cerebellar lobules Crus I and II were significantly coactivated with prefrontal and parietal cortices during task performance, whilst lobules HV, HVI, HVIIb, and HVIII were significantly coactivated with the pre‐ and postcentral gyrus. An analysis of the behavioral domains showed that these circuits were driven by distinct tasks. Prefrontal‐parietal‐cerebellar circuits were more active during cognitive and emotion tasks whilst motor‐cerebellar circuits were more active during action execution tasks. These results highlight the separation of prefrontal and motor cortico‐cerebellar loops during task performance, and further demonstrate that activity within these circuits relates to distinct functions. Hum Brain Mapp 35:3152–3169, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Previous literature about the structural characterization of the human cerebellum is related to the context of a specific pathology or focused in a restricted age range. In fact, studies about the cerebellum maturation across the lifespan are scarce and most of them considered the cerebellum as a whole without investigating each lobule. This lack of study can be explained by the lack of both accurate segmentation methods and data availability. Fortunately, during the last years, several cerebellum segmentation methods have been developed and many databases comprising subjects of different ages have been made publically available. This fact opens an opportunity window to obtain a more extensive analysis of the cerebellum maturation and aging. In this study, we have used a recent state‐of‐the‐art cerebellum segmentation method called CERES and a large data set (N = 2,831 images) from healthy controls covering the entire lifespan to provide a model for 12 cerebellum structures (i.e., lobules I‐II, III, IV, VI, Crus I, Crus II, VIIB, VIIIA, VIIIB, IX, and X). We found that lobules have generally an evolution that follows a trajectory composed by a fast growth and a slow degeneration having sometimes a plateau for absolute volumes, and a decreasing tendency (faster in early ages) for normalized volumes. Special consideration is dedicated to Crus II, where slow degeneration appears to stabilize in elder ages for absolute volumes, and to lobule X, which does not present any fast growth during childhood in absolute volumes and shows a slow growth for normalized volumes.  相似文献   

19.
The objective of the current study was to investigate whether patients with neurogenic orthostatic hypotension (NOH) secondary to autonomic failure have impaired functional connectivity between the cerebellum and central autonomic structures during autonomic challenges. Fifteen healthy controls (61 ± 14 years) and 15 NOH patients (67 ± 6 years; p = 0.12) completed the following tasks during a functional brain MRI: (1) 5 min of rest, (2) 5 min of lower-body negative pressure (LBNP) performed at − 35 mmHg, and (3) Three, 15-s Valsalva maneuvers (VM) at 40 mmHg. Functional connectivity (Conn Toolbox V18) between central autonomic structures and discrete cerebellar regions involved in cardiovascular autonomic control, including the vermis and posterior cerebellum, was assessed using a regions-of-interest approach during rest, LBNP and VM. Functional connectivity was contrasted between controls and patients with autonomic failure. At rest, controls had significantly more intra-cerebellar connectivity and more connectivity between cerebellar lobule 9 and key central autonomic structures, including: bilateral anterior insula (TR-value: 4.84; TL-value: 4.51), anterior cingulate cortex (T-value: 3.41) and bilateral thalamus (TR-value: 3.95; TL-value: 4.51). During autonomic maneuvers, controls showed significantly more connectivity between cardiovascular cerebellar regions (lobule 9 and anterior vermis) and important autonomic regulatory sites, including the brainstem, hippocampus and cingulate: vermis-brainstem (T-value: 4.31), lobule 9-brainstem (TR-value, 5.29; TL-value, 4.53), vermis-hippocampus (T-value, 4.63), and vermis-cingulate (T-value, 4.18). Anatomical and functional studies in animals and humans substantiate a significant role for the cerebellum in cardiovascular autonomic control during postural adjustments. In the current study, patients with NOH related to autonomic failure showed evidence of reduced connectivity between cardiovascular cerebellar regions and several important central autonomic structures, including the brainstem. The cerebellum is an established structure in cardiovascular autonomic control; therefore, evidence of impaired cerebellar connectivity to other autonomic structures may further contribute to the inability to properly regulate blood pressure during postural changes in NOH patients.  相似文献   

20.
Recent discoveries on the way in which the cerebellum carries out higher non-motor functions, have stimulated a proliferation of researches into functional integration and neural mechanisms in the cerebellum. Cerebellar functional asymmetry is a special characteristic of cerebellar functional organization and the cerebro-cerebellar circuitry that underlies task performance. Multi-level neuroimaging studies demonstrate that cerebellar functional asymmetry has a rather complex pattern, and may be correlated with practice or certain disorders. In this review, we summarize some new and important advances in the understanding of functional laterality of the cerebellum in primary motor and higher cognitive functions, and highlight the differences in the patterns of cerebellar functional asymmetry in the various functional domains. We propose that cerebellar functional asymmetry may be associated with the pattern of connectivity between a large number of widely distributed brain areas and between special cerebellar functional regions. It is suggested that cerebro-cerebellar circuits in particular play an important role in cerebellar functional asymmetry. Finally, we propose that multi-scale connectivity analyses and careful studies of high-level cerebellar functional asymmetry would make an important contribution to the understanding of the human cerebellum and cerebral neural networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号