首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Numerous studies have shown an involvement of the human cerebellum in motor learning, but little is known about the role of the cerebellum in learning of unspecific aversive reactions. The present study sought to distinguish which areas of the human cerebellum and brain-stem are involved in short-term habituation (STH) and long-term habituation (LTH) of the acoustic startle response. METHODS: On 5 consecutive days 42 acoustic startle stimuli were applied each day in 8 male healthy subjects. On the first and on the fifth day of the experiment [15O]H2O PET scans were performed. RESULTS: Electromyographic recordings revealed a significant decrease of the startle response within each day (STH) and across the 5 days of the experiment (LTH). On both days a decrease of regional cerebral blood flow (rCBF) across PET scans was found in the medial cerebellum most probably reflecting reduced sensory feedback during STH. Between days an increase of rCBF in the dorsomedial pons, in the mesencephalon and in an area of the medial cerebellum was observed. These activations may reflect increased inhibition of the startle response during LTH and correspond to previous animal lesion studies. Furthermore, during LTH an increase of rCBF within the lateral cerebellum in lobule HVI/Crus I was detected. CONCLUSIONS: These results suggest that distinct parts of the medial and lateral cerebellum are involved in habituation of the acoustic startle response. Lobule HVI/Crus I most likely plays a more general role in implicit learning processes considering its involvement in several conditioning paradigms. SIGNIFICANCE: The results of the present study contribute to the understanding of cerebellar involvement in learning of unspecific aversive reactions.  相似文献   

2.
Event-related fMRI study of response inhibition   总被引:12,自引:0,他引:12  
Event-related functional magnetic resonance imaging (erfMRI) was employed to measure the hemodynamic response during a Go/No-go task in 16 healthy subjects. The task was designed so that Go and No-go events were equally probable, allowing an unbiased comparison of cerebral activity during these two types of trials. In accordance with prediction, anterior cingulate was active during both the Go and No-go trials, dorsolateral and ventrolateral prefrontal cortex was more active during the No-go trials, while primary motor cortex, supplementary motor area, pre-motor cortex and cerebellum were more active during Go trials. These findings are consistent with the hypothesis that the anterior cingulate cortex is principally engaged in making and monitoring of decisions, while dorsolateral and ventral lateral prefrontal sites play a specific role in response inhibition.  相似文献   

3.
Using H215O 3D Positron Emission Tomography (PET), regional cerebral blood flow (rCBF) was measured in six human subjects under two different conditions: at rest and while performing self-paced horizontal saccadic eye movements in darkness. These two conditions were repeated four times each. First, the comparison between the four saccadic and four resting conditions was investigated in a group and a single subject analysis. Saccades elicited bilateral rCBF increases in the medial part of the superior frontal gyrus (supplementary eye field), precentral gyrus (frontal eye field), superior parietal lobule, anterior medial part of the occipital lobe involving striate and extrastriate cortex (lingual gyrus and cuneus), and in the right inferior parietal lobule. At the subcortical level, activations were found in the left putamen. These results mainly replicate previous PET findings on saccadic control. Second, the interaction between the experimental conditions and their repetition was examined. When activations throughout repetition of the same saccadic task are compared, the supplementary eye fields show a progressive increase of activation. On the contrary, the activation in the cerebellum, left superior parietal lobule and left occipital cortex progressively decreases during the scanning session. Given the existence of such an interaction, the pattern of activations must be interpreted as a function of task repetition. This may be a factor explaining some apparent mismatch between different studies.  相似文献   

4.
Sensory-motor adaptation processes are critically involved in maintaining accurate motor behavior throughout life. Yet their underlying neural substrates and task-dependency bases are still poorly understood. We address these issues here by studying adaptation of saccadic eye movements, a well-established model of sensory-motor plasticity. The cerebellum plays a major role in saccadic adaptation but it has not yet been investigated whether this role can account for the known specificity of adaptation to the saccade type (e.g., reactive versus voluntary). Two patients with focal lesions in different parts of the cerebellum were tested using the double-step target paradigm. Each patient was submitted to two separate sessions: one for reactive saccades (RS) triggered by the sudden appearance of a visual target and the second for scanning voluntary saccades (SVS) performed when exploring a more complex scene. We found that a medial cerebellar lesion impaired adaptation of reactive—but not of voluntary—saccades, whereas a lateral lesion affected adaptation of scanning voluntary saccades, but not of reactive saccades. These findings provide the first evidence of an involvement of the lateral cerebellum in saccadic adaptation, and extend the demonstrated role of the cerebellum in RS adaptation to adaptation of SVS. The double dissociation of adaptive abilities is also consistent with our previous hypothesis of the involvement in saccadic adaptation of partially separated cerebellar areas specific to the reactive or voluntary task (Alahyane et al. Brain Res 1135:107–121 (2007)).  相似文献   

5.
It is well accepted that the cerebellum plays a crucial role in the prediction of the sensory consequences of movements. Recent findings of altered error processing in patients with selective cerebellar lesions led to the hypothesis that feedback processing and feedback-based learning might be affected by cerebellar damage as well. Thus, the present study investigated learning from and processing of positive and negative feedback in 12 patients with selective cerebellar lesions and healthy control subjects. Participants performed a monetary feedback learning task. The processing of positive and negative feedback was assessed by means of event-related potentials (ERPs) during the learning task and during a separate task in which the frequencies of positive and negative feedback were balanced. Patients did not show a general learning deficit compared to controls. Relative to the control group, however, patients with cerebellar lesions showed significantly higher ERP difference wave amplitudes (rewards–losses) in a time window between 250 and 450 ms after feedback presentation, possibly indicating impaired outcome prediction. The analysis of the original waveforms suggested that patients and controls primarily differed in their pattern of feedback-related negativity and P300 amplitudes. Our results add to recent findings on altered performance monitoring associated with cerebellar damage and demonstrate, for the first time, alterations of feedback processing in patients with cerebellar damage. Unaffected learning performance appears to suggest that chronic cerebellar lesions can be compensated in behaviour.  相似文献   

6.
Garg A  Schwartz D  Stevens AA 《Neuropsychologia》2007,45(10):2307-2321
What happens in vision-related cortical areas when congenitally blind (CB) individuals orient attention to spatial locations? Previous neuroimaging of sighted individuals has found overlapping activation in a network of frontoparietal areas including frontal eye fields (FEF), during both overt (with eye movement) and covert (without eye movement) shifts of spatial attention. Since voluntary eye movement planning seems irrelevant in CB, their FEF neurons should be recruited for alternative functions if their attentional role in sighted individuals is only due to eye movement planning. Recent neuroimaging of the blind has also reported activation in medial occipital areas, normally associated with visual processing, during a diverse set of non-visual tasks, but their response to attentional shifts remains poorly understood. Here, we used event-related fMRI to explore FEF and medial occipital areas in CB individuals and sighted controls with eyes closed (SC) performing a covert attention orienting task with endogenous verbal cues and spatialized auditory targets. We found robust stimulus-locked FEF activation of all CB subjects, similar to and stronger than in SC, suggesting that FEF plays a role in endogenous orienting of covert spatial attention even in individuals in whom voluntary eye movements are irrelevant. We also found robust activation in bilateral medial occipital cortex in CB but not in SC subjects. The response decreased below baseline following endogenous verbal cues but increased following auditory targets, suggesting that the medial occipital area in CB does not directly engage during cued orienting of attention but may be recruited for processing of spatialized auditory targets.  相似文献   

7.
Several eye movements were evoked by electrical stimulation of the brain in anesthetized sunfish and goldfish. Conjugate lateral rolling movements, similar to eye movements observed when an unoperated fish is rotated about its long axis, were evoked from the acoustico-lateral area of the medulla and the eminentia granularis and an adjacent medial portion of the cerebellum. Bilateral and unilateral backward rotations, similar to the eye movements observed when unoperated fish are rotated forward about the interpupillary axis, were evoked from the medial longitudinal fasciculus and areas related to the oculomotor nerve. Bilateral forward rotations, comparable to the eye movements resulting when unoperated fish are rotated backward about the interpupillary axis, were elicited by stimulation near the trochlear nerve roots in the valvula of the cerebellum; unilateral responses resulted from stimulation near the exiting trochlear nerves. Convergence was elicited by stimulation in the midline near the oculomotor complex and the medial longitudinal fasciculus while unilateral vergence responses were triggered by stimulation in the medial longitudinal fasciculus and areas lateral to the oculomotor nucleus. Conjugate eye movements in the horizontal plane were frequently evoked but were not studied in detail.  相似文献   

8.
Our growing understanding of how cerebral cortical areas communicate with the cerebellum in primates has enriched our understanding of the data that cerebellar circuits can access, and the neocortical areas that cerebellar activity can influence. The cerebellum is part of some large-scale networks involving several parts of the neocortex including association areas in the frontal lobe and the posterior parietal cortex that are known for their contributions to higher cognitive function. Understanding their connections with the cerebellum informs the debates around the role of the cerebellum in higher cognitive functions because they provide mechanisms through which association areas and the cerebellum can influence each others' operations. In recent years, evidence from connectional anatomy and human neuroimaging have comprehensively overturned the view that the cerebellum contributes only to motor control. The aim of this review is to examine our changing perspectives on the nature of cortico-cerebellar anatomy and the ways in which it continues to shape our views on its contributions to function. The review considers the anatomical connectivity of the cerebellar cortex with frontal lobe areas and the posterior parietal cortex. It will first focus on the anatomical organisation of these circuits in non-human primates before discussing new findings about this system in the human brain. It has been suggested that in non-human primates "although there is a modest input from medial prefrontal cortex, there is very little or none from the more lateral prefrontal areas" [33]. This review discusses anatomical investigations that challenge this claim. It also attempts to dispel the misconception that prefrontal projections to the cerebellum are from areas concerned only with the kinematic control of eye movements. Finally, I argue that our revised understanding of anatomy compels us to reconsider conventional views of how these systems operate in the human brain.  相似文献   

9.
BACKGROUND: The neural mechanisms underlying smooth pursuit eye movement (SPEM) abnormalities in schizophrenia are not well understood. Previous evidence suggests that a deficit in the processing of internal representations of object motion (extraretinal motion) contributes to SPEM deficits in patients. Functional magnetic resonance imaging (fMRI) activation was compared between patients and control subjects to determine whether schizophrenia patients exhibit abnormal cerebral activation in regions associated with extraretinal motion processing during SPEM. METHODS: Patients and control subjects were selected based on matched performance in the closed-loop gain. Despite similar performance on closed-loop pursuit gain, patients showed consistent deficits in extraretinal motion based on predictive pursuit. In the magnet, subjects were tested using a traditional smooth-pursuit task that elicits closed-loop response. RESULTS: Patients had reduced pursuit-related activation in several known extraretinal motion processing areas including frontal and supplemental eye fields, medial superior temporal cortex, and anterior cingulate. Patients also showed increased activation in medial occipitotemporal cortex. CONCLUSIONS: These results provide functional anatomic evidence supporting reduced function in the extraretinal motion processing pathway in schizophrenia. Increased activation in medial occipitotemporal cortex suggests an increased dependence on immediate retinal motion information, which may be used to compensate for reduced extraretinal signaling during sustained visual tracking.  相似文献   

10.
Feedback corrections in reaching have been shown to be task‐dependent for proprioceptive, visual and vestibular perturbations, in line with predictions from optimal feedback control theory. Mechanical perturbations have been used to elicit proprioceptive errors, but have the drawback to actively alter the limb's trajectory, making it nontrivial to dissociate the subject's compensatory response from the perturbation itself. In contrast, muscle vibration provides an alternative tool to perturb the muscle afferents without changing the hands trajectory, inducing only changes in the estimated, but not the actual, limb position and velocity. Here, we investigate whether upper‐arm muscle vibration is sufficient to evoke task‐dependent feedback corrections during goal‐directed reaching to a narrow versus a wide target. Our main result is that for vibration of biceps and triceps, compensatory responses were down‐regulated for the wide compared to the narrow target. The earliest detectable difference between these target‐specific corrections is at about 100 ms, likely reflecting a task‐dependent feedback control policy rather than a voluntary response.  相似文献   

11.
Cognitive control is built upon the interactions of multiple brain regions. It is currently unclear whether the involved regions are temporally separable in relation to different cognitive processes and how these regions are temporally associated in relation to different task performances. Here, using stop‐signal task data acquired from 119 healthy participants, we showed that concurrent and poststop cognitive controls were associated with temporally distinct but interrelated neural mechanisms. Specifically, concurrent cognitive control activated regions in the cingulo‐opercular network (including the dorsal anterior cingulate cortex [dACC], insula, and thalamus), together with superior temporal gyrus, secondary motor areas, and visual cortex; while regions in the fronto‐parietal network (including the lateral prefrontal cortex [lPFC] and inferior parietal lobule) and cerebellum were only activated during poststop cognitive control. The associations of activities between concurrent and poststop regions were dependent on task performance, with the most notable difference in the cerebellum. Importantly, while concurrent and poststop signals were significantly correlated during successful cognitive control, concurrent activations during erroneous trials were only correlated with posterror activations in the fronto‐parietal network but not cerebellum. Instead, the cerebellar activation during posterror cognitive control was likely to be driven secondarily by posterror activation in the lPFC. Further, a dynamic causal modeling analysis demonstrated that postsuccess cognitive control was associated with inhibitory connectivity from the lPFC to cerebellum, while excitatory connectivity from the lPFC to cerebellum was present during posterror cognitive control. Overall, these findings suggest dissociable but temporally related neural mechanisms underlying concurrent, postsuccess, and posterror cognitive control processes in healthy individuals.  相似文献   

12.
The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar afferents projected throughout the cochlear nuclei, to the dorsolateral regions of the cerebellar nuclei, and to lateral regions of the superior, lateral, medial, and descending vestibular nuclei. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The idea of an organized mode of brain function that is present as default state and suspended during goal‐directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task‐induced deactivations across a wide range of cognitive tasks. In this event‐related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task‐induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention‐selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM‐selective deactivations were found predominantly in the right hemisphere including the medial‐parietal, the lateral temporo‐parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task‐specific functional connectivity. These findings demonstrate that task‐induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand (“the core DMN”) and a part whose deactivation depends on the specific task. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Clinical research suggests that imitating meaningless hand postures and pantomiming tool‐related hand shapes rely on different neuroanatomical substrates. We investigated the BOLD responses to different tasks of hand posture generation in 14 right handed volunteers. Conjunction and contrast analyses were applied to select regions that were either common or sensitive to imitation and/or pantomime tasks. The selection included bilateral areas of medial and lateral extrastriate cortex, superior and inferior regions of the lateral and medial parietal lobe, primary motor and somatosensory cortex, and left dorsolateral prefrontal, and ventral and dorsal premotor cortices. Functional connectivity analysis revealed that during hand shape generation the BOLD‐response of every region correlated significantly with every other area regardless of the hand posture task performed, although some regions were more involved in some hand postures tasks than others. Based on between‐task differences in functional connectivity we predict that imitation of novel hand postures would suffer most from left superior parietal disruption and that pantomiming hand postures for tools would be impaired following left frontal damage, whereas both tasks would be sensitive to inferior parietal dysfunction. We also unveiled that posterior temporal cortex is committed to pantomiming tool grips, but that the involvement of this region to the execution of hand postures in general appears limited. We conclude that the generation of hand postures is subserved by a highly interconnected task‐general neural network. Depending on task requirements some nodes/connections will be more engaged than others and these task‐sensitive findings are in general agreement with recent lesion studies. Hum Brain Mapp 36:3426–3440, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults.  相似文献   

16.
In visual discrimination tasks, the relevant feature to discriminate is defined before stimulus presentation. In feature uncertainty tasks, a cue about the relevant feature is provided after stimulus offset. We used (15)O-butanol positron emission tomography (PET) in order to investigate brain activation during a feature uncertainty task. There was greater activity during the feature uncertainty task, compared with stimulus detection and discrimination of orientation and spatial frequency, in the lateral and medial prefrontal cortex, the cuneus, superior temporal and inferior parietal cortex, cortical motor areas, and the cerebellum. The most robust and consistent activation was observed in the dorsal anterior cingulate cortex (Brodmann area 32; x = 0 y = 16, z = 40). The insula, located near the claustrum (x = -38, y = 8, z = 4), was activated during the discrimination tasks compared with the feature uncertainty condition. These results suggest that the dorsal anterior cingulate cortex is important in feature uncertainty conditions, which include divided attention, expectancy under uncertainty, and cognitive monitoring.  相似文献   

17.
In three experiments, we investigated the role of the cerebellum in sub- and suprasecond time perception by using repetitive transcranial magnetic stimulation (rTMS). In Experiment 1, subjects underwent four 8-min 1-Hz rTMS sessions in a within-subject design. rTMS sites were the medial cerebellum (real and sham rTMS), left lateral cerebellum, and right lateral cerebellum. Following each rTMS session, subjects completed a subsecond temporal bisection task (stimuli in the range 400-800 msec). Compared with sham rTMS, rTMS applied over the right lateral or medial cerebellum induced a leftward shift of the psychophysical function (perceived lengthening of time). In Experiment 2, a separate sample of subjects underwent the identical rTMS procedure and completed a suprasecond bisection task (stimuli in the 1000-2000 msec range). In this experiment, rTMS to the cerebellar sites did not produce any significant changes compared with sham rTMS. Experiment 3 employed a within-subject design to replicate findings from Experiments 1 and 2. Subjects underwent four rTMS conditions (sub- and suprabisection tasks following medial cerebellar and sham rTMS). rTMS induced a significant leftward shift of psychophysical function in the subsecond bisection, but not in the suprasecond bisection. In this study, we have demonstrated that transient cerebellar stimulation can differently affect the ability to estimate time intervals below and above a duration of 1 sec. The results of this study provide direct evidence for the role of the cerebellum in processing subsecond time intervals. This study further suggests that the perception of sub- and suprasecond intervals is likely to depend upon distinct neural systems.  相似文献   

18.
The primary aim of this study was to compare the neural substrates of decision-making in middle-aged children and adults. To this end, we collected fMRI data while 9-12-year-olds and 18-26-year-olds performed a simple gambling task. The task was designed to tap two important aspects of decision-making: risk estimation and feedback processing. We examined how orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC) contributed to risk estimation, and how ventrolateral and medial prefrontal cortices (VLPFC and medial PFC) contributed to negative feedback processing in children and adults. Region of interest analyses revealed differences in brain activation between children and adults for ACC and lateral OFC. ACC was recruited more for high-risk than for low-risk trials, and this difference was larger for children than for adults. In contrast, children and adults did not differ in activation for OFC or DLPFC. These data suggest that children's decision-making under uncertainty is associated with a high degree of response conflict. Both age groups exhibited bilateral VLPFC (BA 47) and medial PFC/ACC (BA 6/ BA 32 (dorsal) and 24 (ventral)) activation associated with negative feedback processing. Relative to adults, children engaged lateral OFC more strongly for negative relative to positive feedback. These results indicate that children may find negative feedback more aversive than adults do. In summary, children aged 9-12 years and adults recruit similar brain regions during risk-estimation and feedback processing, but some key differences between the groups provide insight into the factors contributing to developmental changes in decision-making.  相似文献   

19.
Chronic marijuana users (MJ Users) perform poorly on the Iowa Gambling Task (IGT), a complex decision-making task in which monetary wins and losses guide strategy development. This functional magnetic resonance imaging (MRI) study sought to determine if the poor performance of MJ Users was related to differences in brain activity while evaluating wins and losses during the strategy development phase of the IGT. MJ Users (16) and Controls (16) performed a modified IGT in an MRI scanner. Performance was tracked and functional activity in response to early wins and losses was examined. While the MJ Users continued to perform poorly at the end of the task, there was no difference in group performance during the initial strategy development phase. During this phase, before the emergence of behavioral differences, Controls exhibited significantly greater activity in response to losses in the anterior cingulate cortex, medial frontal cortex, precuneus, superior parietal lobe, occipital lobe and cerebellum as compared to MJ Users. Furthermore, in Controls, but not MJ Users, the functional response to losses in the anterior cingulate cortex, ventral medial prefrontal cortex and rostral prefrontal cortex positively correlated with performance over time. These data suggest MJ Users are less sensitive to negative feedback during strategy development.  相似文献   

20.
Speakers use external auditory feedback to monitor their own speech. Feedback distortion has been found to increase activity in the superior temporal areas. Using fMRI, the present study investigates the neural correlates of processing verbal feedback without distortion. In a blocked design, the following conditions were presented: (1) overt picture-naming, (2) overt picture-naming while pink noise was presented to mask external feedback, (3) covert picture-naming, (4) listening to the picture names (previously recorded from participants' own voices), and (5) listening to pink noise. The results show that auditory feedback processing involves a network of different areas related to general performance monitoring and speech-motor control. These include the cingulate cortex and the bilateral insula, supplementary motor area, bilateral motor areas, cerebellum, thalamus and basal ganglia. Our findings suggest that the anterior cingulate cortex, which is often implicated in error-processing and conflict-monitoring, is also engaged in ongoing speech monitoring. Furthermore, in the superior temporal gyrus, we found a reduced response to speaking under normal feedback conditions. This finding is interpreted in the framework of a forward model according to which, during speech production, the sensory consequence of the speech-motor act is predicted to attenuate the sensitivity of the auditory cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号