首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
PURPOSE: To quantify variations in plantar pressure variables in healthy adults across five cardiovascular exercises. METHODS: Ten young (19-35 yr old) and 10 middle-aged (45-60 yr old) individuals participated. After equipment familiarization, plantar pressure data were recorded during walking, running, elliptical training, stair climbing, and recumbent biking. Separate one-way analyses of variance with repeated measures identified significant differences in pressure variables across exercises and between age groups under the forefoot, arch, and heel. RESULTS: Forefoot: Peak pressures were higher during walking (253 kPa), running (251 kPa), and elliptical training (213 kPa) than stair climbing (130 kPa) and recumbent biking (41 kPa; P < or = 0.001). Biking pressures were lower than all other conditions (P < 0.001). Arch: Pressures were higher during running (144 kPa) compared with all other conditions (P < or = 0.001). Intermediate-level pressures during walking (119 kPa) and elliptical training (102 kPa) exceeded those during stair climbing (80 kPa; P < or = 0.002). Pressures were lowest during recumbent biking (33 kPa; P < 0.001). Heel: Pressures were highest during walking (215 kPa) and running (188 kPa), exceeding those recorded during all other activities (P < 0.001). Moderate elliptical training pressures (94 kPa) surpassed stair climbing values (66 kPa; P = 0.014). Pressures were lowest during recumbent biking (25 kPa; P < 0.001). The only significant difference identified between age groups was a larger arch contact area in the young compared with middle-aged, when averaged across exercises (P = 0.011). CONCLUSIONS: When protection of the forefoot is important (e.g., diabetic foot neuropathies), biking and stair climbing offer optimal pressure reductions. If protecting the heel from high pressures and forces is warranted, recumbent biking, stair climbing, and elliptical training provide greater relief.  相似文献   

2.
目的:研究健康女大学生步行时支撑期时相参数特征的左右差别,为临床诊断、康复评定、矫形处方和运动训练等提供参考依据。方法:应用footscan?足底压力测量系统测试32例健康女大学生步行时的动态足底压力,计算支撑期足跟触地阶段、前足触地阶段、全足支撑阶段、前足蹬离阶段占足-地接触时间百分比,以及足跟触地和前足触地两个阶段内足跟内侧和外侧足底压力,分析上述参数5次有效测试数据左右侧差异及重测信度。结果:步行时左右侧足-地接触时间分别为618.3 ms和617.8 ms。左侧足跟触地阶段、前足触地阶段、全足支撑阶段、前足蹬离阶段占足-地接触时间的百分比分别为8.66%、9.30%、39.13%、42.91%,右侧为8.54%、9.25%、38.89%、43.30%。左侧足跟触地和前足触地两个阶段内足跟内侧和外侧足底压力分别为1157.57 N/cm2和1055.35 N/cm2,右侧分别为1240.25 N/cm2和1050.45 N/cm2。上述各参数组内相关系数均大于0.76,左右侧差异均无统计学意义。结论:健康女大学生步行时支撑期4个阶段的时间分布参数以及足跟触地和前足触地两个阶段内足跟内侧和外侧足底压力左右侧无明显差异。  相似文献   

3.
BackgroundAbnormal peak plantar pressure in neuropathic diabetic foot during walking activities is well managed through the use of appropriate design and material selection for the fabrication of custom made insoles (CMI). The redistribution of plantar pressure is possible by selecting an appropriate material for the fabrication of CMI. The walking activities may alter the plantar pressure distribution; which may differ while using CMI with different materials.ObjectiveThe objective of the study was to evaluate the effectiveness of CMI’s materials on plantar pressure distribution during different walking activities, in diabetic feet with neuropathy.MethodsThe study was conducted on sixteen diabetic neuropathic subjects. The subjects were provided with two types of CMI; CMI-A (Plastazote® and microcellular rubber) and CMI-B (Multifoam, Plastazote® and microcellular rubber). Maximum peak plantar pressure and plantar pressure distribution were determined by Pedar-X® sensor insole during level walking, ramp walking and stair walking.ResultsThe CMI-B lessened the maximum peak plantar pressure from the forefoot throughout the walking activities compared to CMI-A. The contact area was observed as lower using CMI-A compared to CMI-B, while performing walking activities.ConclusionCMI-B, with multifoam as an additional top layer, provided more effective peak plantar pressure reduction at forefoot and it had better plantar pressure distribution compared to CMI-A during level walking and ramp ascending in diabetic foot with neuropathy.  相似文献   

4.
BackgroundOnset of walking in infants leads to regular cyclic loading of the plantar foot surface for the first time. This is a critical period for evolving motor skills and foot structure and function. Plantar pressure literature typically studies gait only once walking is established and under conditions that artificially constrain the walking direction and bouts compared to how infants move in the real-world. We therefore do not know how the foot is loaded when self-directed walking is first achieved and whether it changes as walking is practiced.Research questionHow do pressures on the plantar foot in real-world walking change from new to confident walking?MethodsFifty-seven infants participated in a two-site longitudinal study. Bespoke child-friendly spaces incorporated large pressure platforms and video. Data was collected at two milestones: new (403 days) and confident (481 days) walking. Steps were defined as walking straight or turning medially/laterally. Pressure variables were calculated for eight-foot regions and compared between milestones.ResultsConfident walking resulted in more steps (median: 18 v 35) and almost twice as many turning steps. During straight-line steps, confident walking increased peak pressures in the medial heel (median: 99.3 v 106.7kPa, p < .05) and lateral forefoot (median: 53.9 v 65.3kPa, p < .001) and reduced medial toe pressure (median: 98.1 v 80.0kPa, p < .05). Relative medial midfoot contact area reduced (median: 12.4 v 11.2%, p < .05) as absolute foot contact increased. A faster transition across stance and a reduced relative contact time in the forefoot were recorded in confident walking.SignificancePressures change rapidly as walking is initiated with significant differences in foot loading evident within an average 77 days. Importantly, these changes differ in straight and turning walking. Continued reliance on assessment of straight-line walking during early stages of ambulation likely fails to characterise 26% of steps experienced by infant feet.  相似文献   

5.
The purpose of this study was to determine if low arch feet have altered plantar loading patterns when compared to normal feet during both walking and running. Fifty healthy subjects (34 normal feet, 16 flat feet) walked and ran five trials each at standard speeds. In-shoe pressure data were collected at 50 Hz. Contact area, peak pressure, maximum force, and force-time integral were analyzed in eight different regions of the foot. Foot type was determined by examining navicular height, arch angle, rearfoot angle, and a clinical score. A series of 2 x 2 repeated measures ANOVAs were used to determine statistical differences (alpha<0.05). A significant interaction existed between foot type and movement type for the maximum force in the medial midfoot. Total foot contact area, maximum force and peak pressure were significantly increased during running. Contact area in each insole area, except for the rearfoot, was significantly increased during running. Peak pressure and maximum force were significantly increased during running in each of the foot regions. However, the force-time integral was significantly decreased during running in the rearfoot, lateral midfoot, middle forefoot, and lateral forefoot. Significant differences between foot types existed for contact area in the medial midfoot and maximum force and peak pressure in the lateral forefoot. The maximum force and peak pressures were significantly decreased for the flat foot type. Therefore, individuals with a flat foot could be at a lower risk for lateral column metatarsal stress fractures, indicating that foot type should be assessed when determining an individual's risk for metatarsal stress fractures.  相似文献   

6.
BACKGROUND: The growing popularity of endurance sports activities is associated with a growing number of metatarsal stress fractures in recreational runners. Excessive foot loading has been suggested as a potential cause for these problems [Bennell, K, Matheson G, Meeuwisse W, Brukner P. Risk factors for stress fractures. Sports Med 1999;28(2):91-122]. Therefore, the question arises whether long distance running affects foot loading characteristics like ground reaction forces and peak pressure in specific areas of the foot. PURPOSE: To investigate the effects of long distance running on plantar pressure patterns before and after a marathon race. STUDY DESIGN: Repeated measurements of recreational runners before and after a marathon race. METHODS: Two hundred participants of the third Muenster marathon, 2004, were measured before and after the race with plantar pressure measurements during barefoot walking on a capacitive platform. The ratio between forefoot and toe loading was calculated to assess a suggested loading shift between these areas. RESULTS: The results of the whole group of participants revealed a significant difference in foot loading characteristics before and after the race. Post-race peak pressure and impulse values were higher in the forefoot regions and reduced under the toes. CONCLUSIONS: The increased peak pressure under the metatarsal heads after the race indicates a load shift from the toes to the metatarsal heads. This suggests an increased loading of the metatarsal bones and could explain the increased incidence of metatarsal stress fractures in long distance runners.  相似文献   

7.
The purpose of this study was to establish a reference dataset for peak pressures and pressure-time integrals during jogging, to compare this reference dataset with existing walking data and to develop a foot type classification, all based on plantar pressure data obtained from 215 healthy young adults. The subjects ran at 3.3 m s(-1) over a 16.5 m long running track, with a built-in pressure platform mounted on top of a force platform. Peak pressures, regional impulses and relative regional impulses were measured. These variables were found to be reliable (all intra class correlation coefficients above 0.75) and, except for the heel areas, gender and asymmetry effects could be neglected. Highest peak pressures were found under the heel due to large impact forces during initial contact phase (ICP). In the forefoot, the highest peak pressure was found under the second metatarsal (64.2 +/- 21.1 N cm(-2)). Compared to walking data, overall higher peak pressures and impulses and difference in hallux loading were found during barefoot jogging. Four pressure loading patterns were identified using a K-means cluster analysis, based on the relative regional impulses underneath the forefoot: medial M1 pattern, medial M2 pattern, central pattern and central-lateral pattern. These four pressure loading patterns could help in the functional interpretation of the foot behaviour during the stance phase in slow running.  相似文献   

8.
The objective of this study was to determine the reliability of repeated plantar pressure distribution measurements during normal gait across multiple testing sessions. Testing sessions were conducted on 5 separate days at approximately the same time of day. Nine subjects (five males, four females, age 26 ± 8.4 years) who were free of any musculoskeletal injury were recruited. A capacitive pressure distribution platform (EMED AT, Novel GmbH, Munich, Germany), sampling at 50 Hz was used to collect plantar pressure patterns during barefoot walking at a self-selected speed. Four parameters were investigated: peak pressure, maximum force, impulse, and contact time, and these were investigated in 10 areas of the foot after using the PRC mask method of subdividing the foot into ten anatomical areas of interest. Individual means of all the five repeated trials for each foot were calculated, and these values were used to calculate intraclass correlation coefficients (ICC) and coefficients of variation (CoV) for all parameters. The results of this investigation show a generally good level of reliability, the quality of which is dependent on the region of the foot and the parameter investigated. Areas with typically high loading characteristics, such as the central forefoot showed a higher level of reliability in the ICC's (>0.9) than less loaded areas such as the medial midfoot (<0.8). The conclusion of this study is that plantar pressure distribution measurements can be used in comparative evaluations since the measures of repeatability are satisfactory for the parameters and foot regions usually used in the investigation of clinical populations such as neuropathic diabetics.  相似文献   

9.
BackgroundFoot orthoses (FOs) are one of the most common interventions to restore normal foot mechanics in flatfoot individuals. New technologies have made it possible to deliver customized FOs with complex designs for potentially better functionalities. However, translating the individuals’ biomechanical needs into the design of customized FOs is not yet fully understood.Research questionOur objective was to identify whether the deformation of customized FOs is related to foot kinematics and plantar pressure during walking.MethodsThe kinematics of multi-segment foot and FOs contour were recorded together with plantar pressure in 17 flatfoot individuals while walking with customized FOs. The deformation of FOs surface was predicted from its contour kinematics using an artificial neural network. Plantar pressure map and deformation were divided into five anatomically based regions defined by the corresponding foot segments. Forward stepwise linear mixed models were built for each of the four gait phases to determine the feet-FOs interaction.ResultsIt was observed that some associations existed between foot kinematics and pressure with regional FOs deformation. From heel-strike to foot-flat, longitudinal arch angle was associated with FOs deformation in forefoot. From foot-flat to midstance, rearfoot eversion accounted for variation in the deformation of medial FOs regions, and forefoot abduction for the lateral regions. From midstance to heel-off, rearfoot eversion, longitudinal arch angle, and plantar pressure played significant role in deformation. Finally, from heel-off to toe-off, forefoot adduction affected the deformation of forefoot and midfoot.SignificanceThis study provides guidelines for designing customized FOs. Flatfoot individuals with excessive rearfoot eversion or very flexible medial arches require more support on medial FOs regions, while the ones with excessive forefoot abduction need the support on lateral regions. However, a compromise should be made between the level of support and the level of increase in plantar pressure to avoid stress on foot structures.  相似文献   

10.
BackgroundMobility aids are commonly prescribed to offload an injured lower extremity. Device selection may impact stance foot loading patterns and foot health in clinical populations at risk of foot ulceration.Research questionsTwo questions motivated this study: How does device selection influence peak plantar and regional (rearfoot, mid foot and forefoot) foot forces on the stance foot? Does device selection influence peak, cumulative, and regional plantar forces within a 200 m walking trial?MethodsTwenty-one older adults walked 200 m at self-selected pace in four randomized conditions for this prospective crossover study. Participants used a walker, crutches, wheeled knee walker (WKW), and no assistive device (control condition). Plantar forces were measured using a wireless in-shoe system (Loadsol, Novel Inc., St. Paul, MN). Repeated measures analyses of variance were used to determine differences in peak and cumulative total and regional forces among walking conditions. Paired sample t-tests compared forces during first and last 30 s epochs of each condition to determine device influence over time.ResultsThe WKW reduced peak net forces by 0.29 and 0.35 bodyweight (BW) when compared to the walker or control condition with similar trends in all foot regions. Crutch use had similar peak forces as control. There were no differences in the number of steps taken within devices comparing first and last epochs. Crutches had a 0.04 and 0.07 BW increase in peak net and forefoot forces during the last epoch. Walker use had 66.44 BW lower cumulative forefoot forces in the last epoch.SignificanceCrutches had similar stance foot loading as normal walking while a walker lowered forefoot forces at the expense of increased steps. A WKW may be the best choice to ‘protect’ tissues in the stance foot from exposure to peak and cumulative forces in the forefoot region.  相似文献   

11.
Stair ascent and descent at different inclinations.   总被引:6,自引:0,他引:6  
The aim of this study was to investigate the biomechanics and motor co-ordination in humans during stair climbing at different inclinations. Ten normal subjects ascended and descended a five-step staircase at three different inclinations (24 degrees, 30 degrees, 42 degrees ). Three steps were instrumented with force sensors and provided 6 dof ground reactions. Kinematics was analysed by a camera-based optoelectronic system. An inverse dynamics approach was applied to compute joint moments and powers. The different kinematic and kinetic patterns of stair ascent and descent were analysed and compared to level walking patterns. Temporal gait cycle parameters and ground reactions were not significantly affected by staircase inclination. Joint angles and moments showed a relatively low but significant dependency on the inclination. A large influence was observed in joint powers. This can be related to the varying amount of potential energy that has to be produced (during ascent) or absorbed (during descent) by the muscles. The kinematics and kinetics of staircase walking differ considerably from level walking. Interestingly, no definite signs could be found indicating that there is an adaptation or shift in the motor patterns when moving from level to stair walking. This can be clearly seen in the foot placement: compared to level walking, the forefoot strikes the ground first--independent from climbing direction and inclination. This and further findings suggest that there is a certain inclination angle or angular range where subjects do switch between a level walking and a stair walking gait pattern.  相似文献   

12.
Charcot–Marie–Tooth (CMT) disease often presents with peripheral muscle imbalance associated with a painful cavus (medial high-arched) foot deformity which becomes increasingly severe and rigid as the disease progresses. The purpose of this study was to investigate the effect of pes cavus on foot pain and dynamic plantar pressure in CMT, and to explore the relationships between plantar pressure and pain. Sixteen participants diagnosed with CMT and painful pes cavus were assessed for foot posture, ankle dorsiflexion range of motion, levels of foot pain, functional impairment, health-related quality of life and plantar pressure distribution while walking. Plantar pressure parameters (mean pressure, peak pressure, pressure–time integral) and contact duration were measured using the Novel Pedar® in-shoe capacitance transducer system and the foot was divided into rearfoot, midfoot and forefoot regions for analysis. Increasing cavus foot deformity was associated with more widespread foot pain and increased pressure under the forefoot and midfoot regions. In contrast, peak pressure decreased under the rearfoot. Neither relationship was found between foot pain intensity and any of the pressure variables, nor was ankle dorsiflexion range of motion correlated with pain location, intensity or degree of pes cavus. Although pes cavus in CMT is associated with substantial pain and dysfunction, there is no clear link between foot pain and plantar pressure. The more severe the degree of pes cavus, however, the more pressure develops under the lateral margin of the foot; probably as a result of the changed foot–ground contact seen during gait.  相似文献   

13.
BackgroundIn patients with rheumatoid arthritis (RA), both high and low forefoot plantar pressures have been reported. Better understanding of pathology in the forefoot associated with altered pressure distribution in patients with RA could help to better formulate and specify goals for treatment with foot orthoses or therapeutic footwear.ObjectivesTo investigate the association of plantar pressure with disease activity and deformity in the forefoot in patients with rheumatoid arthritis and forefoot symptoms.MethodsA cross sectional study, using data of 172 patients with rheumatoid arthritis and forefoot symptoms, was conducted. Peak pressure (PP) and pressure time integral (PTI) in the forefoot were measured with a pressure platform. Forefoot deformity was assessed using the Platto score. Forefoot disease activity was defined as swelling and/or pain assessed by palpation of the metatarsophalangeal joints. The forefoot was divided in a medial, central and lateral region, in which the following conditions could be present: 1) no pathology, 2) disease activity, 3) deformity or 4) disease activity and deformity. A multilevel analysis was performed using condition per forefoot region as independent variable and PP or PTI in the corresponding region as dependent variable.ResultsStatistically significant higher plantar pressures were found in forefoot regions with deformities (RR 1.2, CI 1.1-1.3, P<0.0001), compared to forefoot regions without forefoot pathology. No significant differences in plantar pressures were found when solely forefoot disease activity was present in forefoot regions.SignificanceForefoot deformities are related to higher plantar pressures measured in the corresponding forefoot regions. The absence of an association between local disease activity and plantar pressure might be explained by the low prevalence of metatarsophalangeal joint pain or swelling. Future research with sensitive imaging measures to detect disease activity is recommended to reveal the effect of forefoot disease activity on plantar pressure.  相似文献   

14.
BackgroundThe measurement of plantar pressure distributions during gait can provide insights into the effects of musculoskeletal disease on foot function. A range of hardware, software, and protocols are available for the collection of this type of data, with sometimes disparate and conflicting results reported between individual studies. In this systematic review and meta-regression analysis of dynamic regional peak pressures, we aimed to test if 1) the system used to obtain the pressure measurements and 2) the characteristics of the study populations had a significant effect on the results.MethodsA systematic review of the literature was undertaken to identify articles reporting regional peak plantar pressures during barefoot walking. A mixed-effects modeling approach was used to analyze the extracted data. Initially, the effect of the system used to collect the data was tested. Following this, the effect of participant characteristics on the results were analyzed, using moderators of cohort type (defined as the primary health characteristic of the participants), age, sex, and BMI.Results115 participant groups were included in the analysis. Sufficient cohorts were available to test those that consisted of healthy individuals, and those with diabetes and diabetic neuropathy. Significant differences were found between results reported by studies using different pressure measurement systems in 8 of the 16 regions analyzed. The analysis of participant characteristics revealed a number of significant relationships between regional peak pressures and participant characteristics, including: BMI and midfoot plantar pressures; elevated forefoot pressures as a result of diabetic neuropathy; and sex-differences in regional loading patterns.ConclusionsAt the level of the literature, we confirmed significant effects of disease status, age, BMI, and sex on regional peak plantar pressures. Researchers and clinicians should be aware that measurements of peak plantar pressure variables obtained from different collection equipment are not directly comparable.  相似文献   

15.
Pressures under the foot during level walking were measured in 15 healthy young adults (8 females, 7 males, mean age 25.7, S.D. 5.3) before and after immersing the feet in ice-cold water (2 °C) for 30 min to evaluate the role of plantar insensitivity on gait patterns. Following ice water immersion, there was a significant decrease in walking speed. Maximum forces and peak pressures under the foot decreased, with the exception of an increase in loading under the third to fifth metatarsal heads. Contact times increased under all regions of the foot, and force–time and pressure–time integrals increased under the second and third to fifth metatarsal head regions. It is concluded that plantar insensitivity significantly alters the distribution, duration, and to a lesser extent, the magnitude of forces and pressures under the foot when walking. These results suggest that in the neuropathic foot, gait changes caused by plantar insensitivity may be partly responsible for the redistribution and altered duration of loading, whereas the increase in the magnitude of forces and pressures are primarily due to other disease-related factors.  相似文献   

16.
Foot loading patterns and neuromuscular function of both limbs during walking were investigated on 25 patients with limb length discrepancy. Plantar pressures and 2-D ground reaction forces were recorded simultaneously with electromyographic activities at two different walking speeds. Bilateral comparison indicated that moderate limb length discrepancies resulted in asymmetrical gait patterns. The duration of the stance phase was reduced in the short limb in both walking speeds. The vertical ground reaction force (F) in the push-off phase was greater in the long limb both at normal (1.33 (SO, 0.05 BW) vs. 1.29 (SD, 0.09 BW)) (P=0.0027) and fast walking speed (1.55 (SD, 0.11) vs. 1.48 (SD, 0.15 BW)) (P=0.001). Peak plantar pressures were higher under the big toe in the long leg and the heel-off occurred faster. The push-off phase was initiated earlier in the short leg. The maximum isometric torque of the long limb was considerably greater (673 Nm vs. 239 Nm) (P=0.026). The results imply that the loading of the long limb is greater and the foot loading patterns shifted more to the forefoot in the long, limb to compensate walking disturbances caused by limb length discrepancies.  相似文献   

17.
BackgroundNaturally aligned toes, particularly hallux, have reported with gripping functions during locomotion, thus expanding the forefoot loading area.Research questionThe purpose of this study was aimed to investigate the influence of hallux abduction manipulation on the foot plantar pressure distribution and inter-segment kinematic alterations.MethodsThirteen subjects participated in this toe manipulation study. A Footscan® pressure plate and Vicon motion capture system were utilized for the measurement of plantar pressure distribution and lower extremity and foot inter-segment kinematics during walking and running. Paired-sample t-test from statistical parametric mapping 1d was used to check the kinematic significance.ResultsPeak pressure in third metatarsal (M3) increased significantly during walking under manipulation. Contact area increased in second metatarsal (M2) with manipulation during running. Peak pressure and pressure-time integral illustrated significant increases in M3, and the maximum force and impulse in fourth metatarsal (M4) increased significantly. Arch height index increased while walking with toe manipulation. The foot progression angle in the frontal plane showed significant decrease in mid-swing phase during walking and significant increase in mid-stance phase during running. The hallux relative to forefoot angles presented higher axial rotation in the frontal plane.SignificanceFindings form this study showed centrally and laterally redistributed foot loadings and increased forefoot inter-segment flexibility with manipulation, which may be used as baseline to evaluate toe-manipulation interventions in foot disorders, specifically hallux valgus deformity.  相似文献   

18.
IntroductionOutsole parameters of the shoe can be adapted to offload regions of pain or region of high pressures. Previous studies already showed reduced plantar pressures in the forefoot due to a proximally placed apex position and higher longitudinal bending stiffness (LBS). The aim of this study was to determine the effect of changes in rocker radii and high LBS on the plantar pressure profile during gait.Method10 participants walked in seven shoe conditions of which one control shoe and six rocker shoes with small, medium and large rocker radii and low and high longitudinal bending stiffness. Pedar in-shoe plantar pressure measuring system was used to quantify plantar pressures while walking on a treadmill at self-selected walking speed. Peak plantar pressure, maximum mean pressure and force-time integral were analyzed with Generalized Estimated Equation (GEE) and Tukey post hoc correction (α = .05).ResultsSignificantly lower plantar pressures were found in the first toe, toes 2–5, distal and proximal forefoot in all rocker shoe conditions as compared to the control shoe. Plantar pressures in the first toe and toes 2–5 were significantly lower in the small radius compared to medium and large radii. For the distal forefoot both small and medium radii significantly reduced plantar pressure compared to large radii. Low LBS reduced plantar pressure at the first toe significantly compared to high LBS independent of the rocker radius. Plantar pressures in the distal forefoot and toes 2–5 were lower in high LBS compared to low LBS.ConclusionManipulation of the rocker radius and LBS can effectively reduce peak plantar pressures in the forefoot region during gait. In line with previous studies, we showed that depending on the exact target location for offloading, different combinations of rocker radius and LBS need to be adopted to maximize treatment effects.  相似文献   

19.
BackgroundPrevious reliability studies on peak plantar pressure measurements in patients with previous diabetic foot ulceration (DFU) did not stratify their analyses according to whether the foot had a previous ulcer.Research questionDoes test-retest reliability of peak foot pressure measurements from the various foot regions differ between the ulcerated and non-ulcerated feet?MethodsData from 23 participants with peripheral neuropathy and healed plantar DFU were analysed in this test-retest reliability comparison study. Plantar pressure was evaluated on two sessions using Pedar®-X in-shoe system, with a mean of 7.2 days (SD = 1.6) between sessions.ResultsThe intraclass correlation coefficient (ICC) and coefficient of variation (CV) were calculated for 10 foot regions. Overall, test-retest reliability was excellent (ICCs, 0.82 to 0.95) for all peak pressure variables. CV ranged between 6.3% and 18.3%, and exceeded 15% over the hallux and medial forefoot regions in the ulcer foot (18.3% and 16.4%, respectively). Hallux peak pressure CV was significantly higher over the ulcer foot than over the non-ulcer foot (5.7%, 95% CI, 1.7%–10.2%). Peak pressure CV over the forefoot also tended to be higher over the ulcer foot (medial forefoot: 6.1%, 95% CI, -0.5%–14.5%; lateral forefoot: 4.1%, 95%CI, -0.7%–11.1%).SignificancePeak plantar foot pressure may be useful to distinguish between groups of patients with peripheral neuropathy and healed plantar DFU. However, clinical decisions based on ulcer foot hallux and forefoot peak pressure measurements should be interpreted with caution.  相似文献   

20.
The activity of descending stairs increases loading at the joints of the lower extremities as compared to walking, which may cause discomfort and or difficulties in completing the task. This study compared and contrasted the kinematics and kinetics of both forwards and backwards stair descent to those of level walking. We compared the support moments and moment powers of the lower limb joints while descending stairs forwards at a self-selected pace, backwards at a self-selected pace and forwards at the same pace as backwards. Participants were 10 healthy young adults (6 men and 4 women) aged 20–35 years. Sagittal plane kinematics and ground reaction forces were collected and moments of force computed using inverse dynamics. The ratio of stance/swing phase changed from 59:41 for normal level walking to between 65:35 and 70:30 for forward stair descent but backwards descent was 58:42. Stair descent produced larger double-peak support moments with reduced ankle plantar flexor and increased knee extensor moments as compared to level walking (>±95th-percentile confidence interval). The hip moments during stair descent were relatively small and highly variable. We observed significantly larger distances between the centres of pressure and the stair edges for backwards stair descent versus forwards stair descent. These results demonstrate that stair descent, even at a slower pace, requires greater power from the knee extensors than level walking but that backwards stair descent significantly reduced the peak knee power during midstance and provided a potentially safer means of descending stairs than forwards stair descent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号