首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid developments at the intersection of nanotechnology and controlled drug delivery have triggered exceptional growth in treating various bone diseases. As a result, over the past decade, nanotechnology has contributed tremendously to controlling drug delivery for treating various bone diseases, and in many cases, has led to increased bone regeneration. In this review paper, the recent experimental progress towards using nanotechnology to treat bone-specific diseases is reviewed. Novel applications of different types of nanomaterials (from nanoparticles to 3D nanostructured scaffolds) for treating bone diseases are summarized. In addition, fundamental principles for utilizing nanomaterials to create better drug delivery systems, especially for treating bone diseases and regenerating bone, are emphasized.  相似文献   

2.
Recent development of biomedical engineering including biomaterials and drug delivery system (DDS) as well as basic biology and medicine has enabled cells to induce regeneration repairing of defective tissues as well as substitute the biological functions of damaged organs. For successful tissue regeneration, it is undoubtedly indispensable to give cells a local environment which allows cells to efficiently promote their proliferation and differentiation and consequently induce cell-based tissue regeneration. Tissue engineering is one of the biomedical forms to create this regeneration environment of cells. The tissue and organ repairing based on their regeneration induction has been realized by combining cells with the tissue engineering technology or methodology in a surgical or internally medical manner. This paper overviews the present status and future direction of tissue engineering for regenerative inductive therapy, briefly explaining the key technology of tissue engineering, especially DDS of growth factor and gene.  相似文献   

3.
Recent development of biomedical engineering including biomaterials and drug delivery system (DDS) as well as basic biology and medicine has enabled cells to induce regeneration repairing of defective tissues as well as substitute the biological functions of damaged organs. For successful tissue regeneration, it is undoubtedly indispensable to give cells a local environment which allows cells to efficiently promote their proliferation and differentiation and consequently induce cell-based tissue regeneration. Tissue engineering is one of the biomedical forms to create this regeneration environment of cells. The tissue and organ repairing based on their regeneration induction has been realized by combining cells with the tissue engineering technology or methodology in a surgical or internally medical manner. This paper overviews the present status and future direction of tissue engineering for regenerative inductive therapy, briefly explaining the key technology of tissue engineering, especially DDS of growth factor and gene.  相似文献   

4.
Since the commercialization of polydioxanone (PDX) as a biodegradable monofilament suture by Ethicon in 1981, the polymer has received only limited interest until recently. The limitations of polylactide-co-glycolide (PLGA) coupled with the growing need for materials with enhanced features and the advent of new fabrication techniques such as electrospinning have revived interest for PDX in medical devices, tissue engineering and drug delivery applications. Electrospun PDX mats show comparable mechanical properties as the major structural components of native vascular extracellular matrix (ECM) i.e. collagen and elastin. In addition, PDX’s unique shape memory property provides rebound and kink resistance when fabricated into vascular conduits. The synthesis of methyl dioxanone (MeDX) monomer and copolymers of dioxanone (DX) and MeDX have opened up new perspectives for poly(ester-ether)s, enabling the design of the next generation of tissue engineering scaffolds for application in regenerating such tissues as arteries, peripheral nerve and bone. Tailoring of polymer properties and their formulation as nanoparticles, nanomicelles or nanofibers have brought along important developments in the area of controlled drug or gene delivery.This paper reviews the synthesis of PDX and its copolymers and provides for the first time an exhaustive account of its applications in the (bio)medical field with focus on tissue engineering and drug/gene delivery.  相似文献   

5.
Electrospun materials as potential platforms for bone tissue engineering   总被引:3,自引:0,他引:3  
Nanofibrous materials produced by electrospinning processes have attracted considerable interest in tissue regeneration, including bone reconstruction. A range of novel materials and processing tools have been developed to mimic the native bone extracellular matrix for potential applications as tissue engineering scaffolds and ultimately to restore degenerated functions of the bone. Degradable polymers, bioactive inorganics and their nanocomposites/hybrids nanofibers with suitable mechanical properties and bone bioactivity for osteoblasts and progenitor/stem cells have been produced. The surface functionalization with apatite minerals and proteins/peptides as well as drug encapsulation within the nanofibers is a promising strategy for achieving therapeutic functions with nanofibrous materials. Recent attempts to endow a 3D scaffolding technique to the electrospinning regime have shown some promise for engineering 3D tissue constructs. With the improvement in knowledge and techniques of bone-targeted nanofibrous matrices, bone tissue engineering is expected to be realized in the near future.  相似文献   

6.
Hu J  Ma PX 《Pharmaceutical research》2011,28(6):1273-1281
Tissue engineering aims at constructing biological substitutes to repair damaged tissues. Three-dimensional (3D) porous scaffolds are commonly utilized to define the 3D geometry of tissue engineering constructs and provide adequate pore space and surface to support cell attachment, migration, proliferation, differentiation and neo tissue genesis. Biomimetic 3D scaffolds provide synthetic microenvironments that mimic the natural regeneration microenvironments and promote tissue regeneration process. While nano-fibrous (NF) scaffolds are constructed to mimic the architecture of NF extracellular matrix, controlled-release growth factors are incorporated to modulate the regeneration process. The present article summarizes current advances in methods to fabricate NF polymer scaffolds and the technologies to incorporate controlled growth factor delivery systems into 3D scaffolds, followed by examples of accelerated regeneration when the scaffolds with growth factor releasing capacity are applied in animal models.  相似文献   

7.
The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with pre-programmed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering.  相似文献   

8.
Nanoparticle technology in bone tissue engineering   总被引:1,自引:0,他引:1  
Nanotechnology has been increasingly utilized to enhance bone tissue engineering strategies. In particular, nanotechnology has been employed to overcome some of the current limitations associated with bone regeneration methods including insufficient mechanical strength of scaffold materials, ineffective cell growth and osteogenic differentiation at the defect site, as well as unstable and insufficient production of growth factors to stimulate bone cell growth. Among the tremendous technologies of nanoparticles in biological systems, we focus here on the three major nanoparticle research areas that have been developed to overcome these limitations and disadvantages: (a) the generation of nanoparticle-composite scaffolds to provide increased mechanical strength for bone graft, (b) the fabrication of nanofibrous scaffolds to support cell growth and differentiation through morphologically-favored architectures, and (c) the development of novel delivery and targeting systems of genetic material, especially those encoding osteogenic growth factors. These nanoparticle-based bone tissue engineering technologies possess a great potential to ensure the efficacy of clinical bone regeneration.  相似文献   

9.
BACKGROUND: Biodegradable elastomers have been used in many different manners for controlled drug delivery. The development of new biodegradable elastomers has recently increased, driven mainly by tissue engineering research. OBJECTIVE: This review outlines the different uses of biodegradable elastomers in controlled release. METHODS: This review was limited to those papers wherein the polymer chosen as the delivery vehicle was demonstrably elastomeric. CONCLUSION: Biodegradable elastomers have an established role in controlled release and an expanding role in combination scaffolds providing controlled release and mechanical stimulation capability for tissue regeneration/engineering.  相似文献   

10.
BACKGROUND: Trauma or degenerative diseases of the joints are common clinical problems resulting in high morbidity. Although various orthopedic treatments have been developed and evaluated, the low repair capacities of articular cartilage renders functional results unsatisfactory in the long term. Over the last decade, a different approach (tissue engineering) has emerged that aims not only to repair impaired cartilage, but also to fully regenerate it, by combining cells, biomaterials mimicking extracellular matrix (scaffolds) and regulatory signals. The latter is of high importance as growth factors have the potency to induce, support or enhance the growth and differentiation of various cell types towards the chondrogenic lineage. Therefore, the controlled release of different growth factors from scaffolds appears to have great potential to orchestrate tissue repair effectively. OBJECTIVE: This review aims to highlight considerations and limitations of the design, materials and processing methods available to create scaffolds, in relation to the suitability to incorporate and release growth factors in a safe and defined manner. Furthermore, the current state of the art of signalling molecules release from scaffolds and the impact on cartilage regeneration in vitro and in vivo is reported and critically discussed. METHODS: The strict aspects of biomaterials, scaffolds and growth factor release from scaffolds for cartilage tissue engineering applications are considered. CONCLUSION: Engineering defined scaffolds that deliver growth factors in a controlled way is a task seldom attained. If growth factor delivery appears to be beneficial overall, the optimal delivery conditions for cartilage reconstruction should be more thoroughly investigated.  相似文献   

11.
Nanotechnology, or systems/devices manufactured at the molecular level, is a multidisciplinary scientific field undergoing explosive development. A part of this field is the development of nanoscaled drug delivery devices. Nanoparticles have been developed as an important strategy to deliver conventional drugs, recombinant proteins, vaccines and more recently nucleotides. Nanoparticles and other colloidal drug delivery systems modify the kinetics, body distribution and drug release of an associated drug. Other effects are tissue or cell specific targeting of drugs and the reduction of unwanted side effects by a controlled release. Therefore nanoparticles in the pharmaceutical biotechnology sector improve the therapeutic index and provide solutions for future delivery problems for new classes of so called biotech drugs including recombinant proteins and oligonucleotides. This review discusses nanoparticular drug carrier systems with the exception of liposomes used today, and what the potential and limitations of nanoparticles in the field of pharmaceutical biotechnology are.  相似文献   

12.
In recent years, bone tissue engineering has emerged as one of the main research areas in the field of regenerative biomedicine. Frequency and relevance age-related diseases, such as healing and regeneration of bone tissues, are rising due to increasing life expectancy. Even though bone tissue has excellent self-regeneration ability, when bone defects exceed a critical size, impaired bone formation can occur and surgical intervention becomes mandatory. Bone tissue engineering represents an alternative approach to conventional bone transplants. The main aim of tissue engineering is to repair, regenerate or reconstruct damaged or degenerative tissue. This review presents an overview on the main materials, techniques and strategies in the field of bone tissue engineering. Whilst presenting some reviews recently published that deepen on each of the sections of the paper, this review article aims to present some of the most relevant advances, both in terms of new materials and strategies, currently being developed for bone repair and regeneration.  相似文献   

13.
Bone is a dynamic tissue that undergoes significant turnover during the life cycle of an individual. Despite having a significant regenerative capability, trauma and other pathological scenarios commonly require therapeutic intervention to facilitate the healing process. Bone tissue engineering, where cellular and biological processes at a site are deliberately manipulated for a therapeutic outcome, offers a viable option for the treatment of skeletal diseases. In this review paper, we aim to provide a brief synopsis of cellular and molecular basis of bone formation that are pertinent to current efforts of bone healing. Different approaches for engineering bone tissue were presented with special emphasis on the use of soluble (diffusible) therapeutic agents to accelerate bone healing. The latter agents have been used for both local bone repair (i.e. introduction of agents directly to a site of repair) as well as systemic bone regeneration (i.e. delivery for regeneration throughout the skeletal system). Critical drug delivery and targeting issues pertinent for each mode of bone regeneration are provided. In addition, future challenges and opportunities in bone tissue engineering are proposed from the authors' perspective.  相似文献   

14.
Tissue engineering is an interdisciplinary field that has attempted to utilize a variety of processing methods with synthetic and natural polymers to fabricate scaffolds for the regeneration of tissues and organs. The study of structure-function relationships in both normal and pathological tissues has been coupled with the development of biologically active substitutes or engineered materials. The fibrillar collagens, types I, II, and III, are the most abundant natural polymers in the body and are found throughout the interstitial spaces where they function to impart overall structural integrity and strength to tissues. The collagen structures, referred to as extracellular matrix (ECM), provide the cells with the appropriate biological environment for embryologic development, organogenesis, cell growth, and wound repair. In the native tissues, the structural ECM proteins range in diameter from 50 to 500 nm. In order to create scaffolds or ECM analogues, which are truly biomimicking at this scale, one must employ nanotechnology. Recent advances in nanotechnology have led to a variety of approaches for the development of engineered ECM analogues. To date, three processing techniques (self-assembly, phase separation, and electrospinning) have evolved to allow the fabrication of nanofibrous scaffolds. With these advances, the long-awaited and much anticipated construction of a truly "biomimicking" or "ideal" tissue engineered environment, or scaffold, for a variety of tissues is now highly feasible. This review will discuss the three primary technologies (with a focus on electrospinning) available to create tissue engineering scaffolds that are capable of mimicking native tissue, as well as explore the wide array of materials investigated for use in scaffolds.  相似文献   

15.
Introduction: Bisphosphonates (BPs) were introduced 45 years ago as anti-osteoporotic drugs and during the last decade have been utilized as bone-targeting groups in systemic treatment of bone diseases. Very recently, strategies of chemical immobilization of BPs in hydrogels and nanocomposites for bone tissue engineering emerged. These strategies opened new applications of BPs in bone tissue engineering.

Areas covered: Conjugates of BPs to different drug molecules, imaging agents, proteins and polymers are discussed in terms of specific targeting to bone and therapeutic affect induced by the resulting prodrugs in comparison with the parent drugs. Conversion of these conjugates into hydrogel scaffolds is also presented along with the application of the resulting materials for bone tissue engineering.

Expert opinion: Calcium-binding properties of BPs can be successfully extended via different conjugation strategies not only for purposes of bone targeting, but also in supramolecular assembly affording either new nanocarriers or bulk nanocomposite scaffolds. Interaction between carrier-linked BPs and drug molecules should also be considered for the control of release of these molecules and their optimized delivery. Bone-targeting properties of BP-functionalized nanomaterials should correspond to bone adhesive properties of their bulk analogs.  相似文献   

16.
Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including: i) elastin-like peptides for delivery of anticancer therapeutics; ii) heparin-based coacervates with synthetic polycations for controlled growth factor delivery; iii) carboxymethyl chitosan aggregates for oral drug delivery; iv) Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future.  相似文献   

17.
Electrospun nanofibers with a high surface area to volume ratio have received much attention because of their potential applications for biomedical devices, tissue engineering scaffolds, and drug delivery carriers. In order to develop electrospun nanofibers as useful nanobiomaterials, surfaces of electrospun nanofibers have been chemically functionalized for achieving sustained delivery through physical adsorption of diverse bioactive molecules. Surface modification of nanofibers includes plasma treatment, wet chemical method, surface graft polymerization, and co-electrospinning of surface active agents and polymers. A variety of bioactive molecules including anti-cancer drugs, enzymes, cytokines, and polysaccharides were entrapped within the interior or physically immobilized on the surface for controlled drug delivery. Surfaces of electrospun nanofibers were also chemically modified with immobilizing cell specific bioactive ligands to enhance cell adhesion, proliferation, and differentiation by mimicking morphology and biological functions of extracellular matrix. This review summarizes surface modification strategies of electrospun polymeric nanofibers for controlled drug delivery and tissue engineering.  相似文献   

18.
The regeneration of large bone defects caused by trauma or disease remains a significant clinical problem. Although osteoinductive growth factors such as bone morphogenetic proteins have entered clinics, transplantation of autologous bone remains the gold standard to treat bone defects. The effective treatment of bone defects by protein therapeutics in humans requires quantities that exceed the physiological doses by several orders of magnitude. This not only results in very high treatment costs but also bears considerable risks for adverse side effects. These issues have motivated the development of biomaterials technologies allowing to better control biomolecule delivery from the solid phase. Here we review recent approaches to immobilize biomolecules by affinity binding or by covalent grafting to biomaterial matrices. We focus on biomaterials concepts that are inspired by extracellular matrix (ECM) biology and in particular the dynamic interaction of growth factors with the ECM. We highlight the value of synthetic, ECM-mimicking matrices for future technologies to study bone biology and develop the next generation of 'smart' implants.  相似文献   

19.
Previous attempts to review the literature on magnetic nanomaterials for hyperthermia-based therapy focused primarily on magnetic fluid hyperthermia (MFH) using mono metallic/metal oxide nanoparticles. The term “hyperthermia” in the literature was also confined only to include use of heat for therapeutic applications. Recently, there have been a number of publications demonstrating magnetic nanoparticle-based hyperthermia to generate local heat resulting in the release of drugs either bound to the magnetic nanoparticle or encapsulated within polymeric matrices. In this review article, we present a case for broadening the meaning of the term “hyperthermia” by including thermotherapy as well as magnetically modulated controlled drug delivery. We provide a classification for controlled drug delivery using hyperthermia: Hyperthermia-based controlled drug delivery through bond breaking (DBB) and hyperthermia-based controlled drug delivery through enhanced permeability (DEP). The review also covers, for the first time, core-shell type magnetic nanomaterials, especially nanoshells prepared using layer-by-layer self-assembly, for the application of hyperthermia-based therapy and controlled drug delivery. The highlight of the review article is to portray potential opportunities for the combination of hyperthermia-based therapy and controlled drug release paradigms -towards successful application in personalized medicine.  相似文献   

20.
Introduction: Next-generation scaffolds for bone tissue engineering (BTE) should exhibit the appropriate combination of mechanical support and morphological guidance for cell proliferation and attachment while at the same time serving as matrices for sustained delivery of therapeutic drugs and/or biomolecular signals, such as growth factors. Drug delivery from BTE scaffolds to induce the formation of functional tissues, which may need to vary temporally and spatially, represents a versatile approach to manipulating the local environment for directing cell function and/or to treat common bone diseases or local infection. In addition, drug delivery from BTE is proposed to either increase the expression of tissue inductive factors or to block the expression of others factors that could inhibit bone tissue formation. Composite scaffolds which combine biopolymers and bioactive ceramics in mechanically competent 3D structures, including also organic–inorganic hybrids, are being widely developed for BTE, where the affinity and interaction between biomaterials and therapeutic drugs or biomolecular signals play a decisive role in controlling the release rate.

Areas covered: This review covers current developments and applications of 3D composite scaffolds for BTE which exhibit the added capability of controlled delivery of therapeutic drugs or growth factors. A summary of drugs and biomolecules incorporated in composite scaffolds and approaches developed to combine biopolymers and bioceramics in composites for drug delivery systems for BTE is presented. Special attention is given to identify the main challenges and unmet needs of current designs and technologies for developing such multifunctional 3D composite scaffolds for BTE.

Expert opinion: One of the major challenges for developing composite scaffolds for BTE is the incorporation of a drug delivery function of sufficient complexity to be able to induce the release patterns that may be necessary for effective osseointegration, vascularization and bone regeneration. Loading 3D scaffolds with different biomolecular agents should produce a codelivery system with different, predetermined release profiles. It is also envisaged that the number of relevant bioactive agents that can be loaded onto scaffolds will be increased, whilst the composite scaffold design should exploit synergistically the different degradation profiles of the organic and inorganic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号