首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hagino H  Kuraoka M  Kameyama Y  Okano T  Teshima R 《BONE》2005,36(3):444-453
The influence of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the bone response to mechanical loading was evaluated. Six-month-old female Wistar rats were used and assigned to three groups (n = 12/group): Vehicle administration (EP4-V), low-dose ONO-4819 administration (EP4-L, 3 microg/kg BW), and high-dose ONO-4819 administration (EP4-H, 30 microg/kg BW). ONO-4819 was subcutaneously injected in the back twice a day for 3 weeks. Loads on the right tibia at 39.4 N for 36 cycles at 2 Hz were applied in vivo by 4-point bending every other day for 3 weeks. Whole-body bone mineral content showed a significant difference between EP4-V and EP4-H (P < 0.05). Bone mineral density (BMD) of the total and regional tibia (the region with maximal bending at the central diaphysis) was higher in EP4-H than EP4-V, showing a significant effect of loading (P < 0.001) and ONO-4819 (P < 0.05). BMD of the total femur was higher in EP4-H than EP4-V (P < 0.01) and that of the distal femur was higher in EP4-H than EP4-V (P < 0.001). Histomorphometry of the cortical bone showed that loading increased formation surface (FS/BS), mineral appositional rate (MAR), and bone formation rate (BFR/BS) significantly at the lateral periosteal surface (P < 0.001); however, the effect of ONO-4819 was not significant. At the medial periosteal surface, loading increased the three parameters (P < 0.001) and ONO-4819 increased FS/BS (P < 0.001) and MAR (P < 0.05) significantly. At the endocortical surface, the effects of both loading and ONO-4819 were significant on all three parameters (for loading; FS/BS P < 0.01, MAR P < 0.05, BFR/BS P < 0.03, for ONO-4819 all P < 0.001). It was concluded that ONO-4819 increased cortical bone formation in rats and there was an additive effect on the bone response to external loading by 4-point bending.  相似文献   

2.
Prostaglandin E(2) (PGE(2)) mediates a variety of both innate and adaptive immunity responses through 4 distinct receptors, EP1-4. Recent studies have suggested the physiological and pathological role of EP4 in various inflammatory diseases. In this study, we investigated the importance of the EP4 receptor, and the efficacy of a selective EP4 agonist to alter hepatic ischemia/reperfusion (I/R) injury, an important cause of damage in liver resection and transplantation. We used an established murine I/R injury model, 70% partial hepatic ischemia for 90 minutes in male C57BL/6 mice. The local expression of EP4 messenger RNA (mRNA) in the naive and the ischemic liver at 2 hours after reperfusion was examined using RT-PCR analysis. Some mice received the EP4 selective agonist during I/R. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured as markers of hepatic injury. EP4 expression in the liver was significantly up-regulated at 2 hours after reperfusion. Furthermore, treatment with EP4 agonist significantly inhibited hepatic injury at 6 hours after reperfusion. Our data suggest an inhibitory role of EP4 PGE(2) receptor in hepatic I/R injury and the therapeutic efficacy of a selective EP4 agonist for liver protection.  相似文献   

3.
Prostaglandin E2 (PGE2) exerts its effects through the PGE receptor that consists of four subtypes (EP1, EP2, EP3, and EP4). Osteoclast formation in the coculture of primary osteoblastic cells (POB) and bone marrow cells was enhanced more by 11-deoxy-PGE1 (an EP4 and EP2 agonist) than by butaprost (an EP2 agonist) and other agonists, which suggests that EP4 is the main factor in PGE2-induced osteoclast formation. PGE2-induced osteoclast formation was not observed in the coculture of POB from EP4-deficient (EP4 k/o) mice and spleen cells from wild-type (w/t) mice, whereas osteoclasts were formed in the coculture of POB from w/t mice and spleen cells from EP4-k/o mice. In situ hybridization (ISH) showed that EP4 messenger RNA (mRNA) was expressed on osteoblastic cells but not on multinucleated cells (MNCs) in w/t mice. These results indicate that PGE2 enhances osteoclast formation through its EP4 subtype on osteoblasts. Osteoclast formation by interleukin 1alpha (IL-1alpha), tumor necrosis factor alpha (TNF-alpha), basic fibroblast growth factor (bFGF), and lipopolysaccharide (LPS) was hardly observed in the coculture of POB and bone marrow cells, both from EP4-k/o mice, which shows the crucial involvement of PG and the EP4 subtype in osteoclast formation by these molecules. In contrast, osteoclast formation by 1,25-hydroxyvitamin D3 (1,25(OH)2D3) was not impaired and that by parathyroid hormone (PTH) was only partially impaired in EP4-k/o mice, which may be related to the fact that EP4-k/o mice revealed no gross skeletal abnormalities. Because it has been suggested that IL-1alpha, TNF-alpha, bFGF, and LPS are involved in inflammatory bone loss, our work can be expected to contribute to an understanding of the pathophysiology of these conditions.  相似文献   

4.
Ono K  Akatsu T  Kugai N  Pilbeam CC  Raisz LG 《BONE》2003,33(5):798-804
The inducible prostaglandin (PG) synthesis enzyme, cyclooxygenase-2 (COX-2), is involved in osteoclast (OC) formation in cocultures of mouse mammary cancer cell lines (MMT060562 or BALB/c-MC) and bone marrow cells through production of PGE(2). There are four PGE(2) receptors but only the EP2 and EP4 receptors are reported to be important for OC formation. We have investigated the role of COX-2, EP2 receptor, and EP4 receptor in marrow cells for osteoclastogenesis in cocultures of cancer cells and bone marrow cells. We cocultured cancer cell lines with bone marrow cells from COX-2 knockout (-/-), EP2 -/- or EP4 -/- mice compared to wild-type mice. In addition, an EP4 receptor antagonist (EP4 RA) was added in some cocultures. Disruption of COX-2 gene in bone marrow cells had no effect on PGE(2) production and OC formation in cocultures with MMT060562, while it abrogated PGE(2) production and OC formation in cocultures with BALB/c-MC. Disruption of the EP2 gene in bone marrow cells had no effect on OC formation in the cocultures, while disruption of the EP4 gene in bone marrow cells abrogated OC formation in the cocultures. Furthermore, EP4 RA suppressed OC formation and prevented the increase in receptor activator of nuclear factor kappaB ligand (RANKL) mRNA levels in the cocultures. We conclude that COX-2 in cancer cells is responsible for PGE(2) and OC production in cocultures with MMT060562, while COX-2 in bone marrow cells, not cancer cells, is responsible for PGE(2) and OC production in cocultures with BALB/c-MC, and EP4 receptors are essential for OC formation in both cocultures.  相似文献   

5.
Prostaglandin E(2) receptors, subtype EP(1) (PGE(2)EP(1)) have been linked to several physiologic responses, such as fever, inflammation, and mechanical hyperalgesia. Local anesthetics modulate these responses, which may be due to direct interaction of local anesthetics with PGE(2)EP(1) receptor signaling. We sought to characterize the local anesthetic effects on PGE(2)EP(1) signaling and elucidate mechanisms of anesthetic action. In Xenopus laevis oocytes, recombinant expressed PGE(2)EP(1) receptors were functional (half maximal effect concentration, 2.09 +/- 0.98 x 10(-6) M). Bupivacaine, after incubation for 10 min, inhibited concentration-dependent PGE(2)EP(1) receptor functioning (half-maximal inhibitory effect concentration, 3.06 +/- 1.26 x 10(-6) M). Prolonged incubation in bupivacaine (24 h) inhibited PGE(2)-induced calcium-dependent chloride currents (I(Cl(Ca))) even more. Intracellular pathways were not significantly inhibited after 10 min of incubation in bupivacaine. But I(Cl(Ca)) activated by intracellular injection of GTPgammaS (a nonhydrolyzable guanosine triphosphate [GTP] analog that activates G proteins, irreversible because it cannot be dephosphorylated by the intrinsic GTPase activity of the alpha subunit of the G protein) was reduced after 24 h of incubation in bupivacaine, indicating a G protein-dependent effect. However, inositol 1,4,5-trisphosphate- and CaCl(2)- induced I(Cl(Ca)) were unaffected by bupivacaine at any time points tested. Therefore, bupivacaine's effect is at phospholipase C or at the G protein or the PGE(2)EP(1) receptor. All inhibitory effects were reversible. We conclude that bupivacaine inhibited PGE(2)EP(1) receptor signaling at clinically relevant concentrations. These effects could, at least in part, explain how local anesthetics affect physiologic responses such as fever, inflammation, and hyperalgesia during the perioperative period.  相似文献   

6.
Prostaglandins (PGs), particularly PGE(2), can stimulate bone resorption and formation and auto-amplify their effects by inducing cyclooxygenase (COX)-2. We examined the role of different PG receptors in stimulating cAMP production and COX-2 expression in murine calvarial osteoblasts. Cells were obtained from PGE(2) receptor (EP2R and EP4R) wild-type and knockout (KO) mice and from mice transgenic for the COX-2 promoter fused to a luciferase reporter. We analyzed effects of selective agonists, EP2A and EP4A, for EP2R and EP4R, which mediate the increase in cAMP in response to PGE(2). We also tested agonists for other PGE(2) receptors (EP1A and EP3A) and for prostacyclin (IPA), prostaglandin D(2) (DPA), thromboxane (TPA), and prostaglandin F(2alpha) (FPA) receptors. PGE(2) and EP2A were the most effective stimulators of cAMP production. EP4A, IPA, and DPA produced smaller responses, and EP1A, EP3A, FPA, and TPA were ineffective. In EP2R KO cells, cAMP responses to PGE(2) were reduced by 80%, and responses to EP2A were abrogated. In EP4R KO cells, cAMP responses to PGE(2) and EP2A showed a small reduction, while the response to EP4A was abrogated. Pretreatment with PGE(2), EP2A, or EP4A down-regulated the subsequent response to the respective ligands. COX-2 induction was measured by increased luciferase activity and mRNA expression. PGE(2) was the most effective agonist; EP2A and another selective EP2R agonist, butaprost, showed similar efficacy, and EP4A was less effective. EP2A and EP4A effects on luciferase activity were additive, and effects of the combination were similar to PGE(2) itself. IPA, TPA, and DPA produced 2- to 6-fold increases in COX-2 expression. FPA was a weak agonist, while EP1A and EP3A were inactive. Treatment with specific inhibitors indicated that PGE(2), EP2A, and EP4A induced COX-2 expression largely through protein kinase A (PKA). We conclude that the PG induction of COX-2 in this system generally paralleled effects on cAMP production and was mediated predominantly via the PKA pathway.  相似文献   

7.
Nakagawa K  Imai Y  Ohta Y  Takaoka K 《BONE》2007,41(4):543-548
Bone morphogenetic proteins (BMPs) were originally isolated based on their ability to induce ectopic cartilage and bone formation. The agents to promote the local bone formation with BMP would be beneficial to promote bone repair and to shorten the treatment period. For this purpose, we have examined ONO-4819, which is a prostaglandin (PG) E2 EP4 receptor selective agonist (EP4A), as a positive modulators for the efficacy of BMPs. In our previous study, the systemic and local (with biodegradable synthetic polymers) administration of EP4A led to a significant augmentation of ossicle mass. But the mechanisms how EP4A accelerates the BMP-mediated bone formation are still unknown. In this study, we have examined how EP4A facilitates the BMP signaling using in vitro system with pluripotent stromal cell line, ST2. The mRNA expressions of Osterix and ALP (a marker enzyme of osteoblastic differentiation) and enzymatic activity of ALP in the ST2 cells were elevated significantly by BMP treatment. This elevation was further elevated by addition of the EP4A. The accelerated BMP action by the EP4A was abolished by pre-treatment with PKA inhibitor. This study suggests that ONO-4819 accelerates BMP-induced osteoblastic differentiation of ST2 cells by stimulating the commitment for osteoblastic lineage. Thus PKA signaling pathway would be the main intracellular signaling pathway of the EP4 for the anabolic effect of bone and mineral metabolisms.  相似文献   

8.
Toyoda H  Terai H  Sasaoka R  Oda K  Takaoka K 《BONE》2005,37(4):555-562
Recombinant human bone morphogenetic protein (rhBMP) is viewed as a therapeutic cytokine because of its ability to induce bone. However, the high doses of rhBMP required for bone induction in humans remain a major hurdle for the therapeutic application of this protein. The development of a methodology that would effectively overcome the weak responsiveness to human BMP is highly desired. In the present study, we investigate the ability of a prostaglandin E EP4 receptor selective agonist (EP4A) to augment the bone-inducing ability of BMP in a biodegradable delivery system. A block copolymer composed of poly-D,L-lactic acid with random insertion of p-dioxanone and polyethylene glycol (PLA-DX-PEG, polymer) was used as the delivery system. Polymer discs containing rhBMP-2 and EP4A were implanted into the left dorsal muscle pouch of mice to examine the dose-dependent effects of EP4A. Fifty mice were divided into 5 groups based on the contents of rhBMP and EP4 in the polymer (group 1; BMP 5 microg EP4A 0 microg, group 2; BMP 5 microg EP4 3 microg, group 3; BMP 5 microg EP4 30 microg, group 4; BMP 5 microg EP4 300 microg, group 5; BMP 0 microg EP4 30 microg, n=10 each). All implants were harvested, examined radiologically, and processed for histological analysis 3 weeks after surgery. On dual-energy X-ray absorptiometry (DXA) analysis, the bone mineral content (BMC) of the ossicles was 6.52+/-0.80 (mg), 9.36+/-1.89, 14.21+/-1.27, and 18.75+/-2.31 in groups 1, 2, 3, and 4 respectively. In terms of BMC, the values of groups 3 and 4 were significantly higher than those of group 1. The mean BMC value of group 4 was approximately 3 times higher than that of group 1. No significant difference in body weight was noted among the groups during the experimental period. In summary, the presence of a prostaglandin E EP4 receptor selective agonist in the carrier polymer enhanced the bone-inducing capacity of rhBMP-2 with no apparent systemic adverse effects.  相似文献   

9.
10.
Four prostaglandin E2 receptor subtypes designated EP1, EP2, EP3, and EP4 have been shown to mediate a variety of effects of prostaglandin E2 (PGE2) on glomerular hemodynamics, tubular salt and water reabsorption, and on blood vessels in the human kidney. Despite the important role of renal PGE2, the localization of PGE2 receptor proteins in the human kidney is unknown. The present study used antipeptide antibodies to the EP1 to EP4 receptor proteins for immunolocalization in human kidney tissue. Immunoblot studies using these antibodies demonstrated distinct bands in membrane fraction from human kidney. By means of immunohistochemistry, expression of the human EP1 receptor subtype protein in renal tissue was detected mainly in connecting segments, cortical and medullary collecting ducts, and in the media of arteries and afferent and efferent arterioles. The human EP2 receptor subtype protein was detectable only in the media of arteries and arterioles. The human EP3 receptor subtype protein was strongly expressed in glomeruli, Tamm-Horsfall negative late distal convoluted tubules, connecting segments, cortical and medullary collecting ducts, as well as in the media and the endothelial cells of arteries and arterioles. Staining of the human EP4 receptor subtype protein was observed in glomeruli and in the media of arteries. However, no signal of either receptor subtype was detected in the thick ascending limb, the macula densa, or in adjacent juxtaglomerular cells. These results support the concept that PGE2 modulates specific functions in different anatomical structures of the human kidney.  相似文献   

11.
Hypertonicity in the renal medulla stimulates local cyclooxygenase 2 expression, leading to abundant PGE(2) production. Here we found that mRNA expression by the PGE(2)-activated G-protein-coupled receptors, EP3 and EP4 in the renal medulla was decreased by furosemide treatment, a procedure that reduces medullary hypertonicity. When HepG2 cells were cultured in hypertonic conditions by addition of salt or sorbitol, EP3 expression was induced. A specific EP3 agonist inhibited cAMP production, indicating receptor functionality, and this led to a substantial increase in cell survival in hypertonic media. Survival was independent of the SLC5A3 inositol transporter and aldose reductase expression, suggesting that EP3 promoted cell survival under hypertonic conditions independent of cellular organic osmolyte accumulation. Reduced cAMP production did not contribute to increased survival. EP4 expression was stimulated by hypertonicity in MDCK and HepG2 cells, which was associated with increased cAMP production in response to an EP4 agonist. Our study shows that local hypertonicity promotes PGE(2) signaling in the renal medulla by stimulating cognate receptor and cyclooxygenase 2 expression that likely regulates local hemodynamics and tubular transport.Kidney International (2009) 75, 278-284. doi:10.1038/ki.2008.498.  相似文献   

12.
We tested the efficacy of three selective agonists of prostaglandin E(2) (PGE(2)) receptor, EP2 (CP-536,745-01), EP2/4 (CP-043,305-02), and EP4 (CP-044,519-02), in two models of acute and chronic kidney failure. In the nephrotoxic mercury chloride (HgCl(2)) rat model of acute kidney failure systemically administered EP4 agonist reduced the serum creatinine values and increased the survival rate. Although the EP2 or the EP2/4 agonist did not change the serum creatinine values, the EP2 receptor agonist increased the survival rate. Histological evaluation of kidneys from EP4-treated rats indicated less proximal tubular necrosis and less apoptotic cells. In a rat model of chronic renal failure, the three receptor agonists decreased the serum creatinine and increased the glomerular filtration rate at 9 weeks following therapy. Kidneys treated with the EP4 agonist had less glomerular sclerosis, better preservation of proximal and distal tubules and blood vessels, increased convoluted epithelium proliferation and less apoptotic cells. Nephrectomy had no influence on the expression of the EP4 receptor, whereas EP2 receptor expression was reduced by 50% and then corrected following treatment with EP2 and EP2/4 receptor agonists. These findings suggest that PGE(2) has an important role in acute kidney failure via the EP4 receptor, whereas in chronic kidney failure both EP2 and EP4 receptors are equally important in preserving the progression of chronic kidney failure. Thus, agonism of EP2 and EP4 receptors may provide a basis for treating acute and chronic kidney failure.  相似文献   

13.
14.
CP432 is a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 agonist. CP432 stimulates trabecular and cortical bone formation and restores bone mass and bone strength in aged ovariectomized rats with established osteopenia. INTRODUCTION: The purpose of this study was to determine whether a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 (PGE2) agonist, CP432, could produce bone anabolic effects in aged, ovariectomized (OVX) rats with established osteopenia. MATERIALS AND METHODS: CP432 at 0.3, 1, or 3 mg/kg/day was given for 6 weeks by subcutaneous injection to 12-month-old rats that had been OVX for 8.5 months. The effects on bone mass, bone formation, bone resorption, and bone strength were determined. RESULTS: Total femoral BMD increased significantly in OVX rats treated with CP432 at all doses. CP432 completely restored trabecular bone volume of the third lumbar vertebral body accompanied with a dose-dependent decrease in osteoclast number and osteoclast surface and a dose-dependent increase in mineralizing surface, mineral apposition rate, and bone formation rate-tissue reference in OVX rats. CP432 at 1 and 3 mg/kg/day significantly increased total tissue area, cortical bone area, and periosteal and endocortical bone formation in the tibial shafts compared with both sham and OVX controls. CP432 at all doses significantly and dose-dependently increased ultimate strength in the fifth lumber vertebral body compared with both sham and OVX controls. At 1 and 3 mg/kg/day, CP432 significantly increased maximal load in a three-point bending test of femoral shaft compared with both sham and OVX controls. CONCLUSIONS: CP432 completely restored trabecular and cortical bone mass and strength in established osteopenic, aged OVX rats by stimulating bone formation and inhibiting bone resorption on trabecular and cortical surfaces.  相似文献   

15.
Systemic administration of prostaglandin E2 (PgE2) has been reported to prolong graft survival of heart transplants. We investigated the influence of systemic injection of two compounds which inhibit the endogenous degradation of PgE2 (CL42A and CL68A) and of local infusion of PgE2 into the transplant on the survival time of rat cardiac allografts. Both CL42A and CL68A gave increased graft survival time in two rat strain combinations, though this was not predictable in individual rats. Locally infused PgE2 gave slight, but not significant prolongation of graft survival in some recipients. Combined PgE2 and cyclosporin A, however, gave significant prolongation of graft survival time compared with cyclosporin A treatment alone. When local PgE2 treatment was begun 5 days after transplantation, graft survival time was prolonged in almost all the rats. Manipulation of the local PgE2 concentration thus seemed to have a positive effect on graft survival, possibly due to down-regulation of certain cells of the immune system by PgE2.  相似文献   

16.
Prostaglandin E2 (PGE2) is produced during inflammatory responses mediating a variety of both innate and adaptive immune responses through 4 distinct receptors: EP1 to EP4. The use of gene-targeted mice and selective agonists/antagonists responsible for each receptor has gradually revealed that each receptor plays a unique and important role in various disease conditions. In addition, PGE2 is known to have some immunosuppressive properties. In this study, we investigated the role of PGE2 receptors by examining the therapeutic efficacy of highly selective receptor agonists on the alloimmune response in vivo. We used a fully major histocompatibility complex (MHC)-mismatched murine cardiac transplantation model. C57BL/6 cardiac allografts were heterotopically transplanted into BALB/c recipients. We treated mice with a highly selective agonist for each EP receptor. EP2 and EP4 agonists significantly prolonged allograft survival compared with controls. In particular, the EP4 agonist was more effective than the EP2 agonist in the inhibition of acute allograft rejection. In conclusion, PGE2 receptors merit further study as novel therapeutics for clinical transplantation.  相似文献   

17.
Mo A  Yao W  Li C  Tian X  Su M  Ling Y  Zhang Q  Setterberg RB  Jee WS 《BONE》2002,31(3):402-406
Previous reports have shown that bone loss was partially prevented by bipedal stance "exercise" following ovariectomy (ovx), and it was well documented that prostaglandin E2 (PGE(2)) had an anabolic effect on the rat skeleton. The aim of this study was to determine whether lower doses of PGE(2) could prevent ovx-induced cancellous bone loss with the combination of bipedal stance exercise. Seventy-eight 10-month-old female Sprague-Dawley rats were either ovariectomized or sham-operated on day 0 and then treated with PGE(2) (0, 0.3, or 1 mg/kg per day) and/or housed in normal height cages (NC, 28 cm) or raised cages (RC, 33 cm) for 8 weeks. Bone histomorphometry was performed on the double-fluorescent-labeled proximal tibial metaphysis. In sham rats, 1 mg/kg PGE(2) + RC had synergistic effects in increasing trabecular bone area, width, and number by stimulating mineral apposition rate and bone formation rate. As expected, ovx induced cancellous bone loss, accompanied by elevated activation frequency. Without RC, PGE(2) monotherapy prevented ovx-induced bone loss at the 1 mg/kg per day dose, whereas this prevention effect was observed at the 0.3 mg/kg per day dose when combined with RC. Similar to their effects in sham rats, PGE(2) and RC had synergistic effects in augmenting cancellous bone mass and architecture and maintaining the elevated bone formation but depressing bone resorption and activation frequency. We conclude that bipedal stance exercise lowers the PGE(2) dose required to prevent ovx-induced cancellous bone loss in the proximal tibial metaphysis in aged rats.  相似文献   

18.
Shamir D  Keila S  Weinreb M 《BONE》2004,34(1):157-162
Recent evidence indicates that systemic administration of PGE2 increases bone formation and bone mass via activation of the EP4 receptor. Previously, we demonstrated that osteoblastic recruitment from rat bone marrow stromal cells (BMSC) is a major mechanism for the anabolic effect of PGE2. In this study, we used a selective EP4 antagonist to test if the stimulation of osteoblast differentiation from rat BMSC in vitro and in vivo involves the EP4 receptor. In vitro, PGE2 (100 nM) increased nodule formation and alkaline phosphatase (ALP) activity in cultures of rat BMSC 1.5- to 2-fold. These effects were abolished by the EP4 antagonist at 10(-6) M but not 10(-9) M. Furthermore, PGE2 increased the number of surviving adherent BMSC by approximately 225% and the EP4 antagonist prevented this effect as well. The antagonist had no effect on basal levels of nodule formation and adherent cell number. In vivo, daily systemic administration of PGE2 at 6 mg/kg for 2 weeks increased cancellous bone area (by approximately 50%) and increased nodule formation (measured as mineralized area) in ex vivo stromal cultures by approximately 50%. Pre-administration of the EP4 antagonist at 10 mg/kg abrogated both the increase in bone mass as well as the increase in nodule formation. These data indicate that PGE2 stimulates osteoblastic commitment of BMSC via activation of the EP4 receptor.  相似文献   

19.
Chronic constriction injury (CCI) of the sciatic nerve in rats induces persistent mechanical hyperalgesia and allodynia. CCI is widely known as a model of neuropathic pain, and many studies using this model have been reported. Recently, c-fos has been used as a neural marker of pain, and various studies have assessed the relationship between hyperalgesia and c-fos expression in the lumbar spinal cord. In this study, we examined the role of a prostaglandin E2 receptor subtype EP1 receptor antagonist (ONO-8711) in a rat CCI model. EP1 receptor antagonist (EP1-ra) oral administration from day 8 to day 14 significantly reduced hyperalgesia and allodynia in the three pain tests on day 15. EP1-ra treatment from day 8 to 14 also reduced c-fos-positive cells in laminae I-II, III-IV, and V-X compared with saline treatment. A single dose of EP1-ra treatment on day 8 significantly reduced hyperalgesia and allodynia at 1 h and 2 h after administration, but the efficacy was not observed at 24 h. We conclude that EP1-ra treatment may be useful for hyperalgesia and allodynia and that EP1 receptor mechanisms are involved in the maintenance of c-fos gene expression induced by nerve injury. IMPLICATIONS: We examined whether a prostaglandin E2 receptor subtype EP1 receptor antagonist abrogates neuropathic pain induced by chronic constriction injury model in rats. The EP1 receptor antagonist significantly reduced hyperalgesia, allodynia, and c-fos positive cells. These findings suggested that EP1 receptor antagonists may have a role in treatment of neuropathic pain.  相似文献   

20.
Of the four prostaglandin (PG) E receptor subtypes (EP1–EP4), EP2 and EP4 have been proposed to mediate the anabolic action of PGE2 on bone formation but comparative evaluation studies of EPs on bone formation do not necessarily share a common mechanism, implying that their additional features including downstream MAPK pathways may be beneficial to resolve this issue. We systematically assessed the roles of EPs in the rat calvaria (RC) cell culture model by using four selective EP agonists (EPAs). Consistent with relative expression levels of the respective receptors, multiple phenotypic traits of bone formation in vitro, including proliferation of nodule-associated cells, osteoblast marker expression and mineralized nodule formation were upregulated not only by PGE2 but equally by EP2A and EP4A, but not by EP1A and EP3A. EP2A and EP4A were effective when cells were treated chronically or pulse-treated during nascent nodule formation. EP2A and EP4A equally stimulated the endogenous PGE2 production, while EP2A caused a greater increase in cAMP production and c-Fos gene expression compared to EP4A. EP2A and EP4A activated predominantly p38 MAPK and ERK respectively, while c-Jun N-terminal kinase (JNK) was equally activated by both agonists. SB203580 (p38 MAPK inhibitor) blocked the PGE2 effect on mineralized nodule formation, while U0126 (ERK inhibitor) and dicumarol (JNK inhibitor) were less effective. PGE2-dependent phosphorylation of the MAPKs was affected not only by protein kinase (PK)A and PKC inhibitors but also by adenylate cyclase and PKC activators. Co-treatment of RC cells with EP2A or EP4A and bone morphogenetic protein (BMP)2, whose effects on bone nodule formation is known to be, in part, mediated through the PKA and p38 MAPK pathways, resulted in an additive effect on mineralized nodule formation. Further, PGE2, EP2A and EP4A did not increase BMP2/4 mRNA levels in RC cells, and EP2-induced phosphorylation of p38 MAPK was not eliminated by Noggin. These results suggest that, in the RC cell model, the anabolic actions of PGE2 on mineralized nodule formation are mediated at least in part by activation of the EP2 and EP4 receptor subtype-specific MAPK pathways, independently of BMP signaling, in cells associated with nascent bone nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号