首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exercise intensity powerfully influences testosterone, cortisol, and testosterone : cortisol ratio (T:C) responses to endurance exercise. Hydration state may also modulate these hormones, and therefore may alter the anabolic/catabolic balance in response to endurance exercise and training. This study examined the effect of running intensity on testosterone, cortisol, and T : C when exercise was initiated in a hypohydrated state. Nine male collegiate runners (age = 20 +/- 0 y, height = 178 +/- 2 cm, mass = 67.0 +/- 1.8 kg, body fat % = 9.8 +/- 0.7 %, V.O2max = 65.7 +/- 1.1 ml.kg (-1).min (-1)) completed four 10-min treadmill runs differing in pre-exercise hydration status (euhydrated, or hypohydrated by 5 % of body mass) and exercise intensity (70 % or 85 % V.O2max). Body mass, urine osmolality, and urine-specific gravity documented fluid balance; blood samples drawn pre-, immediately post-, and 20 min post-exercise were analyzed for testosterone, cortisol, and T : C. Except for heart rate measured during the 70 % V.O2max trials, heart rate, V.O2, and plasma lactate were similar between euhydrated and hypohydrated conditions for a given intensity, suggesting hypohydration did not measurably increase the physiological stress of the exercise bouts. Furthermore, hydration state had no measurable effect on testosterone concentrations before, during, or after exercise at either intensity. Regardless of exercise intensity, cortisol concentrations were greater during hypohydration than euhydration pre-exercise and 20 min post-exercise. Additionally, T : C was significantly lower 20 min post-exercise at 70 % V.O2max when subjects were initially hypohydrated (T : C = 0.055) versus euhydrated (T : C = 0.072). These findings suggest that depending on exercise intensity, T : C may be altered by hydration state, therefore influencing the balance between anabolism and catabolism in response to running exercise performed at typical training intensities.  相似文献   

2.
3.
High oxidation rates from combined carbohydrates ingested during exercise   总被引:3,自引:0,他引:3  
Studies that have investigated oxidation of a single carbohydrate (CHO) during exercise have reported oxidation rates of up to 1 g x min(-1). Recent studies from our laboratory have shown that a mixture of glucose and sucrose or glucose and fructose ingested at a high rate (1.8 g x min(-1)) leads to peak oxidation rates of approximately 1.3 g x min(-1) and results in approximately 20 to 55% higher exogenous CHO oxidation rates compared with the ingestion of an isocaloric amount of glucose. PURPOSE: The purpose of the present study was to examine whether a mixture of glucose, sucrose and fructose ingested at a high rate would result in even higher exogenous CHO oxidation rates (>1.3 g x min(-1)). METHODS: Eight trained male cyclists (VO2max: 64 +/- 1 mL x kg(-1) BM x min(-1)) cycled on three different occasions for 150 min at 62 +/- 1% VO2max and consumed either water (WAT) or a CHO solution providing 2.4 g x min(-1) of glucose (GLU) or 1.2 g x min(-1) of glucose + 0.6 g x min(-1) of fructose + 0.6 g x min(-1) of sucrose (MIX). RESULTS: High peak exogenous CHO oxidation rates were found in the MIX trial (1.70 +/- 0.07 g x min(-1)), which were approximately 44% higher (P < 0.01) compared with the GLU trial (1.18 +/- 0.04 g x min(-1)). Endogenous CHO oxidation was lower (P < 0.05) in MIX compared with GLU (0.76 +/- 0.12 and 1.05 +/- 0.06 g x min(-1), respectively). CONCLUSION: When glucose, fructose and sucrose are ingested simultaneously at high rates (2.4 g x min(-1)) during cycling exercise, exogenous CHO oxidation rates can reach peak values of approximately 1.7 g x min(-1) and estimated endogenous CHO oxidation is reduced compared with the ingestion of an isocaloric amount of glucose.  相似文献   

4.
INTRODUCTION: The purpose of this study was to determine whether endurance cycling performance and postexercise muscle damage were altered when consuming a carbohydrate and protein beverage (CHO+P; 7.3% and 1.8% concentrations) versus a carbohydrate-only (CHO; 7.3%) beverage. METHODS: Fifteen male cyclists (mean (.-)VO(2peak) = 52.6 +/- 10.3 mL x kg x min) rode a cycle ergometer at 75% (.-)VO(2peak) to volitional exhaustion, followed 12 - 15 h later by a second ride to exhaustion at 85% (.-)VO(2peak). Subjects consumed 1.8 mL x kg BW of randomly assigned CHO or CHO+P beverage every 15 min of exercise, and 10 mL x kg BW immediately after exercise. Beverages were matched for carbohydrate content, resulting in 20% lower total caloric content per administration of CHO beverage. Subjects were blinded to treatment beverage and repeated the same protocol seven to 14 d later with the other beverage. RESULTS: In the first ride (75% (.-)VO(2peak)), subjects rode 29% longer (P < 0.05) when consuming the CHO+P beverage (106.3 +/- 45.2 min) than the CHO beverage (82.3 +/- 32.6 min). In the second ride (85% (.-)VO(2peak)), subjects performed 40% longer when consuming the CHO+P beverage (43.6 +/- 12.5 min) than when consuming the CHO beverage (31.2 +/- 8.7 min). Peak postexercise plasma CPK levels, indicative of muscle damage, were 83% lower after the CHO+P trial (216.3 +/- 122.0 U x L) than the CHO trial (1318.1 +/- 1935.6 U x L). There were no significant differences in exercising levels of (.-)VO(2), ventilation, heart rate, RPE, blood glucose, or blood lactate between treatments in either trial. CONCLUSION: A carbohydrate beverage with additional protein calories produced significant improvements in time to fatigue and reductions in muscle damage in endurance athletes. Further research is necessary to determine whether these effects were the result of higher total caloric content of the CHO+P beverage or due to specific protein-mediated mechanisms.  相似文献   

5.
INTRODUCTION: The aim of the present study was to investigate the effect of ingesting a glucose plus fructose drink compared with a glucose-only drink (both delivering carbohydrate at a rate of 1.8 g.min(-1)) and a water placebo on endurance performance. METHODS: Eight male trained cyclists were recruited (age 32 +/- 7 yr, weight 84.4 +/- 6.9 kg, .VO(2max) 64.7 +/- 3.9 mL.kg(-1).min(-1), Wmax 364 +/- 31 W). Subjects ingested either a water placebo (P), a glucose (G)-only beverage (1.8 g.min(-1)), or a glucose and fructose (GF) beverage in a 2:1 ratio (1.8 g.min(-1)) during 120 min of cycling exercise at 55% Wmax followed by a time trial in which subjects had to complete a set amount of work as quickly as possible (approximately 1 h). Every 15 min, expired gases were analyzed and blood samples were collected. RESULTS: Ingestion of GF resulted in an 8% quicker time to completion during the time trial (4022 s) compared with G (3641 s) and a 19% improvement compared with W (3367 s). Total carbohydrate (CHO) oxidation was not different between GF (2.54 +/- 0.25 g.min(-1)) and G (2.50 g.min(-1)), suggesting that GF led to a sparing of endogenous CHO stores, because GF has been shown to have a greater exogenous CHO oxidation than G. CONCLUSION: Ingestion of GF led to an 8% improvement in cycling time-trial performance compared with ingestion of G.  相似文献   

6.
PURPOSE: The purpose of this study was to examine the effect of high and low glycemic index (GI) carbohydrate (CHO) pre-exercise meals on endurance running capacity. METHODS: Eight active subjects (five male and three female) ran on a treadmill at approximately 70% VO2max to exhaustion on two occasions separated by 7 d. Three hours before the run after an overnight fast, each subject was given in a single-blind, random order, isoenergetic meal of 850+/-21 kcal (mean+/-SEM; 67% carbohydrate, 30% protein, and 3% fat) containing either high (HGI) or low (LGI) GI carbohydrate foods providing 2.0 g CHO.kg(-1) body weight. RESULTS: Ingestion of the HGI meal resulted in a 580% and 330% greater incremental area under the 3-h blood glucose and serum insulin response curves, respectively. Performance times were not different between the HGI and LGI trials (113+/-4 min and 111+/-5 min, respectively). During the first 80 min of exercise in the LGI trial, CHO oxidation was 12% lower and fat oxidation was 118% higher than in the HGI trial. Although serum insulin concentrations did not differ between trials, blood glucose at 20 min into exercise in the HGI trial was lower than that during the LGI trial at the same time (3.6+/-0.3 mmol.L(-1) vs 4.3+/-0.3 mmol.L(-1); P < 0.05). During exercise, plasma glycerol and serum free fatty acid concentrations were lower in the HGI trial than in the LGI trial. CONCLUSIONS: This results demonstrate that although there is a relative shift in substrate utilization from CHO to fat when a low GI meal is ingested before exercise compared with that for a high GI meal, there is no difference in endurance running capacity.  相似文献   

7.
Carbohydrate (CHO) beverage ingestion appears to influence neutrophil functional responses to prolonged exercise of a fixed duration. The aim of this randomised study was to examine the effect of CHO (5% w/v) beverage ingestion on lipopolysaccharide (LPS)-stimulated neutrophil degranulation responses in nine recreationally active males who cycled at 75% VO2 max until fatigue. On two separate occasions, subjects ingested either placebo (PLA) or CHO beverages before and at 15 min intervals during the exercise. Subjects exercised for 31% longer on the CHO trial compared with the PLA trial (P < 0.05). At fatigue plasma glucose concentration was significantly lower on the PLA trial compared with the CHO trial (P < 0.05). Plasma cortisol concentrations had increased similarly on both trials at this time. A marked neutrophilia was evident at fatigue and throughout the 4 h recovery period, the magnitude of which was similar on both trials. At fatigue LPS-stimulated elastase release per neutrophil had fallen similarly on both trials compared with pre-exercise values (47% and 50% on the PLA and CHO trials, respectively). In conclusion, our results suggest that CHO beverage ingestion has negligible influence on the hormonal, circulating neutrophil and LPS-stimulated neutrophil degranulation responses when exercise is performed to fatigue.  相似文献   

8.
PURPOSE: To examine the influence of ingesting a carbohydrate-electrolyte (CHO-E) solution on muscle glycogen use and intermittent running capacity after consumption of a carbohydrate (CHO)-rich diet. METHODS: Six male volunteers (mean +/- SD: age 22.7 +/- 3.4 yr; body mass (BM) 75.0 +/- 4.3 kg; V O2 max 60.2 +/- 1.6 mL x kg(-1) x min(-1)) performed two trials separated by 14 d in a randomized, crossover design. Subjects consumed either a 6.4% CHO-E solution or a placebo (PLA) in a double-blind fashion immediately before each trial (8 mL x kg(-1) BM) and at 15-min intervals (3 mL x kg(-1) BM) during intermittent high-intensity running to fatigue performed after CHO loading for 2 d. Muscle biopsy samples were obtained before exercise, after 90 min of exercise, and at fatigue. RESULTS: Subjects ran longer in the CHO-E trial (158.0 +/- 28.4 min) compared with the PLA trial (131.0 +/- 19.7 min; P < 0.05). There were no differences in muscle glycogen use for the first 90 min of exercise (approximately 2 mmol of glucosyl units per kilogram of dry matter (DM) per minute). However, there was a trend for a greater use in the PLA trial after 90 min (4.2 +/- 2.8 mmol x kg(-1) DM x min(-1)) compared with the CHO-E trial (2.5 +/- 0.7 mmol x kg(-1) DM x min(-1); P = 0.10). Plasma glucose concentrations were higher at fatigue in the CHO-E than in the PLA trial (P < 0.001). CONCLUSIONS: These results suggest that CHO-E ingestion improves endurance capacity during intermittent high-intensity running in subjects with high preexercise muscle glycogen concentrations. The greater endurance capacity cannot be explained solely by differences in muscle glycogen, and it may actually be a consequence of the higher plasma glucose concentration towards the end of exercise that provided a sustained source of CHO for muscle metabolism and for the central nervous system.  相似文献   

9.
The effect of exercise intensity on serum lipoprotein responses   总被引:3,自引:0,他引:3  
The purpose of this study was to determine the effect of exercise intensity on lipoprotein responses. Eleven normolipidemic male volunteers (X +/- SD = 23.1 +/- 2.4) participated in the study. The subjects were assessed for VO2max and ventilatory threshold (VT), matched for VO2max and then randomly assigned to one of two groups: Group A, which exercised for 12 minutes at an intensity 15% below VT (n = 5), and Group B, which exercised for 12 minutes at an intensity 15% above VT (n = 6). The lipoprotein measures HDL-C, LDL-C, total cholesterol (TC), and triglycerides (TG) were assessed from blood samples taken pre-exercise and immediately post-exercise as well as one, 24, and 48 hours post-exercise. A 2 X 5 split plot ANCOVA (controlling for pre-exercise values), revealed no significant differences between groups for HDL-C, TC or LDL-C. However, when means were collapsed across groups, TC levels measured immediately post-exercise were significantly higher than those taken 24 and 48 hours post-exercise (168.0, 159.1, and 159.9 mg.dl-1, respectively; p less than 0.05). A significant interaction was found for the TG measurements. For Group A, TG levels were elevated immediately post-exercise, but decreased significantly at the 1 and 24 hours post-exercise sampling, before returning to baseline levels at the 48 hour post-exercise measurement (93.2 +/- 3.1, 69.5 +/- 4.2, 66.8 +/- 6.7 and 99.5 +/- 2.1 mg.dl-1, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
BACKGROUND: Coingestion of protein and/or free amino acids with carbohydrate has been reported to accelerate postexercise muscle glycogen synthesis due to an increase in the insulin response. PURPOSE: To determine the extent to which the combined ingestion of carbohydrate and a casein protein hydrolysate with or without additional free leucine can increase insulin levels during postexercise recovery in endurance-trained athletes. To determine how this affects whole-body plasma glucose disposal during postexercise recovery. METHODS: Fourteen male athletes (age: 24.3 +/- 0.8 yr; VO2max: 62.9 +/- 1.4 mL.kg.min) were subjected to three randomized crossover trials in which they performed 2 h of exercise (55% Wmax). Thereafter, subjects were studied for 3.5 h during which they ingested carbohydrate (CHO: 0.8 g.kg.h), carbohydrate and a protein hydrolysate (CHO-PRO: 0.8 and 0.4 g.kg.h, respectively), or carbohydrate, a protein hydrolysate, and free leucine (CHO-PRO-LEU: 0.8, 0.4, and 0.1 g.kg.h, respectively) in a double-blind fashion. Continuous infusions with [6,6-H2] glucose were applied to quantify plasma glucose appearance (Ra) and disappearance rates (Rd). RESULTS: Plasma insulin responses were 108 +/- 17 and 190 +/- 33% greater in the CHO-PRO and CHO-PRO-LEU trial, respectively, compared with the CHO-trial (P < 0.01). Plasma glucose responses were lower in the CHO-PRO and CHO-PRO-LEU trial compared with the CHO-trial (35 +/- 5 and 42 +/- 11% lower, respectively; P < 0.01). Plasma glucose Ra and Rd were greater in the CHO versus the CHO-PRO and CHO-PRO-LEU trials (P < 0.05). Glucose Rd represented 100 +/- 0.03% of Ra in all trials. CONCLUSIONS: The combined ingestion of a protein hydrolysate and/or free leucine with carbohydrate (0.8 g.kg.h) substantially augments insulin secretion, but does not affect plasma glucose disposal during the first 3.5 h of postexercise recovery in trained athletes.  相似文献   

11.
The acute effects of exercise duration on serum lipoprotein metabolism   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the effect of exercise duration on lipoprotein responses. Twenty two normolipidemic male volunteers, ages 19-31 yrs (X +/- SEM = 23.1 +/- 2.94) participated in the study. Each was novice a runner (training less than 5 mi/wk). Subjects were assessed for baseline lipid measures of high density lipoprotein (HDL-C), low density lipoprotein (LDL-C), total cholesterol (TC) and triglycerides (TG). They were then evaluated for VO2max and ventilatory threshold (VT). Later they were matched for VO2max and randomly assigned to one of three groups which exercised for 15, 30 or 45 min respectively at a VO2 20% below VT. Subjects were evaluated again for HDL-C, LDL-C, TC and TG from blood samples taken pre-exercise and immediately post-exercise, as well as 1, 24 and 48 hrs post-exercise. A 3 X 4 split plot ANOVA found no difference for any lipid measure during the baseline period. A 3 X 5 split-plot ANOVA (covarying for pre-exercise measures) and post-hoc comparisons of pre- and post-exercise lipid levels indicated no significant differences occurred for either TC, TG or LDL-C measures (p less than 0.05). With respect to HDL-C, the 30 min group had significantly lower HDL-C at the 24 hr measure than did 45 min group (46.41 +/- 1.70 vs 53.34 +/- 1.73 mg.dl-1 respectively). No other differences were found. These findings indicate exercise duration will have an effect on acute responses of lipoprotein following exercise of low intensity.  相似文献   

12.
PURPOSE AND METHODS: Seven subjects exercised to exhaustion on a bicycle ergometer at a workload corresponding to an intensity of 70% maximal oxygen uptake (VO2max). On one occasion (FED), subjects consumed a preexercise carbohydrate (CHO) containing breakfast (100 g CHO) 3 h before exercise. On the other occasion (FASTED), subjects exercised after an overnight fast. Exercise time to fatigue was significantly longer (P < 0.05) when subjects consumed the breakfast (136+/-14 min) compared with when they exercised in the fasted state (109+/-12 min). RESULTS: Pre- and post-exercise muscle glycogen concentrations, respiratory exchange ratio, carbohydrate and fat oxidation, and lactate and insulin concentrations were not significantly different between the two trials. Insulin concentrations decreased significantly (P < 0.05) from 4.7+/-0.05 microIU.mL(-1) to 2.8+/-0.4 microIU.mL(-1) in FED and from 6.6+/-0.6 microIU.mL(-1) to 3.7+/-0.6 microIU.mL(-1) in FASTED subjects and free fatty acid concentrations (FFA) increased significantly (P < 0.05) from 0.09+/-0.02 mmol.L(-1) to 1.4+/-0.6 mmol.L(-1) in FED and from 0.17+/-0.02 mmol.L(-) to 0.74+/-0.27 mmol.L(-1) in FASTED subjects over the duration of the trials. CONCLUSIONS: In conclusion, the important finding of this study is the increased time to fatigue when subjects ingested the CHO meal with no negative effects ascribed to increased insulin concentrations and decreased FFA concentrations after CHO ingestion.  相似文献   

13.
The purpose of this investigation was to compare the physiological responses in cycling and the energy cost (EC) of running after cycling in elite junior (J (male) and J (female)) and senior (S (male) and S (female)) triathletes and to determine the relationship between laboratory physiological parameters and performance in an elite "standard" distance triathlon. Thirty-one elite triathletes competing at World Championship level (age: 23.4 +/- 4.8 y; height: 172.6 +/- 6.8 cm; body mass: 64.4 +/- 7.2 kg; V.O (2)max = 67.8 +/- 8.3 ml x kg (-1) x min (-1)) comprising J (male) (n = 7), J (female) (n = 6), S (male) (n = 9) and S (female) (n = 9) athletes performed a laboratory trial that consisted of submaximal treadmill running (to determine EC), maximal then submaximal cycle ergometry (to determine the peak power output [PPO], V.O (2)max, the ventilation threshold [VT] and cycling economy) followed by an additional submaximal running bout. Swimming, cycling, running and overall race performance (min) over a standard event was also measured in the field. S (male) had a faster cycle, run and overall triathlon times than J (male). S (female) demonstrated a faster cycle and overall triathlon time than J (female). The V.O (2)max (74.7 +/- 5.7 vs. 74.3 +/- 4.4 and 60.1 +/- 1.8 vs. 61.0 +/- 5.0 ml x kg (-1) x min (-1)) and cycling economy (72.5 +/- 4.5 vs. 73.8 +/- 4.3 and 75.6 +/- 4.5 vs. 79.8 +/- 9.8 W x l (-1) x min (-1)) were similar between the junior and senior, in both male and female triathletes. However, S (female) possessed a significantly higher PPO than J (female). S (male) had a higher VT (%V.O (2)max) than J (male) whereas the VT was similar in J (female) and S (female). There were no significant differences in EC change from the first to the second running bout between J (male) and S (male), whereas, in contrast, J (female) exhibited a significantly (p < 0.05) higher difference in EC than S (female). When all subjects were pooled, the overall triathlon time (min) was significantly correlated to V.O (2)max (r = -0.80; p < 0.001) and PPO (W) (r = -0.85; p < 0.001) in cycle ergometry. In conclusion, elite senior triathletes can be distinguished from their younger (junior) counterparts, mainly by a higher PPO in cycling and a lower increase in the whole body energy cost of running after cycling in female and by a higher ventilatory threshold in male triathletes.  相似文献   

14.
PURPOSE: This study examined the performance and metabolic effects of consuming 1.0 (LC) and 3.0 (HC) grams of carbohydrate (CHO) per kilogram body mass (BM), 3 h before a 93-min simulated mountain bike race. METHODS: After two familiarization trials, eight male subjects undertook two CHO trials in a double-blind counterbalanced fashion on a cycle ergometer. The HC meal was supplemented with maltodextrin while maintaining the same glycemic index and apparent volume of food as the LC meal. Stochastic cycling was undertaken for 93 min (4 x 22.50-min laps) with performance measured as the total work performed in 6 x 30-s periods each lap during the test. RESULTS: Performance in lap 1 was better with LC (P < 0.03) whereas performance in lap 4 was better with HC (P < 0.02). Overall performance was 3% greater in HC compared with LC (NS, P = 0.13). Serum glucose was significantly lower (P < 0.04) in HC immediately before the mountain bike test (180 min postprandial) and at 10 min into the test (P < 0.01). Gastrointestinal comfort decreased similarly for both trials over time (P < 0.05). CONCLUSION: These data suggest that ingestion of 3.0 g x kg(-1) BM of CHO 3 h before a 93-min mountain bike simulated race does not produce a statistically significant improvement in overall performance compared with 1.0 g x kg(-1) BM. However, in real terms, a 3% performance improvement may benefit athletes in a race situation. Differences in performance during the first and last laps indicate a variation in pacing strategies that may have resulted from differing blood glucose levels between trials.  相似文献   

15.
PURPOSE: This study examined the acute immune response after three standardized cycling sessions of 4-h duration in the field with varying carbohydrate (CHO) supplementation in a randomized, double-blind, placebo-controlled fashion. We hypothesized that the ingestion of carbohydrate (6 or 12% CHO beverages; placebo (P) without CHO) during exercise attenuates the exercise-induced immune response in a dose-dependent manner. METHODS: A total of 14 male competitive cyclists and triathletes (age: 25 +/- 5 yr; height: 180 +/- 7 cm; weight: 72 +/- 9 kg; VO2max: 67 +/- 6 mL.min(-1).kg(-1)) cycled for 4 h on a 400-m track at a given workload of 70% of the individual anaerobic threshold (198 +/- 21 W). Leukocyte and lymphocyte subpopulations were measured by flow cytometry before, immediately, and 1 and 19 h after exercise. In addition, C-reactive protein (CRP) interleukin 6 (IL-6), and cortisol were determined. RESULTS: The exercise-induced increase in leukocytes, neutrophils, and monocytes was significantly attenuated to the same extent by 6 and 12% CHO (P < 0.001). No differences could be demonstrated for lymphocytes and natural killer cells. The increase in CRP was attenuated significantly by 12% CHO only (P < 0.05), whereas the increase in cortisol and IL-6 was significantly reduced by 6 and 12% CHO (P < 0.001). The postexercise neutrophilia, which dominated the exercise-induced leukocytosis, was strongly related to the postexercise concentration of cortisol (r = 0.72; P < 0.001). CONCLUSIONS: Because of the lacking dose-dependent difference, the ingestion of at least 6% CHO beverages can sufficiently attenuate the exercise-induced immune response and stress, especially in phagocytizing cells (neutrophils and monocytes) by the reduced release of cortisol.  相似文献   

16.
The purpose of this study was to determine whether urinary excretion of hydroxylysine (HO-Lys) is increased following prolonged, predominantly downhill running. Such an increase would be evidence of exercise-induced collagen damage. Each of ten young men performed a treadmill running test to determine VO2peak (an approximation of VO2max) followed by 60 min of intermittent running on -10% slope. Total urine excreted from 48 h pre-exercise to 96h post-exercise was collected in 8-h samples for measurement of HO-Lys. In addition, both urinary 3-methylhistidine (3-MeHis) excretion and serum creatine kinase (SCK) activity were measured as indicators of muscle tissue damage. In no sampling period was post-exercise HO-Lys excretion altered compared with pre-exercise (e.g., pre-exercise: 82.2 +/- 9.6 mumol.24 h-1, mean +/- SE; 51.0 +/- 3.7 mumol.g creatinine-1; post-exercise: 72.9 +/- 2.0 mumol.24 h-1; 47.0 +/- 1.5 mumol.g creatinine-1). SCK activity was increased (346%) 24 h post-exercise, but not immediately, 48 h, or 72 h post-exercise. 3-MeHis excretion was not altered following exercise. There were no strong associations between HO-Lys excretion and either of the markers of muscle damage. We concluded that no evidence of exercise-induced collagen damage was provided by urinary HO-Lys excretion.  相似文献   

17.
PURPOSE: To characterize differences in cytokine responses to exercise of different intensities and durations between healthy and illness-prone runners. METHODS: Trained distance runners were classified as healthy (no more than two episodes of upper-respiratory symptoms per year; N = 10) or illness-prone (four or more episodes per year; N = 8) and completed three treadmill tests: SHORT (30 min, 65% VO2max), LONG (60 min, 65% VO2max), and INTENSE (6 x 3 min, 90% VO2max). Blood samples were collected pre-, post-, 1 h, 10 h, and 24 h after exercise, and interleukin (IL)-2, IL-4, IL-6, IL-8, IL-10, IL-12, and IL-1ra concentrations were determined. Repeated-measures ANOVA was used to assess changes in cytokine responses to exercise. Magnitudes of changes and differences between groups were characterized using Cohen's effect size (ES) criteria. RESULTS: Resting IL-8, IL-10, and IL-1ra concentrations were 19-38% lower (ES:0.38-0.96; small to moderate differences) in illness-prone runners. Similarly, postexercise IL-10 concentrations were 13-20% lower (ES: 0.20-0.37; small differences), and IL-1ra concentrations were 10-20% lower (ES: 0.22-0.38; small differences) in illness-prone subjects. In contrast, IL-6 elevations were 84-185% higher (ES: 0.29-0.59, small differences) in illness-prone subjects. Postexercise responses of IL-2, IL-4, and IL-12 were small and not substantially different between the groups. CONCLUSIONS: Cytokine responses to controlled treadmill running differ between healthy and illness-prone athletes. Illness-prone distance runners showed evidence suggestive of impaired inflammatory regulation in the hours after exercise that may account for the greater frequency of upper-respiratory symptoms experienced.  相似文献   

18.
The present study examines the acute effects of two different exercise intensities on erythrocyte 2,3-diphosphoglycerate (2,3-DPG) concentration. Thirty-one females (X +/- SD age = 23.7 +/- 3.37 yr; VO2max = 44.3 +/- 5.40 ml X kg-1 X min-1) completed 2 separate 15-min constant load cycling tests at exercise intensities representing 35 and 75% of VO2max. Venous blood was obtained pre-exercise (PRE), immediately post-exercise (POST), 15 min post-exercise (POST15), and 30 min post-exercise (POST30) to determine lactic acid, 2,3-DPG, and hemoglobin concentrations and hematocrit. Significant increases (P less than 0.01) in lactic acid concentration (1.1 +/- 0.14 at PRE to 6.2 +/- 0.48 m X mol-1 X l-1 at POST), 2,3-DPG concentration (1.9 +/- 0.06 at PRE to 2.1 +/- 0.06 mumol X ml-1 at POST), and 2,3-DPG corrected for plasma volume shift (PVC 2,3-DPG) (1.9 +/- 0.06 at PRE to 2.4 +/- 0.07 mumol X ml-1 at POST15) were observed only following the 75% submaximal exercise. At POST30 (75% VO2max) PVC 2,3-DPG and lactic acid remained 5.3 and 97% (P less than 0.05) above baseline, respectively. An exercise intensity effect was observed only in lactic acid response (P less than 0.05) but not in 2,3-DPG (mumol X ml-1 and mumol X g-1 hemoglobin or PVC 2,3-DPG. A significant time-intensity interaction (P less than 0.05) for PVC 2,3-DPG suggests that PVC 2,3-DPG response over time was different between the two exercise intensity levels, with the 75% intensity eliciting a greater increase in PVC 2,3-DPG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
This study examines the reproducibility of gastro-intestinal blood flow measurements in the superior mesenteric artery (SMA) both before and immediately after exercise with Doppler ultrasound measurements. Twelve well-trained males (mean +/- SD: age 25.9 +/- 3.8 yr; VO2max 4.8 +/- 0.91 x min(-1)) were measured twice (trial 1 and 2) with a 1 week interval before and immediately after 1 hr cycling at 70% VO2max. Duplex scanning was performed with the athletes in supine position immediately after transition from a chair (before exercise) or bicycle (after exercise). The variability of three measurements before exercise was studied within both trials (short-term reproducibility) and the mean pre-exercise values were compared between the trials (long-term reproducibility). In addition, post-exercise measurements were compared in the same way. Reproducibility was tested using the coefficient of variation and Cronbach's alpha. Mean pre-exercise blood flow was 424 +/- 66 ml/min (n = 12) in trial 1 and 375 +/- 38 ml/min (n = 11) in trial 2. Immediately after exercise blood flow had decreased by 49% to 214 +/- 36 ml/min (p <0.01) in trial 1 and by 38% to 234 +/- 36 ml/min (p < 0.01) in trial 2. Blood flow before and after exercise was not significantly different between trials (paired t-test) and therefore reproducible at the group level. Before exercise a good to fair reproducibility was observed both at the short-term (Cronbach's alpha: 0.88 in trial 1, 0.73 in trial 2, n = 11), and at the long-term (alpha = 0.80, n= 11). In contrast, long-term reproducibility immediately after exercise was poor (alpha = -0.99, n = 8 and alpha = 0.36, n = 7 after the first and second cycling period, respectively). In conclusion, duplex scanning of SMA after a sitting-supine transition in well-trained subjects is not a reproducible method at the individual level for intestinal blood flow measurements immediately after exercise.  相似文献   

20.
PURPOSE: The majority of highly trained endurance athletes with a maximal oxygen uptake greater than 60 mL x min(-1) x kg(-1) develop exercise-induced hypoxemia (EIH). Yet some of them apparently do not. The pathophysiology of EIH seems to be multifactorial, and one explanatory hypothesis is a relative hypoventilation. Nevertheless, conflicting results have been reported concerning its contribution to EIH. The aim of this study was to compare the cardiorespiratory responses to maximal exercise of highly trained endurance athletes demonstrating the same aerobic capacity without EIH (N athletes) and with EIH (H athletes). METHODS: Ten N athletes and twelve H athletes performed an incremental exercise test. Measurements of arterial blood gases and cardiorespiratory parameters were performed at rest and during exercise. RESULTS: All athletes presented a significant decrease in PaO2 (P < 0.05) from rest up to 80% VO2max associated with an increase in PaCO2, both findings consistent with a relative hypoventilation. Then the H athletes, who had a greater training volume per week and a higher second ventilatory threshold than the N athletes (respectively, 17 +/- 1.1 vs 13.1 +/- 0.7 h x wk(-1); 91.8 +/- 1.7 vs 86.1 +/- 1.8% VO2max), presented a continuous PaO2 decrease up to VO2max. This was associated with a widening (Ai-a)DO2. CONCLUSION: This study showed that a relative hypoventilation, probably induced by a high level of endurance training, induced hypoxemia in all athletes. However, a nonventilatory mechanism, perhaps related to the volume of training, seemed to affect gas exchanges beyond the second ventilatory threshold in the H athletes, thereby enhancing EIH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号