首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stray neutrons generated in passively scattered proton therapy are of concern because they increase the risk that a patient will develop a second cancer. Several investigations characterized stray neutrons in proton therapy using experimental measurements and Monte Carlo simulations, but capabilities of analytical methods to predict neutron exposures are less well developed. The goal of this study was to develop a new analytical model to calculate neutron ambient dose equivalent in air and equivalent dose in phantom based on Monte Carlo modeling of a passively scattered proton therapy unit. The accuracy of the new analytical model is superior to a previous analytical model and comparable to the accuracy of typical Monte Carlo simulations and measurements. Predictions from the new analytical model agreed reasonably well with corresponding values predicted by a Monte Carlo code using an anthropomorphic phantom.  相似文献   

2.
Stray neutron exposures pose a potential risk for the development of secondary cancer in patients receiving proton therapy. However, the behavior of the ambient dose equivalent is not fully understood, including dependences on neutron spectral fluence, radiation weighting factor and proton treatment beam characteristics. The objective of this work, therefore, was to estimate neutron exposures resulting from the use of a passively scattered proton treatment unit. In particular, we studied the characteristics of the neutron spectral fluence, radiation weighting factor and ambient dose equivalent with Monte Carlo simulations. The neutron spectral fluence contained two pronounced peaks, one a low-energy peak with a mode around 1 MeV and one a high-energy peak that ranged from about 10 MeV up to the proton energy. The mean radiation weighting factors varied only slightly, from 8.8 to 10.3, with proton energy and location for a closed-aperture configuration. For unmodulated proton beams stopped in a closed aperture, the ambient dose equivalent from neutrons per therapeutic absorbed dose (H*(10)/D) calculated free-in-air ranged from about 0.3 mSv/Gy for a small scattered field of 100 MeV proton energy to 19 mSv/Gy for a large scattered field of 250 MeV proton energy, revealing strong dependences on proton energy and field size. Comparisons of in-air calculations with in-phantom calculations indicated that the in-air method yielded a conservative estimation of stray neutron radiation exposure for a prostate cancer patient.  相似文献   

3.
Passive beam spreading techniques have been used for most proton therapy treatments worldwide. This delivery method employs static scattering foils to spread the beam laterally and a range modulating wheel or ridge filter to spread the high dose region in depth to provide a uniform radiation dose to the treatment volume. Neutrons produced by interactions of the treatment beam with nozzle components, such as the range modulation wheel, can account for a large portion of the secondary dose delivered to healthy tissue outside the treatment volume. Despite this fact, little is known about the effects of range modulation on the secondary neutron exposures around passively scattered proton treatment nozzles. In this work, the neutron dose equivalent spectra per incident proton (H(E)/p) and total neutron dose equivalent per therapeutic absorbed dose (H/D) were studied using Monte Carlo techniques for various values of range modulation at 54 locations around a passive scattering proton therapy treatment nozzle. As the range modulator wheel step thickness increased from 1.0 to 11.5 cm, the peak values of H(E)/p decreased from approximately 1 x 10(-17) mSv Gy(-1) to approximately 2 x 10(-18) mSv Gy(-1) at 50 cm from isocentre along the beam's central axis. In general, H/D increased with increasing range modulation at all locations studied, and the maximum H/D exposures shifted away from isocentre.  相似文献   

4.
Harvey MC  Polf JC  Smith AR  Mohan R 《Medical physics》2008,35(6):2243-2252
The purpose of this work was to determine the feasibility of producing a spread out Bragg peak (SOBP) without a range modulation wheel (RMW) using the passive scattering beam delivery technique. For this study, a comprehensive Monte Carlo model of a passive scattering treatment nozzle was used. The RMW was removed from the model leaving only the initial fixed scatterer (RMW-free configuration). Range modulation was achieved by directly changing the energy of the proton beam entering the nozzle. To produce a uniform SOBP, the number of protons injected into the nozzle at each beam energy was "dose weighted." To do so, the effective number of protons was calculated for the individual initial energies using an analytical dose-weighting function, and the resulting weighted Bragg curves were summed together to produce an SOBP of the desired width. We found that SOBPs calculated using the RMW-free nozzle configuration were in very good agreement to those calculated with the standard nozzle configuration containing the RMW for the 250, 180, and 100 MeV maximum beam energies. The depth of the distal 90% dose and the 80%-20% distal dose falloff of SOBPs calculated with the two different nozzle configurations agreed to within a millimeter for the three beam energy options considered in this study. In addition, the 80%-20% lateral penumbra for the cross-field dose profiles calculated with the RMW-free delivery method agreed with results calculated using the standard RMW technique to less than one millimeter. For an equal number of protons injected into the nozzle, an increase of up to 10% in the delivered dose and a significant reduction in both the in-air secondary neutron fluence and dose equivalent (H/D) were observed at the isocenter by removing the RMW from the treatment nozzle and modulating the initial proton beam energy. However, increases in delivery time of up to 70% were also estimated with this method. Our results suggest that it is feasible to deliver a passively scattered dose distribution with an RMW-free nozzle configuration with clinical characteristics comparable to those using standard methods.  相似文献   

5.
The treatment of uveal melanoma with proton radiotherapy has provided excellent clinical outcomes. However, contemporary treatment planning systems use simplistic dose algorithms that limit the accuracy of relative dose distributions. Further, absolute predictions of absorbed dose per monitor unit are not yet available in these systems. The purpose of this study was to determine if Monte Carlo methods could predict dose per monitor unit (D/MU) value at the center of a proton spread-out Bragg peak (SOBP) to within 1% on measured values for a variety of treatment fields relevant to ocular proton therapy. The MCNPX Monte Carlo transport code, in combination with realistic models for the ocular beam delivery apparatus and a water phantom, was used to calculate dose distributions and D/MU values, which were verified by the measurements. Measured proton beam data included central-axis depth dose profiles, relative cross-field profiles and absolute D/MU measurements under several combinations of beam penetration ranges and range-modulation widths. The Monte Carlo method predicted D/MU values that agreed with measurement to within 1% and dose profiles that agreed with measurement to within 3% of peak dose or within 0.5 mm distance-to-agreement. Lastly, a demonstration of the clinical utility of this technique included calculations of dose distributions and D/MU values in a realistic model of the human eye. It is possible to predict D/MU values accurately for clinical relevant range-modulated proton beams for ocular therapy using the Monte Carlo method. It is thus feasible to use the Monte Carlo method as a routine absolute dose algorithm for ocular proton therapy.  相似文献   

6.
As a proton-therapy beam passes through the field-limiting aperture, some of the protons are scattered off the edges of the collimator. The edge-scattered protons can degrade the dose distribution in a patient or phantom, and these effects are difficult to model with analytical methods such as those available in treatment planning systems. The objective of this work was to quantify the dosimetric impact of edge-scattered protons for a representative variety of clinical treatment beams. The dosimetric impact was assessed using Monte Carlo simulations of proton beams from a contemporary treatment facility. The properties of the proton beams were varied, including the penetration range (6.4-28.5 cm), width of the spread-out Bragg peak (SOBP; 2-16 cm), field size (3 x 3 cm(2) to 15 x 15 cm(2)) and air gap, i.e. the distance between the collimator and the phantom (8-48 cm). The simulations revealed that the dosimetric impact of edge-scattered protons increased strongly with increasing range (dose increased by 6-20% with respect to the dose at the center of the spread-out Bragg peak), decreased strongly with increasing field size (dose changed by 2-20%), increased moderately with increasing air gap (dose increased by 2-6%) and increased weakly with increasing SOBP width (dose change <4%). In all cases examined, the effects were largest at shallow depths. We concluded that the dose deposited by edge-scattered protons can distort the dose proximal to the target with varying contributions due to the proton range, treatment field size, collimator position and thickness, and width of the SOBP. Our findings also suggest that accurate predictions of dose per monitor-unit calculations may require taking into account the dose from protons scattered from the edge of the patient-specific collimator, particularly for fields of small lateral size and deep depths.  相似文献   

7.
Nowadays, Monte Carlo models of proton therapy treatment heads are being used to improve beam delivery systems and to calculate the radiation field for patient dose calculations. The achievable accuracy of the model depends on the exact knowledge of the treatment head geometry and time structure, the material characteristics, and the underlying physics. This work aimed at studying the uncertainties in treatment head simulations for passive scattering proton therapy. The sensitivities of spread-out Bragg peak (SOBP) dose distributions on material densities, mean ionization potentials, initial proton beam energy spread and spot size were investigated. An improved understanding of the nature of these parameters may help to improve agreement between calculated and measured SOBP dose distributions and to ensure that the range, modulation width, and uniformity are within clinical tolerance levels. Furthermore, we present a method to make small corrections to the uniformity of spread-out Bragg peaks by utilizing the time structure of the beam delivery. In addition, we re-commissioned the models of the two proton treatment heads located at our facility using the aforementioned correction methods presented in this paper.  相似文献   

8.
Polf JC  Harvey MC  Smith AR 《Medical physics》2007,34(11):4219-4222
In passively scattered proton radiotherapy, a clinically useful treatment beam is produced by spreading a small proton "pencil beam" extracted from the accelerator to create both a uniform dose profile laterally and a uniform spread-out Bragg peak (SOBP) in depth. Lateral spreading and range modulation of the beam are accomplished using specially designed components within the treatment delivery nozzle. The purpose of this study was to determine how changes in the size of the initial proton pencil beam affect the delivery of dose with a passive scatter treatment nozzle. Monte Carlo calculations were used to study changes of the beam's in-air energy distribution at the exit of the nozzle and the central axis depth dose profiles in water resulting from changes in the incident beam size. Our results indicate that the width of the delivered SOBP decreases as the size of the initial beam increases.  相似文献   

9.
Paganetti H  Jiang H  Lee SY  Kooy HM 《Medical physics》2004,31(7):2107-2118
Monte Carlo dosimetry calculations are essential methods in radiation therapy. To take full advantage of this tool, the beam delivery system has to be simulated in detail and the initial beam parameters have to be known accurately. The modeling of the beam delivery system itself opens various areas where Monte Carlo calculations prove extremely helpful, such as for design and commissioning of a therapy facility as well as for quality assurance verification. The gantry treatment nozzles at the Northeast Proton Therapy Center (NPTC) at Massachusetts General Hospital (MGH) were modeled in detail using the GEANT4.5.2 Monte Carlo code. For this purpose, various novel solutions for simulating irregular shaped objects in the beam path, like contoured scatterers, patient apertures or patient compensators, were found. The four-dimensional, in time and space, simulation of moving parts, such as the modulator wheel, was implemented. Further, the appropriate physics models and cross sections for proton therapy applications were defined. We present comparisons between measured data and simulations. These show that by modeling the treatment nozzle with millimeter accuracy, it is possible to reproduce measured dose distributions with an accuracy in range and modulation width, in the case of a spread-out Bragg peak (SOBP), of better than 1 mm. The excellent agreement demonstrates that the simulations can even be used to generate beam data for commissioning treatment planning systems. The Monte Carlo nozzle model was used to study mechanical optimization in terms of scattered radiation and secondary radiation in the design of the nozzles. We present simulations on the neutron background. Further, the Monte Carlo calculations supported commissioning efforts in understanding the sensitivity of beam characteristics and how these influence the dose delivered. We present the sensitivity of dose distributions in water with respect to various beam parameters and geometrical misalignments. This allows the definition of tolerances for quality assurance and the design of quality assurance procedures.  相似文献   

10.
Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy(-1). Sensitivity analysis revealed that E/D varied by +/-30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy(-1) in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy(-1) in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.  相似文献   

11.
The model of Bortfeld and Schlegel (1996 Phys. Med. Biol. 41 1331-9) for determining the weights of proton beams required to create a spread-out Bragg peak (SOBP) gives a significantly tilted SOBP. However, by arbitrarily varying its parameter p, which relates the range of protons to their energy, we have been able to create satisfactory SOBPs. MCNPX Monte Carlo calculations have been carried out to determine p, demonstrating the success of this modification. Optimal values of p are tabulated for various combinations of maximum beam energy E(0) (50, 100, 150, 200 and 250 MeV) and SOBP width χ (15%, 20%, 25%, 30%, 35% and 40%), as well as for a correction factor needed to calculate the SOBP dose. An example shows the application of these results to analyzing the dose deposited by deuterons and alpha particles in broad proton beams.  相似文献   

12.
Proton beam losses in various components of a treatment nozzle generate secondary neutrons, which bring unwanted out of field dose during treatments. The purpose of this study was to develop an analytic method for estimating neutron dose to a distant organ at risk during proton therapy. Based on radiation shielding calculation methods proposed by Sullivan, we developed an analytical model for converting the proton beam losses in the nozzle components and in the treatment volume into the secondary neutron dose at a point of interest. Using the MCNPx Monte Carlo code, we benchmarked the neutron dose rates generated by the proton beam stopped at various media. The Monte Carlo calculations confirmed the validity of the analytical model for simple beam stop geometry. The analytical model was then applied to neutron dose equivalent measurements performed on double scattering and uniform scanning nozzles at the Midwest Proton Radiotherapy Institute (MPRI). Good agreement was obtained between the model predictions and the data measured at MPRI. This work provides a method for estimating analytically the neutron dose equivalent to a distant organ at risk. This method can be used as a tool for optimizing dose delivery techniques in proton therapy.  相似文献   

13.
Nakagawa T  Yoda K 《Medical physics》2000,27(4):712-715
A method for designing a variable-SOBP (spread-out Bragg peak) ridge filter has been proposed. First, ridge filter parameters are determined by using a Monte Carlo calculation followed by a fast two-step iterative optimization. Then, tilting the ridge filter results in continuous variation of the SOBP width. Monte Carlo calculations show that depth dose uniformity changes from +/- 1.3% to +/- 1.6% for SOBP widths ranging from 10.3 cm to 14.5 cm. Advantages of the proposed tilting ridge filter include a capability of continuous SOBP variation and cost-effective installation for a given SOBP width range.  相似文献   

14.
Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10,000 children.  相似文献   

15.
Reference ionization chamber dosimetry in clinical proton beams is generally performed with cylindrical ionization chambers. However, when the measurement is performed in the presence of a large depth dose gradient or in a narrow spread out Bragg peak (SOBP), it could be advisable to use a plane-parallel chamber. Few recommendations and studies have been devoted to this subject. In this paper, experimental information on perturbation correction factors for four plane-parallel ionization chamber types in proton beams is presented. The experiments were performed in 75 MeV modulated and non-modulated proton beams. Monte Carlo calculations have been performed to support the conclusions of the experimental work. Overall, we were not able to find experimental evidence for significant differences between the secondary electron perturbation correction factors for plane-parallel chambers and those for a cylindrical NE2571. We found experimental ratios of perturbation correction factors that did not differ by more than 0.6% from unity for a Roos and two NACP02 chambers, and by not more than 1.2% for a Calcam-2 and two Markus chambers. Monte Carlo simulations result in corrections that are limited to 0.6% in absolute value, but given the overall uncertainties of the measurements, the deviations of the correction factors from unity could not be resolved from the experimental results. The results of the simulations thus support the experimental conclusion that perturbation correction factors for the set of plane-parallel chambers in both proton beams (relative to NE2571) do not deviate from unity by more than 1.2%. This confirms, within the experimental uncertainties, the assumption that the overall perturbation correction factor for a plane-parallel chamber in a low-energy proton beam is unity, made in IAEA TRS-398 and other dosimetry protocols. Given the large uncertainties of the gradient correction factors to be applied when using a cylindrical ionization chamber in a narrow SOBP or in the presence of a strong depth dose gradient, the level of agreement between plane-parallel and cylindrical ionization chambers observed in this study shows that plane-parallel chambers are a reliable alternative for reference dosimetry in low-energy proton beams.  相似文献   

16.
The main advantages of proton therapy are the reduced total energy deposited in the patient as compared to photon techniques and the finite range of the proton beam. The latter adds an additional degree of freedom to treatment planning. The range in tissue is associated with considerable uncertainties caused by imaging, patient setup, beam delivery and dose calculation. Reducing the uncertainties would allow a reduction of the treatment volume and thus allow a better utilization of the advantages of protons. This paper summarizes the role of Monte Carlo simulations when aiming at a reduction of range uncertainties in proton therapy. Differences in dose calculation when comparing Monte Carlo with analytical algorithms are analyzed as well as range uncertainties due to material constants and CT conversion. Range uncertainties due to biological effects and the role of Monte Carlo for in vivo range verification are discussed. Furthermore, the current range uncertainty recipes used at several proton therapy facilities are revisited. We conclude that a significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms. In these cases Monte Carlo techniques might reduce the range uncertainty by several mm.  相似文献   

17.
Contemporary treatment planning systems for proton radiotherapy typically use analytical pencil-beam algorithms - which require a comprehensive set of configuration data - to predict the absorbed dose distributions in the patient. In order to reduce the time required to prepare a new proton treatment planning system for clinical use, it was desirable to configure the planning system before measured beam data were available. However, it was not known if the Monte Carlo simulation method was a practical alternative to measuring beam profiles. The purpose of this study was to develop a model of a passively scattered proton therapy unit, to simulate the properties of the proton fields using the Monte Carlo technique and to configure an analytical treatment planning system using the simulated beam data. Additional simulations and treatment plans were calculated in order to validate the pencil-beam predictions against the Monte Carlo simulations using realistic treatment beams. Comparison of dose distributions in a water phantom revealed small dose difference and distances to agreement under the validation conditions. The total simulation time for generating the 768 beam configuration profiles was approximately 6 weeks using 30 nodes in a parallel processing cluster. The results of this study show that it is possible to configure and test a proton treatment planning system prior to the availability of measured proton beam data. The model presented here provided a means to reduce by several months the time required to prepare an analytical treatment planning system for patient treatments.  相似文献   

18.
Scattered doses, e.g. neutron doses in proton therapy, are of concern in radiation therapy. Although measured data are the gold standard, Monte Carlo simulations allow a more realistic consideration of patient anatomy via whole-body phantoms. When calculating neutron doses with Monte Carlo techniques, the dose can be scored in different ways because neutrons deposit dose indirectly. The purpose of this study was to assess the differences in neutron dose predictions when using different dose scoring methods. Two methods were tested. In the first method, the organ dose was calculated by accumulating dose from each individual dose deposition event with a particle-specific radiation weighting factor applied. Alternatively, we applied a method where the calculation was done by averaging the dose over the total number of events irrespective of particle type and applying average neutron radiation weighting factors. In addition, we assessed the sensitivity of different neutron quality factor assignments based on two recommendations by the International Commission on Radiological Protection (ICRP). We found that the scoring procedure can lead to differences in the organ equivalent dose of about 25%. As to the ICRP definition of neutron quality factors, the most recent recommendation results in about 10% higher organ doses.  相似文献   

19.
The dose distribution delivered in charged particle therapy is due to both primary and secondary particles. The secondaries, originating from non-elastic nuclear interactions, are of interest for three reasons. First, if fast Monte Carlo treatment planning is envisaged, the question arises whether all nuclear interaction products deliver a significant contribution to the total dose and, hence, need to be tracked. Second, there could be an enhanced relative biological effectiveness (RBE) due to low energy and/or heavy secondaries. Third, neutrons originating from nuclear interactions may deliver dose outside the target volume. The particle yield from different nuclear interaction channels as a function of proton penetration depth was studied theoretically for different proton beam energies. Three-dimensional dose distributions from primary and secondary particles were simulated for an unmodulated 160 MeV proton beam with and without including a slice of bone material and for a spread-out Bragg peak (SOBP) of 3 x 3 x 3 cm3 in water. Secondary protons deliver up to 10% of the total dose proximal to the Bragg peak of an unmodulated proton beam and they affect the flatness of the SOBP. Furthermore, they cause a dose build-up due to forward emission of secondary particles from nuclear interactions. The dose deposited by d, t, 3He and alpha-particles was found to contribute less than 0.1% of the total dose. The dose distal to the target volume caused by liberated neutrons was studied for four proton beam energies in the range of 160-250 MeV and found to be below 0.05% (2 cm distal to SOBP) of the prescribed target dose for a 3 x 3 x 3 cm3 target. RBE values relative to 60Co were calculated proximal to and within the SOBP. The RBE proximal to the Bragg peak (100% dose) is influenced by secondary particles (mainly protons and a-particles) with a strong dose dependency resulting in RBE values up to 1.2 (2 Gy; inactivation of V79). Depending on the endpoint considered, secondary particles cause a shift in RBE by up to 8% at 2 Gy. In contrast, the RBE in the Bragg peak is almost entirely determined by primary protons due to a decreasing secondary particle fluence with depth. RBE values up to 1.3 (2 Gy; inactivation of V79) at 1 cm distal to the Bragg peak maximum were found. The inactivations of human skin fibroblasts and mouse lymphoma cells were also analysed and reveal a substantial tissue dependency of the total RBE. The outcome of this study shows that elevated RBE values occur not only at the distal edge of the SOBP. Although the variations are modest, and in most cases might have no observable clinical effect, they might have to be considered in certain treatment situations. The biological effect downstream of the target caused by neutrons was analysed using a radiation quality factor of 10. The biological dose was found to be below 0.5% of the prescribed target dose (for a 3 x 3 x 3 cm3 SOBP) but depends on the size of the SOBP. This dose should not be significant with respect to late effects, e.g. cancer induction.  相似文献   

20.
The neutron field in the proximity of an unshielded PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 microA h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号