首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine the spatial distribution of fungiform papillae on the rat's tongue. Since each fungiform papilla in the rat has a single taste bud, the spatial distribution of fungiform papillae is equivalent to the location of taste buds on the anterior tongue. A mean total number of 187 fungiform papillae per tongue were found which were about equally divided between the two lateral halves of the tongue. Over 50% of the total number of fungiform papillae were located on the tongue tip for an average density of 3.4 papillae/mm2, while the dorsal surface of the tongue had an average density of 1.3 papillae/mm2 of tongue surface. Papillae were absent on the dorsal midline, but a paracentral line of papillae running from anterior to posterior was a consistent finding. Though not identical, the distribution of papillae was essentially the same on different tongues. The functional significance of the papilla distribution is not understood, but electrophysiological experiments show evidence of neural interaction of papillae which are clustered together. The distribution of papillae and the distribution of nerve fibers which innervate them must be evaluated together in order to appreciate the significance of the distribution of fungiform papillae and their associated taste bunds.  相似文献   

2.
The distribution of taste buds on the fungiform and circumvallate papillae of the cow tongue has been determined. The two tongues studied were from Holstein-Friesian cows four to six years of age; they contained 14,765 and 21,691 taste buds, respectively. The tip of the tongue is well supplied with fungiform papillae, and the posterior portion contains the circumvallate papillae. The midportion of the tongue contains relatively few taste papillae. The fungiform papillae contained 1,580 and 1,838 taste buds on the two tongues, respectively, and the circumvallate papillae were estimated to contain 13,185 and 19,853 taste buds. The highest concentration of taste buds therefore occurs in the circumvallate papillae; these relatively few papillae contain approximately 90% of the taste buds. On a circumvallate papilla, taste buds are found only on the papillary sidewall, with none either on the apical surface of the papilla or on the outer wall of the moat.  相似文献   

3.
Distribution of adrenergic and cholinergic nerve profiles in the tongue of camel has been studied by histochemical methods. The tongue is richly innervated by cholinergic nerve profiles as is evidenced by the presence of numerous nerve fibres at different levels. There is noted strong cholinesterase positive reaction close to the lateral border of the circumvallate papillae (in the region of the taste buds) and the upper border of the fungiform papillae. Numerous nerve fibres have been observed in the connective tissue core of all the lingual papillae. Adrenergic nerve terminals could not be observed in the taste buds though numerous adrenergic nerve fibres could be seen in and around the blood vessels. Rich cholinergic innervation of the blood vessels has also been noted in the tongue.  相似文献   

4.
Neural control of ectopic filiform spines in adult tongue   总被引:4,自引:0,他引:4  
The tongue surface directly above a fungiform taste bud is flat, thinly keratinized, and free of filiform spines. We examined fungiform papillae in serial sections of rat and gerbil tongues after unilateral transection of the chorda-lingual nerve had caused many fungiform taste buds to degenerate. Such empty fungiform papillae often formed a solitary keratinized outgrowth that closely resembled the spine of an ordinary filiform papilla. By six months an ectopic spine was found on 61% of empty fungiform papillae, but never on fungiform papillae that contained a taste bud. Experimental innervation of the tongue reduced the incidence of ectopic filiform spines in proportion to the cross-sectional area of the trigeminal nerve branches tested (the mylohyoid nerve, the lingual nerve, lingual + mylohyoid or lingual + auriculotemporal nerves). The chorda tympani nerve was 60 times more effective than trigeminal nerves in preventing ectopic filiform spines. We suggest that positive and negative trophic actions are normal characteristics of taste axons, for they promote the formation of taste buds and prevent the expression of ectopic filiform spines. By preventing the outgrowth of ectopic spines on fungiform papillae, taste axons maintain a thinly keratinized apical surface that can be breached by the taste receptor cells.  相似文献   

5.
The fungiform papilla is a gustatory organ that provides a specific tissue residence for taste buds on the anterior tongue. Thus, during development there must be a progressive differentiation to acquire papilla epithelium, then taste cell progenitor epithelium, and finally taste cells within the papilla apex. Arranged in rows, the patterned distribution of fungiform papillae requires molecular regulation not only to induce papillae, but also to suppress papilla formation in the between-papilla tissue. Intact sensory innervation is not required to initiate papilla development or pattern. However, members of several molecular families have now been identified with specific localization in developing papillae. These may participate in papilla development and pattern formation, and subsequently in taste progenitor and taste cell differentiation. This review focuses on development of fungiform papillae in embryonic rat and mouse. Basic morphology, cell biology and molecular phenotypes of developing papillae are reviewed. Regulatory roles for molecules in several families are presented, and a broad schema is proposed for progressive epithelial differentiation to form taste cell progenitors in parallel with the temporal course, and participation of lingual sensory innervation.  相似文献   

6.
We observed the three-dimensional structures on the external surface and the connective tissue cores (CTCs) of the California sea lion (Zalophus californianus californianus), after exfoliation of the epithelium of the lingual papillae (filiform, fungiform, and vallate papillae), using scanning electron microscopy (SEM) and conventional light microscopy. Macroscopically, the tongue was V-shaped and its apex was rounded. At the posterior area of the tongue, five vallate papillae were arranged in a V shape. In the epithelium, numerous taste buds were distributed on the top of the vallate papillae. On the dorsal surface from the apex to the boundary between the anterior and posterior tongue, filiform papillae were densely distributed. The CTCs of the filiform papillae consisted of a main protrusion (primary core) and many small cores (secondary cores). From the apex to the anterior one-third of the tongue, dome-like fungiform papillae were densely distributed, whereas fewer were located at the posterior two-thirds of the tongue. Several taste buds were found in the epithelium on the fungiform papillae. The size of the filiform papillae gradually increased from the apex to the boundary between the anterior and posterior tongue. At the lingual radix, the conical papillae, which were bigger than any filiform papillae, were densely distributed. The morphological characteristics of the tongue of the California sea lion appear to have been transformed to adapt to an aquatic environment; however, they possess some structures similar to those of land mammals.  相似文献   

7.
P Dubovy 《Acta histochemica》1988,83(2):173-184
The present paper describes histochemical study of the dipeptidylpeptidase IV activity in the nerve structures of cat fungiform papillae at the light and electron microscope levels. The dipeptidylpeptidase IV activity was found in blood vessels and nerve bundles entering the connective tissue stroma of fungiform papillae. The taste buds exhibited a moderate staining for the dipeptidylpeptidase IV activity. Ultracytochemical findings revealed this enzyme as membrane-bound in the endothelium of blood vessels, in plasma membrane of the Schwann cells at the axon-Schwann cell interface as well as in the taste bud cells. A possible function of the dipeptidylpeptidase IV activity in the peripheral nerve structures is discussed in view of the ability of this enzyme to cleave the substance P to the minor fragments with inherent physiological roles.  相似文献   

8.
We examined the epithelial surface and connective tissue cores (CTCs) of each lingual papilla on the Paenungulata, Cape hyrax (Procavia capensis), by scanning electron microscopy and light microscopy. The tongue consisted of a lingual apex, lingual body and lingual root. Filiform, fungiform and foliate papillae were observed on the dorsal surface of the tongue; however, fungiform papillae were quite diminished on the lingual prominence. Moreover, no clearly distinguishable vallate papillae were found on the tongue. Instead of vallate papillae, numerous dome-like large fungiform papillae were arranged in a row just in front of the rather large foliate papillae. Foliate papillae were situated in the one-third postero-lateral margin of the lingual body. The epithelium of filiform papillae was covered by a keratinized layer with kerato-hyaline granules, whereas weak keratinization was observed on the interpapillary epithelium. The external surface of the filiform papillae was conical in shape. CTCs of the filiform papillae were seen as a hood-like core with a semicircular concavity in the anterior portion of each core. Large filiform papillae were distributed on the lingual prominence. The CTCs of large filiform papillae after exfoliation of their epithelium consisted of a concave primary core and were associated with several small protrusions. The surface of fungiform papillae was smooth and dome-like. After removal of the epithelium, CTCs appeared as a flower bud-like primary core and were associated with several protrusions that were arranged on the rim of the primary core. Several taste buds were found on the top of the dorsal part of the epithelium of both fungiform and large fungiform papillae. Well-developed foliate papillae were seen and numerous taste buds could be observed in the lateral wall of the epithelium in a slit-like groove. The morphological characteristics of the tongue of the Cape hyrax had similarities with other Paenungulata such as Sirenia. However, three-dimensional characteristics, especially CTCs of lingual papillae, exhibited multiple similarities with rodents, insectivores and artiodactyls.  相似文献   

9.
Single gustatory nerve fibers branch and innervate several taste buds. In turn, individual taste buds may receive innervation from numerous gustatory nerve fibers. To evaluate the pattern of sensory innervation of fungiform papilla-bearing taste buds, we used iontophoretic fluorescent injection to retrogradely label the fibers that innervate single taste papillae in the hamster. For each animal, a single taste papilla was injected through the gemmal pore with 3.3% tetramethylrhodamine dextran amine. Fungiform papillae either at the tongue tip (0.5-1.5 mm from the tip) or more posteriorly (1.5-3.0 mm from the tip) were injected. After one to seven days survival, the geniculate and trigeminal ganglia and the tongue were sectioned and examined for labeled cells and fibers, respectively. Analysis of the number and topographic distribution of geniculate cells innervating single taste papillae, shows that: (i) 15 +/- 4 (S.D.) ganglion cells converge to innervate a single fungiform taste bud; (ii) more ganglion cells innervate anterior- (range: 13-35 cells) than posterior-lying buds (range: five to 12 cells), which, in part, may be related to bud volume (microm3); and (iii) ganglion somata innervating a single taste bud are scattered widely within the geniculate ganglion. Analysis of labeled fibers in the tongue demonstrated that two to eight taste buds located within 2 mm of the injected taste bud share collateral innervation with the injected taste bud. Since all buds with labeled fibers were located in close proximity (within a 2-mm radius), widely dispersed geniculate ganglion cells converge to innervate closely spaced fungiform taste buds. Trigeminal ganglion (mandibular division) cells were also labeled in every case and, as with the geniculate ganglion, a dispersed cell body location and collateralization pattern among papillae were observed. This study shows that iontophoresis of tetramethylrhodamine dextran amine, selectively applied to individual peripheral receptor end-organs, effectively locates sensory ganglion cells in two different ganglia that project to these sites. Moreover, the marker demonstrates collateral branches of sensory afferents associated with the labeled fibers and the nearby receptor areas innervated by these collaterals. The labeling of single or clusters of receptor cells, as well as identified sensory afferents, affords future possibilities for combining this technique with immunocytochemistry to establish the relationships of innervation patterns with neurotransmitters and neurotropic substances within identified cells.  相似文献   

10.
Sensory endings of chorda tympani and lingual (trigeminal) nerve fibers were identified by selective denervation and localized within specific regions of fungiform pipillae in the hamster. The chorda tympani was resected from the middle ear and the peripheral fibers were allowed to degenerate for 1, 3, or 8 days prior to perfusion-fixation and electron-microscopic examination of the anterior tongue. Taste buds were virtually devoid of intact nerves by 3 days following chorda tympani denervation. Remnants of the fibers were restricted to taste buds. Lingual fibers, on the other hand, persist in normal numbers after chorda tympani resection and populate perigemmal areas of connective tissue and extragemmal areas located apically in the squamous, nontaste epithelium surrounding the taste bud. This study provides evidence of a segregation of chorda tympani fibers in the taste bud and lingual nerve fibers in the apical fungiform papilla. The lingual nerve-epithelial arrangement and superficial location, near the least cornified area of the tongue, may be well suited for relatively sensitive somatosensation, possibly mechanoreception. Thus, the apical fungiform papilla appears to be a site where both taste and tactile oral stimuli interact with receptors.  相似文献   

11.
The number of fungiform papillae has been counted on the tongues of six adult cats and of kittens both at birth and aged 2 and 4 months. Papillae were sampled from different regions of the tongue, and their size and the number of taste buds they contained were determined using histological sections taken parallel to the tongue surface. There were approximately 250 fungiform papillae on the tongues of the adult cats, the papillae were most numerous at the tip of the tongue, and there was no significant difference between the number of papillae on each side. The size of the papillae increased from a mean maximum diameter of 0.28 mm at the tip of the tongue to 0.48 mm at the back; the mean number of taste buds increased correspondingly from 6.9 to 16.6. The kitten tongues had a number and distribution of fungiform papillae similar to that found in the adults. In the neonate, papillae were smaller and contained fewer taste buds; these parameters increased with the corresponding increase in tongue size in the 2- and 4-month-old kittens.  相似文献   

12.
The lingual papillae and their connective tissue cores (CTC) from Reeves’ muntjac deers (herbivorous artiodactyla) were studied using light and scanning electron microscopy and then compared to those of other mammalian species. At the posterior portion of the tongue, the Reeves’ muntjac has a lingual prominence on which large conical papillae are distributed. On the dorsal surface of the anterior tongue, numerous filiform papillae were found. Externally, each filiform papilla consists of a rod-shaped main process and several small accessory processes. Their CTCs consist of 10 or more rod-shaped processes arranged in a horseshoe pattern and several posterior processes forming a small circular pattern. This structure is a common characteristic of artiodactyla, through which Reeves’ muntjac deer can be categorized in a position in the artiodactyla class lying between the bighorn sheep and the East African bongo. Fungiform papillae are distributed among the filiform papillae on the anterior portion of the tongue. Large fungiform papillae are also sparsely distributed on the lingual prominence and have several taste buds in the epithelium on the surface. Ten or more vallate papillae are distributed at the postero-lateral area of the lingual prominence and numerous taste buds are distributed in the epithelium of their side.  相似文献   

13.
Single taste buds from fungiform papillae were iontophoretically stimulated with chemicals filling glass microelectrodes while a single unit was recorded in the taste pore of a neighbor papilla. High signal-to-noise ratio responses were observed in the recorded papilla as antidromic action potentials. These responses were possibly modulated by the simultaneous stimulation of another adjacent papilla. A decrease in the frequency of firing and/or both decrementing spikes were observed during such dual papillae stimulations. These inhibitory effects were not modified by the section of the chordo-lingual nerve, suggesting the tongue is able to process the gustatory information thanks to interpapillar negative feedback, prior to transmitting the signal to the central nervous system. Branched chorda tympani fibers can account for responses observed for single papillae stimulations; inhibitions and decrementing spikes may suggest the contribution of another mechanism of interaction between two different single fibers.  相似文献   

14.
Taste buds and papillae in tongues of rhesus monkeys were examined and counted to determine if there are age-related differences in general morphology or numbers of receptor organs. Tongues from 15 monkeys in five groups aged 4-31 years were studied with light microscopy. Fungiform, circumvallate, and foliate papillae were examined and taste buds in each papilla type were counted. Numbers of papillae did not differ with age through 31 years; however, at 24 years and older, fungiform papillae were reduced in number in some animals that had lost tongue tips due to trauma. There were no age-related differences in numbers of taste buds in any of the three gustatory papilla types, nor did taste bud diameter alter with age. From data on each papilla type, estimates were made of total numbers of lingual taste buds. Totals ranged from about 8,000 to 10,000 and there were no age-related differences. These results support other recent reports that taste buds are not decreased in number in old rats or humans. Since taste bud numbers and general morphology are maintained even in old age, any age-related differences in taste behavior cannot be attributed to gross degenerative changes in lingual taste buds.  相似文献   

15.
Recent evidence from mature hamster fungiform papillae indicates that following denervation taste buds are present from 21 to 330 days in the absence of discernible intragemmal nerve fibers. In contrast, most prior taste bud degeneration studies focused on shorter survival times. The present inquiry in young rats examined the issue of postneurectomy buds, in which regeneration of the resected chorda tympani or facial nerves was prevented and anterior tongue tissue examined over a range of relatively long survival times (30-90 days). Conditions for observing potential taste buds used three histologic stains and a definition of the taste bud not necessarily requiring pore identification. In each case, serial section examination of the anterior-most 2-3 mm of lingual epithelium revealed 29-56 bud-containing fungiform papillae on the unoperated side. In contrast, ipsilateral to the neurectomy, only zero-7 medially-placed, mature-looking buds were observed per case, as well as zero-3 more laterally situated fungiform papillae containing small clusters of cells in basal epithelium that lacked the vertical organization and cytoplasmic staining intensity of mature taste buds. These cell aggregates were distributed evenly across survival time and stain used. Therefore, in young rats following gustatory neurectomy, longer survival times, per se, would not appear to be a prerequisite for sustaining fungiform taste buds. The appearance of "midline" buds postsurgery may be attributed to either normal contralateral or a net bilateral innervation, and/or ipsilateral denervation and bud loss inducing neural sprouting from the contralateral side.  相似文献   

16.
We observed the external surface and connective tissue cores (CTCs), after exfoliation of the epithelium of the lingual papillae (filiform, fungiform, foliate and vallate papillae) of the common raccoon (Procyon lotor) using scanning electron microscopy and light microscopy. The tongue was elongated and their two-third width was almost fixed. Numerous filiform papillae were distributed along the anterior two-thirds of the tongue and fungiform papillae were distributed between the filiform papillae. Eight vallate papillae that had a weak circumferential ridge were distributed in a V-shape in the posterior part of the tongue and numerous taste buds were observable in the circumferential furrows of vallate papillae. Weak fold-like foliate papillae were observable at the lateral edge in the posterior part of the tongue and a few salivary duct orifices were observable beneath the foliate papillae. An islet-like structure with numerous taste buds, was observable on the deep part of the salivary duct of foliate papillae. Large conical papillae were distributed at the posterior part and root of the tongue. After removal of epithelium, filiform papillae of CTCs were appeared to be a thumb or cone-like main core and associating several finger-like short accessory cores. These cores were surrounded an oval concavity. The main core was situated behind the concavity and associated with accessory cores. CTCs of fungiform papillae were cylinder-like with numerous vertically running ridges and with a few concavities seen at the top of the cores. CTCs of vallate papillae and their surrounded circumferential ridge were covered with numerous pimple-like protrusions. The lingual papillae of Common raccoon's tongue had morphological feature of carnivore species.  相似文献   

17.
The morphological structure of the lingual papillae and their connective tissue cores (CTC) in a rabbit were studied using LM and SEM and were compared to that of other animal species. Externally, the filiform papillae distributed on the anterior surface of the dorsal tongue were short and conical with a round base and had a flat area on their anterior upper half. The CTC of the conical filiform papillae had a roughly triangular plate-like structure with a round top. Several small round protrusions were found on both inclined planes of the triangle. Spearhead-like filiform papillae were distributed on the anterior edge of the lingual prominence and branched filiform papillae were on the posteriorly wide area of the prominence. These papillae on the prominence had a slightly ramified CTC that differed from that of the CTC of the conical filiform papillae distributed on the anterior tongue. Dome-like fungiform papillae were distributed among the conical filiform papillae of the anterior tongue and had a CTC with a roundish structure that was almost but, not quite spherical in appearance with 1 to 10 small round concave indentations for taste buds on their upper surface. The foliate papillae had approximately 15 parallel ridges separated by grooves. These ridges contained a parallel thin plate-like CTC exhibited after removal of the epithelium. The vallate papilla was comprised of a spherical central papilla and had a circular wall with a flower-like CTC almost resembling a carnation. The stereostructure of the rabbit's filiform CTC are comparatively described as being morphologically in between those of rodents and those of the guinea pig and Japanese serow. Such evolution has probably occurred due to the species unique masticatory and gustatory needs and functions.  相似文献   

18.
Summary The stereo architecture of the lingual connective tissue cores (CTC) in the treeshrew (Tupaia glis) (which has the primitive characteristics of primates) was observed by scanning electron microscopy, and compared to that of other animal orders. The tongue of the treeshrew has three vallate papillae which are situated in the posterior part of the tongue, while some macaques have several vallate papillae. Among numerous filiform papillae, fungiform papillae are sporadically distributed. A filiform papilla consists of a bundle of several slender spine-like processes arranged in a circle at the basal margin. After removal of the epithelium, the CTC of the filiform papilla looks like a human hand raised with the palm facing towards the tongue tip. The fungiform CTC in the threeshrew is columnar in shape (rather similar to that of Insectivora and Rodentia) and at the top there are several round depressions for taste buds. In the treeshrew several large rod-shaped processes are derived from the postero-lateral margin of the tongue, as in Carnivora (dogs and cats), where foliate papillae are located in many other animal species. The treeshrew has numerous characteristics similar to those of the crab-eating macaque (Primates), but at the same time it has some characteristics similar to those of Insectivora, Rodentia, Carnivora and Artiodactyla.  相似文献   

19.
The morphological relationship between lingual papillae and underlying connective tissue papillae of mouse was studied because it is conceivable that the differentiation of epithelium may be affected by its connective tissue. Tongues of adult male mice were fixed in formol or Karnovsky's fixative. After removal of the epithelium by long-term hydrochloric acid treatment at room temperature, the surface of the connective tissue papillae was observed by scanning electron microscopy. Connective tissue papillae that were fungiform in shape and which were distributed at the anterior part of the tongue showed barnacle-like protrusion after removal of the epithelium. Their surface was covered by numerous long filaments running vertically and there was a round depression on the top of each fungiform papilla that may be found to correspond to a taste bud when the results of light and electron microscopy are compared. Filiform papillae in a narrow sense were closely distributed in the anterior part of the tongue. They had a tapered tip declining posteriorly. Each filiform connective tissue papilla was conical in shape and had a round depression that slightly declined antero-downward, and a long narrow depression ran along the anterior edge of each connective tissue papilla. Large conical papillae which distributed at the anterior margin of the intermolar prominence had shovel-like connective tissue papillae which had a depression at the posterior surface unlike that of the filiform papillae. Branched papillae distributed in the posterior part of the prominence had a depression at the anterior surface. Under the light microscope, numerous keratohyaline granules were seen to be contained only in the posterior epithelial cell line of the large conical papillae distributed in the anterior margin of the prominence, while these granules were found only in the anterior epithelial cell line of both filiform and branched papillae. It became clear that the axes of each connective tissue papilla of large conical papillae distributed radically around a single midpoint. Connective tissue papillae of vallate papillae had a beehive-like shape and in follicate papillae there were several vertical elliptical gaps, seen when the epithelium was peeled from the connective tissue.  相似文献   

20.
Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve   总被引:8,自引:0,他引:8  
1. Mammalian taste receptors are distributed within separate subpopulations, innervated by branches of cranial nerves VII, IX, and X. Most gustatory electrophysiology has focused on input from the fungiform papillae on the anterior portion of the tongue, carried by the chorda tympani branch of the VIIth nerve. However, only a small percentage of the taste buds are located in the fungiform papillae (approximately 18% in the hamster). There have been no studies on the hamster's IXth nerve, which innervates greater than 50% of its taste buds, and most other studies of IXth nerve function have employed only whole-nerve recording. 2. Action potentials were recorded from 83 individual fibers in the IXth nerve of the hamster. Stimuli were five concentrations each of sucrose, NaCl, HCl, and quinine hydrochloride (QHCl), all presented to every fiber at 37 degrees C. Responses were quantified as the number of impulses in 10 s minus the preceding 10 s of spontaneous activity. 3. Across these concentration series, HCl and QHCl were by far the most excitatory stimuli, with mean responses across all cells three to four times greater than those evoked by sucrose or NaCl. The order of effectiveness of the stimuli was H greater than Q much greater than N greater than S. 4. Of the 83 fibers, 56 were stimulated via the foliate papillae and 27 via the single vallate papilla. No fibers responded to both of these fields. There were generally no differences in the sensitivity of these two subpopulations of taste buds, except that QHCl was more effective when applied to the foliates. 5. A "total" response measure was derived by summing the excitatory responses to each stimulus across the entire concentration series. The fibers were then classified according to the best total response, resulting in 52 HCl-, 19 QHCl-, 8 sucrose- and 4 NaCl-best cells. Considering the slope of the concentration-response functions as a criterion for classification produced very similar results. The fiber classification varied somewhat with concentration, with more fibers categorized as HCl- and QHCl-best at the higher concentration levels. 6. Breadth of responsiveness was measured using the equation developed by Smith and Travers. At the concentrations used to examine hamster chorda tympani fibers, IXth nerve fibers were not very responsive and were quite narrowly tuned to the four taste qualities. At higher concentrations the fibers became more broadly responsive across the four stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号