首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to assess the effect of oral glutamine supplementation combined with resistance training in young adults. A group of 31 subjects, aged 18–24 years, were randomly allocated to groups (double blind) to receive either glutamine (0.9 g·kg lean tissue mass–1·day–1; n=17) or a placebo (0.9 g maltodextrin·kg lean tissue mass–1·day–1; n=14) during 6 weeks of total body resistance training. Exercises were performed for four to five sets of 6–12 repetitions at intensities ranging from 60% to 90% 1 repetition maximum (1 RM). Before and after training, measurements were taken of 1 RM squat and bench press strength, peak knee extension torque (using an isokinetic dynamometer), lean tissue mass (dual energy X-ray absorptiometry) and muscle protein degradation (urinary 3-methylhistidine by high performance liquid chromatography). Repeated measures ANOVA showed that strength, torque, lean tissue mass and 3-methylhistidine increased with training (P<0.05), with no significant difference between groups. Both groups increased their 1 RM squat by approximately 30% and 1 RM bench press by approximately 14%. The glutamine group showed increases of 6% for knee extension torque, 2% for lean tissue mass and 41% for urinary levels of 3-methylhistidine. The placebo group increased knee extension torque by 5%, lean tissue mass by 1.7% and 3-methylhistidine by 56%. We conclude that glutamine supplementation during resistance training has no significant effect on muscle performance, body composition or muscle protein degradation in young healthy adults. Electronic Publication  相似文献   

2.
Resistance training results in skeletal muscle hypertrophy, but the molecular signalling mechanisms responsible for this altered phenotype are incompletely understood. We used a resistance training (RT) protocol consisting of three sessions [day 1 (d1), day 3 (d3), day 5 (d5)] separated by 48 h recovery (squat exercise, 4 sets × 10 repetitions, 3 min recovery) to determine early signalling responses to RT in rodent skeletal muscle. Six animals per group were killed 3 h after each resistance training session and 24 and 48 h after the last training session (d5). There was a robust increase in TNFα protein expression, and IKKSer180/181 and p38MAPKThr180/Tyr182 phosphorylation on d1 (P < 0.05), which abated with subsequent RT, returning to control levels by d5 for TNFα and IKKSer180/181. There was a trend for a decrease in MuRF-1 protein expression, 48 h following d5 of training (P = 0.08). Notably, muscle myofibrillar protein concentration was elevated compared to control 24 and 48 h following RT (P < 0.05). AktSer473 and mTORSer2448 phosphorylation were unchanged throughout RT. Phosphorylation of p70S6kThr389 increased 3 h post-exercise on d1, d3 and d5 (P < 0.05), whilst phosphorylation of S6Ser235/236 increased on d1 and d3 (P < 0.05). Our results show a rapid attenuation of inflammatory signalling with repeated bouts of resistance exercise, concomitant with summation in translation initiation signalling in skeletal muscle. Indeed, the cumulative effect of these signalling events was associated with myofibrillar protein accretion, which likely contributes to the early adaptations in response to resistance training overload in the skeletal muscle.  相似文献   

3.

Purpose

This study assessed markers of muscle damage and training adaptations to eccentric-overload flywheel resistance exercise (RE) in men and women.

Methods

Dynamic strength (1 RM), jump performance, maximal power at different percentages of 1 RM, and muscle mass in three different portions of the thigh were assessed in 16 men and 16 women before and after 6 weeks (15 sessions) of flywheel supine squat RE training. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations were measured before, 24, 48 and 72 h after the first and the last training session.

Results

After training, increases in 1 RM were somewhat greater (interaction P < 0.001) in men (25 %) than in women (20 %). Squat and drop jump height and power performance at 50, 60, 70 and 80 % of 1 RM increased after training in both sexes (P < 0.05). Power improvement at 80 % of 1 RM was greater (interaction P < 0.02) in men than women. Muscle mass increased ~5 % in both groups (P < 0.05). CK increased in men after the first training session (P < 0.001), whereas the response in women was unaltered. In both sexes, LDH concentration was greater after the first training session compared with basal values (P < 0.05). After the last session, CK and LDH remained at baseline in both groups.

Conclusions

These results suggest that although improvements in maximal strength and power at high loads may be slightly greater for men, eccentric-overload RE training induces comparable and favorable gains in strength, power, and muscle mass in both men and women. Equally important, it appears muscle damage does not interfere with the adaptations triggered by this training paradigm.  相似文献   

4.
Regular performance of resistance exercise induces an increase in skeletal muscle mass, however, the molecular mechanisms underlying this effect are not yet fully understood. The purpose of the present investigation was to examine acute changes in molecular signalling in response to resistance exercise involving different training volumes. Eight untrained male subjects carried out one, three and five sets of 6 repetition maximum (RM) in leg press exercise in a random order. Muscle biopsies were taken from the vastus lateralis both prior to and 30 min after each training session and the effect on protein signalling was studied. Phosphorylation of Akt was not altered significantly after any of the training protocols, whereas that of the mammalian target of rapamycin was enhanced to a similar extent by training at all three volumes. The phosphorylation of p70S6 kinase (p70S6k) was elevated threefold after 3 × 6 RM and sixfold after 5 × 6 RM, while the phosphorylation of S6 was increased 30- and 55-fold following the 3 × 6 RM and 5 × 6 RM exercises, respectively. Moreover, the level of the phosphorylated form of the gamma isoform of p38 MAPK was enhanced three to fourfold following each of the three protocols, whereas phosphorylation of ERK1/2 was unchanged 30 min following exercise. These findings indicate that when exercise is performed in a fasted state, the increase in phosphorylation of signalling molecules such as p70S6k and the S6 ribosomal protein in human muscle depends on the exercise volume.  相似文献   

5.
This study examined how strenuous strength training affected the Na-K pump concentration in the knee extensor muscle of well-trained men and whether leg muscle strength and endurance was related to the pump concentration. First, the pump concentration, taken as 3H-ouabain binding, was measured in top alpine skiers since strength training is important to them. Second, well-trained subjects carried out strenuous eccentric resistance training either 1, 2, or 3 times · week−1 for 3 months. The Na-K pump concentration, the maximal muscle strength in a full squat lift (one repetition maximum, 1 RM), and the muscle endurance, taken as the number of full squat lifts of a mass of 70% of the 1 RM load, were measured before and after the training period. The mean pump concentration of the alpine skiers was 425 (SEM 11) nmol · kg−1 wet muscle mass. The subjects in part two increased their maximal strength in a dose-dependent manner. The muscle endurance increased for all subjects but independently of the training programme. From a mean starting value of 356 (SEM 6) nmol · kg−1 the mean Na-K pump concentration increased by 54 (SEM 15) nmol · kg−1 (+15%, P < 0.001) when the results for all subjects were pooled. The effect was larger for those who had trained twice a week than for those who had trained only once a week (P=0.025), suggesting that the effect of strength training depended on the amount of training carried out. The muscle strength and endurance were not related to the pump concentration, suggesting that the pumping power of this enzyme did not limit the performance during heavy lifting. However, the individual improvements in the endurance test during the training period correlated with the individual changes in the pump concentration (r Spearman=0.5; P=0.01) which could mean that a common factor both increases the pump concentration and makes the muscles more adapted to repeated heavy lifting. Accepted: 8 August 2000  相似文献   

6.
The purpose of this study was to determine the distribution and architectural characteristics of skeletal muscle in elite powerlifters, and to investigate their relationship to fat-free mat (FFM) accumulation and powerlifting performance. Twenty elite male powerlifters (including four world and three US national champions) volunteered for this study. FFM, skeletal muscle distribution (muscle thickness at 13 anatomical sites), and isolated muscle thickness and fascicle pennation angle (PAN) of the triceps long-head (TL), vastus lateralis, and gastrocnemius medialis (MG) muscles were measured with B-mode ultrasound. Fascicle length (FAL) was calculated. Best lifting performance in the bench press (BP), squat lift (SQT), and dead lift (DL) was recorded from competition performance. Significant correlations (P≤0.01) were observed between muscle distribution (individual muscle thickness from 13 sites) and performance of the SQT (r=0.79 to r=0.91), BP (r=0.63 to r=0.85) and DL (r=0.70 to r=0.90). Subscapular muscle thickness was the single best predictor of powerlifting performance in each lift. Performance of the SQT, BP, and DL was strongly correlated with FFM and FFM relative to standing height (r=0.86 to 0.95, P≤0.001). FAL of the triceps long head and vastus lateralis were significantly correlated with FFM (r=0.59, P≤0.01; 0.63, P≤0.01, respectively) and performance of the SQT (r=0.45; r=0.50, respectively; P≤0.05), BP (r=0.52; r=0.56, respectively; P≤0.05), and DL (r=0.56; r=0.54, respectively; P≤0.01). A significant positive correlation was observed between isolated muscle thickness and PAN for triceps long-head (r=0.64, P≤0.01) and gastrocnemius medialis (r=0.48, P≤0.05) muscles, but not for vastus lateralis (r=0.35). PAN was negatively correlated with powerlifting performance. Our results indicate that powerlifting performance is a function of FFM and, therefore, may be limited by the ability to accumulate FFM. Additionally, muscle architecture appears to play an important role in powerlifting performance in that greater fascicle lengths are associated with greater FFM accumulation and powerlifting performance. Electronic Publication  相似文献   

7.
This study investigated the effect of manipulating the time to complete both the concentric (CON) and eccentric (ECC) muscle actions during resistance training on strength, skeletal muscle properties and cortisol in women. Twenty-eight women (mean ± SE age = 24.3 ± 1.1 year) with strength training experience completed three training sessions per week for 9 weeks. Two sets of four lower body exercises (leg press, parallel squat, knee extension and knee flexion) were completed using 6–8 RM intensity. The long CON (LC) group performed the CON action for 6 s and the ECC action for 2 s, while the long ECC (LE) group completed the CON and ECC phases for 2 and 6 s, respectively. Both groups experienced significant increases in leg press CON only, ECC only and combined ECC and CON maximal strength (1 RM). Immunohistochemical analyses demonstrated that both types I and IIA vastus lateralis fibre areas significantly increased following LC training while only type I fibre area increased following LE training. There was a decrease in MHCIId(x) with a concomitant increase in MHCIIa (P < 0.05) in both groups. Twenty-four hour urinary cortisol significantly increased after LC training only. It was concluded that LC resistance training was more effective than LE for increasing both types I and IIA fibre area and cortisol when time under tension and intensity of muscle actions were matched between the two modes of resistance training in young healthy women.  相似文献   

8.
The effects of a 6‐month resistance training (2 day/week) designed to develop both strength and power on neural activation by electromyographic activity (EMG) of the agonist and antagonist knee extensors, muscle fibre proportion and areas of type I, IIa, and IIb of the vastus lateralis (VL) as well as maximal concentric one repetition maximum (1 RM) strength and maximal and explosive isometric strength of the knee extensors were examined. A total of 10 middle‐aged men (M40; 42 ± 2), 11 middle‐aged women (W40; 39 ± 3), 11 elderly men (M70; 72 ± 3) and 10 elderly women (W70; 67 ± 3) served as subjects. Maximal and explosive strength values remained unaltered during a 1‐month control period. After the 6‐month training maximal isometric and 1RM strength values increased in M40 by 28 ± 14 and 27 ± 7% (P < 0.001), in M70 by 27 ± 17 and 21 ± 9% (P < 0.001), in W40 by 27 ± 19 and 35 ± 14% (P < 0.001) and in W70 by 26 ± 14 and 31 ± 14% (P < 0.001), respectively. Explosive strength improved in M40 by 21 ± 41% (P < 0.05), in M70 by 21 ± 24% (P < 0.05), in W40 by 32 ± 45% (NS) and in W70 by 22 ± 28% (P < 0.05). The iEMGs of the VL and vastus medialis (VM) muscles increased during the training in M40 (P < 0.001 and 0.05), in M70 (P < 0.001 and 0.05), in W40 (P < 0.001 and 0.05) and in W70 (P < 0.001 and 0.05). The antagonist biceps femoris (BF) activity during the isometric knee extension remained unaltered in M40, in W40, and in M70 but decreased in W70 (from 42 ± 34 to 32 ± 26%; P < 0.05) during the first 2 months of training. Significant increases occurred during the training in the mean fibre areas of type I in W70 (P < 0.05) and of overall type II along with a specific increase in IIa in both W40 (P < 0.05) and in W70 (P < 0.05), while the changes in the male groups were not statistically significant. The individual percentage values for type II fibres at pretraining correlated with the individual values for 1 RM strength in both W70 (r=0.80; P < 0.05) and M70 (r=0.61; P < 0.05) and also at post‐training for maximal isometric torque in W70 (r=0.77, P < 0.05). The findings support the concept of the important role of neural adaptations in strength and power development in middle‐aged and older men and women. The muscle fibre distribution (percentage type II fibres) seems to be an important contributor on muscle strength in older people, especially older women. Women of both age groups appear to be hypertrophically responsive to the total body strength training protocol performed two times a week including heavier and lower (for fast movements) loads designed for both maximal strength and power development, while such a programme has limited effects on muscle hypertrophy in men.  相似文献   

9.
Aim: Skeletal muscle growth is thought to be regulated by the mammalian target of rapamycin (mTOR) pathway, which can be activated by resistance exercise and branched-chain amino acids (BCAA). The major aim of the present study was to distinguish between the influence of resistance exercise and BCAA on key enzymes considered to be involved in the regulation of protein synthesis, including p70S6 kinase (p70S6k). Methods: Nine healthy subjects (four men and five women) performed unilateral resistance exercise on two occasions separated by 1 month. Subjects were randomly supplied either a mixture of BCAA or flavoured water. Muscle biopsies were taken from both resting and exercising muscle before, after and 1 h after exercise. Results: Phosphorylation of Akt was unaltered by either resistance exercise and/or BCAA supplementation whereas mTOR phosphorylation was enhanced (P < 0.05) to a similar extent in both exercising and resting muscle following exercise in the absence (70–90%) and presence of BCAA supplementation (80–130%). Phosphorylation of p70S6k was unaffected by resistance exercise alone; however, BCAA intake increased (P < 0.05) this phosphorylation in both legs following exercise. In resting muscle, a 5- and 16-fold increase in p70S6k was observed immediately after and 1 h after exercise, respectively, as compared to 11- and 30-fold increases in the exercising muscle. Phosphorylation of eukaryotic elongation factor 2 was attenuated 1 h after exercise (P < 0.05) in both resting (10–40%) and exercising muscle (30–50%) under both conditions. Conclusion: The present findings indicate that resistance exercise and BCAA exert both separate and combined effects on the p70S6k phosphorylation in an Akt-independent manner.  相似文献   

10.
We aimed to gain insight into the role that the transitory increases in anabolic hormones play in muscle hypertrophy with unilateral resistance training. Ten healthy young male subjects (21.8 ± 0.4 years, 1.78 ± 0.04 m, 75.6 ± 2.9 kg; mean ± SE) engaged in unilateral resistance training for 8 week (3 days/week). Exercises were knee extension and leg press performed at 80–90% of the subject’s single repetition maximum (1RM). Blood samples were collected in the acute period before and after the first training bout and following the last training bout and analyzed for total testosterone, free-testosterone, luteinizing hormone, sex hormone binding globulin, growth hormone, cortisol, and insulin-like growth factor-1. Thigh muscle cross sectional area (CSA) and muscle fibre CSA by biopsy (vastus lateralis) were measured pre- and post-training. Acutely, no changes in systemic hormone concentrations were observed in the 90 min period following exercise and there was no influence of training on these results. Training-induced increases were observed in type IIx and IIa muscle fibre CSA of 22 ± 3 and 13 ± 2% (both P < 0.001). No changes were observed in fibre CSA in the untrained leg (all P > 0.5). Whole muscle CSA increased by 5.4 ± 0.9% in the trained leg (P < 0.001) and remained unchanged in the untrained leg (P = 0.76). Isotonic 1RM increased in the trained leg for leg press and for knee extension (P < 0.001). No changes were seen in the untrained leg. In conclusion, unilateral training induced local muscle hypertrophy only in the exercised limb, which occurred in the absence of changes in systemic hormones that ostensibly play a role in muscle hypertrophy.  相似文献   

11.
The present study aimed at comparing the responses of myogenic regulatory factors and signaling pathways involved in muscle protein synthesis after a resistance training session performed in either the fasted or fed state. According to a randomized crossover study design, six young male subjects participated in two experimental sessions separated by 3 weeks. In each session, they performed a standardized resistance training. After the sessions, they received during a 4-h recovery period 6 ml/kg b.w. h of a solution containing carbohydrates (50 g/l), protein hydrolysate (33 g/l), and leucine (16.6 g/l). On one occasion, the resistance exercise session was performed after the intake of a carbohydrate-rich breakfast (B), whereas in the other session they remained fasted (F). Needle biopsies from m. vastus lateralis were obtained before (Rest), and 1 h (+1h) and 4 h (+4h) after exercise. Myogenin, MRF4, and MyoD1 mRNA contents were determined by RT-PCR. Phosphorylation of PKB (protein kinase B), GSK3, p70s6k (p70 ribosomal S6 kinase), eIF2B, eEF2 (eukaryotic elongation factor 2), ERK1/2, and p38 was measured via western blotting. Compared with F, the pre-exercise phosphorylation states of PKB and p70s6k were higher in B, whereas those of eIF2B and eEF2 were lower. During recovery, the phosphorylation state of p70s6k was lower in B than in F (p = 0.02). There were no differences in basal mRNA contents between B and F. However, compared with F at +1h, MyoD1 and MRF4 mRNA contents were lower in B (p < 0.05). Our results indicate that prior fasting may stimulate the intramyocellular anabolic response to ingestion of a carbohydrate/protein/leucine mixture following a heavy resistance training session.  相似文献   

12.
This study investigated the relationship between sprint start performance (5-m time) and strength and power variables. Thirty male athletes [height: 183.8 (6.8) cm, and mass: 90.6 (9.3) kg; mean (SD)] each completed six 10-m sprints from a standing start. Sprint times were recorded using a tethered running system and the force-time characteristics of the first ground contact were recorded using a recessed force plate. Three to six days later subjects completed three concentric jump squats, using a traditional and split technique, at a range of external loads from 30–70% of one repetition maximum (1RM). Mean (SD) braking impulse during acceleration was negligible [0.009 (0.007) N/s/kg) and showed no relationship with 5 m time; however, propulsive impulse was substantial [0.928 (0.102) N/s/kg] and significantly related to 5-m time (r=–0.64, P<0.001). Average and peak power were similar during the split squat [7.32 (1.34) and 17.10 (3.15) W/kg] and the traditional squat [7.07 (1.25) and 17.58 (2.85) W/kg], and both were significantly related to 5-m time (r=–0.64 to –0.68, P<0.001). Average power was maximal at all loads between 30% and 60% of 1RM for both squats. Split squat peak power was also maximal between 30% and 60% of 1RM; however, traditional squat peak power was maximal between 50% and 70% of 1RM. Concentric force development is critical to sprint start performance and accordingly maximal concentric jump power is related to sprint acceleration.  相似文献   

13.
Hormonal and neuromuscular adaptations to strength training were studied in eight male strength athletes (SA) and eight non-strength athletes (NA). The experimental design comprised a 21-week strength-training period. Basal hormonal concentrations of serum total testosterone (T), free testosterone (FT) and cortisol (C) and maximal isometric strength, right leg 1 repetition maximum (RM) of the leg extensors were measured at weeks 0, 7, 14 and 21. Muscle cross-sectional area (CSA) of the quadriceps femoris was measured by magnetic resonance imaging (MRI) at weeks 0 and 21. In addition, the acute heavy resistance exercises (AHRE) (bilateral leg extension, five sets of ten RM, with a 2-min rest between sets) including blood samples for the determination of serum T, FT, C, and GH concentrations were assessed before and after the 21-week training. Significant increases of 20.9% in maximal force and of 5.6% in muscle CSA in NA during the 21-week strength training period were greater than those of 3.9% and −1.8% in SA, respectively. There were no significant changes in serum basal hormone concentrations during the 21-week experiment. AHRE led to significant acute decreases in isometric force and acute increases in serum hormones both at weeks 0 and 21. Basal T concentrations (mean of 0, 7, 14 and 21 weeks) and changes in isometric force after the 21-week period correlated with each other (r=0.84, P<0.01) in SA. The individual changes in the acute T responses between weeks 0 and 21 and the changes in muscle CSA during the 21-week training correlated with each other (r=0.76, P<0.05) in NA. The correlations between T and the changes in isometric strength and in muscle CSA suggest that both serum basal testosterone concentrations and training-induced changes in acute testosterone responses may be important factors for strength development and muscle hypertrophy.  相似文献   

14.
Resistance exercise can result in both potentiating and fatiguing responses. These responses can acutely affect performance, which may affect subsequent exercise sessions in the same day. The purpose of this investigation was to study the acute neuromuscular responses to two high intensity training sessions in the same day. Twelve recreationally trained males performed two training sessions, each involving ten sets of five repetitions in the speed squat exercise. For the initial session (HIT-1), the barbell load was constant at 70% one repetition maximum, whereas during the second session (HIT-2), barbell load decreased if movement velocity decreased. Neuromuscular performance testing consisted of unilateral isometric knee extensor actions performed prior to the training day (PRE) and following each testing session. Prior to the sessions, subjects provided a muscle biopsy for myosin heavy chain analysis. Peak force was impaired 16.9 (9.5)% (P0.00; d=1.62) following HIT-1 and 19.9 (18.4)% (P0.00; d=1.94) following HIT-2. Initial rate of force development was depressed from PRE following HIT-1 (P0.00; d=1.74) and HIT-2 (P0.00; d=2.18); however, this was dependent on muscle fiber composition. Significant correlations existed between the change score for initial rate of force development from HIT-1 to HIT-2 and myosin heavy chain I (r= –0.60; P=0.04) and IIa (r=0.69; P=0.01) expression. Impaired neuromuscular performance following HIT-1 may occur due to low frequency fatigue. For individuals with predominantly myosin heavy chain IIa, HIT-2 appeared to induce post-activation potentiation, resulting in restoration of the initial rate of force development.  相似文献   

15.
The aim was to study whether whole body vibration (WBV) combined with conventional resistance training (CRT) induces a higher increase in neuromuscular and hormonal measures compared with CRT or WBV, respectively. Twenty-eight young men were randomized in three groups; squat only (S), combination of WBV and squat (S+V) and WBV only (V). S+V performed six sets with eight repetitions with corresponding eight repetition maximum (RM) loads on the vibrating platform, whereas S and V performed the same protocol without WBV and resistance, respectively. Maximal isometric voluntary contraction (MVC) with electromyography (EMG) measurements during leg press, counter movement jump (CMJ) measures (mechanical performance) including jump height, mean power (P mean), peak power (P peak) and velocity at P peak (V ppeak) and acute hormonal responses to training sessions were measured before and after a 9-week training period. ANOVA showed no significant changes between the three groups after training in any neuromuscular variable measured [except P mean, S higher than V (P<0.05)]. However, applying t tests within each group revealed that MVC increased in S and S+V after training (P<0.05). Jump height, P mean and P peak increased only in S, concomitantly with increased V ppeak in all groups (P<0.05). Testosterone increased during training sessions in S and S+V (P<0.05). Growth hormone (GH) increased in all groups but S+V showed higher responses than S and V (P<0.05). Cortisol increased only in S+V (P<0.05). We conclude that combined WBV and CRT did not additionally increase MVC and mechanical performance compared with CRT alone. Furthermore, WBV alone did not increase MVC and mechanical performance in spite of increased GH.  相似文献   

16.
We examined the effects of high-intensity resistance training (HIT) and low-intensity blood flow-restricted (LI-BFR) resistance training on carotid arterial compliance. Nineteen young men were randomly divided into HIT (n = 9) or LI-BFR (n = 10) groups. The HIT and LI-BFR groups performed 75 and 30 %, respectively, of one-repetition maximum (1-RM) bench press exercise, 3 days per week for 6 weeks. During the training sessions, the LI-BFR group wore elastic cuffs around the most proximal region of both arms. Muscle cross-sectional area (CSA), 1-RM strength, and carotid arterial compliance were measured before and 3 days after the final training session. Acute changes in systolic arterial pressure (SAP), plasma endothelin-1 (ET-1), nitrite/nitrate (NOx), and noradrenalin concentrations were also measured during and after a bout of training session. The training led to significant increases (P < 0.01) in bench press 1-RM and arm and chest muscle CSA in the two training groups. Carotid arterial compliance decreased significantly (P < 0.05) in the HIT group, but not in the LI-BFR group. There was a significant correlation (r = ?0.533, P < 0.05) between the change in carotid arterial compliance and the acute change in SAP during training sessions; however, ET-1 and NOx did not correlate with carotid arterial compliance. Our results suggest that muscle CSA and strength increased following 6 weeks of both HIT and LI-BFR training. However, carotid arterial compliance decreased in only the HIT group, and the changes were correlated with SAP elevations during exercise sessions.  相似文献   

17.
Twelve middle-aged men and 12 middle-aged women in the 50-year-old age group (M50; range 44–57 years; W50; 43–57), and 12 elderly men and 12 elderly women in the 70-year-old age group (M70; 59–75; W70; 62–75) volunteered as subjects in order to examine effects of 12-week progressive heavy resistance strength training on electromyographic activity (EMG), muscle cross-sectional area (CSA) of the quadriceps femoris and maximal concentric force in a one repetition maximum (1 RM) test of the knee extensor muscles. One half of the subjects in each group performed the knee extension (and flexion) exercises only bilaterally (BIL), while another half performed the exercises only unilaterally (UNIL). None of the subject groups demonstrated statistically significant changes in any of the 1 RM values during the 2 week control period with no training (between week -2 and 0) preceding the actual experimental training. However, the 12-week training resulted in increases (P<0.05–0.001) in 1 RM values in each group so that the average relative increase of 19±12% (P<0.001) in bilateral 1 RM in all BIL trained subjects was greater (P<0.05) than that of 13±8% (P<0.001) recorded for all UNIL trained subjects. The average relative increases of 17±11% (P<0.001) and 14±14% (P<0.001) in unilateral 1 RM values of the right and left leg in all UNIL trained subjects were greater (P<0.05) than those of 10±18% (P<0.001) and 11±11% (P<0.001) recorded for all BIL trained subjects, respectively. The relative average increase of 19±19% (P<0.001) observed in the maximum averaged IEMG of both legs during the bilateral actions in all BIL trained subjects was greater (P<0.05) than that of 10±17% (P<0.05) recorded for all UNIL trained subjects. The relative increases of 14±12% (P<0.001) and 11±6% (P<0.001) recorded for the CSA in all BIL and UNIL trained subjects did not differ significantly from each others. The present findings suggest that progressive heavy resistance strength training leads to great increases in maximal dynamic strength of the trained subjects accompanied by both considerable neural adaptations and muscular hypertrophy not only in middle-aged but also in elderly men and women. Both bilateral and unilateral exercises are effective to produce functional and structural adaptations in the neuromuscular system, although the magnitude of functional strength increase seems to be specific to the type of exercise used, further supporting the principle of specificity in the design of strength programmes.  相似文献   

18.
Increase in myofibrillar protein accretion can occur in the very early post-exercise period and can be potentiated by ingestion of essential amino acid (EAA). Furthermore, strength exercise induces important disturbances in protein turnover, especially in novice athletes. The purpose of this investigation was to evaluate the effects of an EAA supplementation on muscle mass, architecture and strength in the early stages of a heavy-load training programme. 29 young males trained during 12 weeks. They were divided into a placebo (PLA) (n = 14) group and an EAA group (n = 15). At baseline, daily food intake and nitrogenous balance were assessed with a food questionnaire over 7 days and two 24-h urine collections. The effect of training on muscle mass was assessed by anthropometric techniques. Muscle thickness and pennation angle were recorded by ultrasonography of the gastrocnemius medialis (GM). Maximal strength during squat and bench press exercises were tested on an isokinetic ergometer. Training resulted in significant increase in muscle mass and strength in both PLA and EAA groups. Positive linear regressions were found between nitrogen balance and increase in muscle mass in the PLA group (P < 0.01, r2 = 0.63) and between the initial strength and the increase in muscle strength in the EAA group (P < 0.05, r2 = 0.29). EAA ingestion resulted in greater changes in GM muscle architecture. These data indicate that EAA supplementation has a positive effect on muscle hypertrophy and architecture and that such a nutritional intervention seems to be more effective in subject having lower nitrogen balance and/or lower initial strength.  相似文献   

19.
The purpose of this investigation was to determine if p70s6k phosphorylation is dependent on the mode of resistance exercise (e.g. isometric vs. lengthening). Two groups (n = 5 each) of Female Sprague Dawley rats, ∼12 weeks old, were tested. Rats were anesthetized and indwelling electrodes used to stimulate the right hind limb muscles via the sciatic nerve. The tibialis anterior (TA) muscle of Group 1 rats were exposed to three sets of ten isometric resistance contractions while the TA of Group 2 rats were exposed to three sets of ten resistance contractions that involved lengthening. Contralateral TA muscles served as non-exercised controls. The TA muscle was harvested 6 h post exercise and then the rat was euthanized. Muscle samples were processed to compare p70s6k phosphorylation between groups. A single bout of TA contractions that involved muscle lengthening resulted in significantly (p < 0.05) higher levels of phospho-p70s6k six hours post exercise compared to controls and isometric contractions. The differences in total p70s6k six hours post exercise were not significantly different between groups. Results suggest that signal transduction pathways activated by isometric exercise may differ (i.e., a non-p70s6k activation pathway) from that activated by lengthening exercise.  相似文献   

20.
The purpose of this study was to investigate the effect of concurrent strength and endurance training on strength, endurance, endocrine status and muscle fibre properties. A total of 45 male and female subjects were randomly assigned to one of four groups; strength training only (S), endurance training only (E), concurrent strength and endurance training (SE), or a control group (C). Groups S and E trained 3 days a week and the SE group trained 6 days a week for 12 weeks. Tests were made before and after 6 and 12 weeks of training. There was a similar increase in maximal oxygen consumption (O2 max) in both groups E and SE (P < 0.05). Leg press and knee extension one repetition maximum (1 RM) was increased in groups S and SE (P < 0.05) but the gains in knee extension 1 RM were greater for group S compared to all other groups (P < 0.05). Types I and II muscle fibre area increased after 6 and 12 weeks of strength training and after 12 weeks of combined training in type II fibres only (P < 0.05). Groups SE and E had an increase in succinate dehydrogenase activity and group E had a decrease in adenosine triphosphatase after 12 weeks of training (P < 0.05). A significant increase in capillary per fibre ratio was noted after 12 weeks of training in group SE. No changes were observed in testosterone, human growth hormone or sex hormone binding globulin concentrations for any group but there was a greater urinary cortisol concentration in the women of group SE and decrease in the men of group E after 12 weeks of training (P < 0.05). These findings would support the contention that combined strength and endurance training can suppress some of the adaptations to strength training and augment some aspects of capillarization in skeletal muscle. Accepted: 10 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号