首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Patients with long-chain 3-hydroxyacyl coenzyme A dehydrogenase (LCHAD) deficiency manifest hypoketotic hypoglycemia, hepatomegaly, hypotonia, lactic acidemia, acute renal failure, cardiomyopathy, and sudden death. We describe four novel mutations of the alpha- and beta-subunits of the mitochondrial trifunctional protein in four patients from three unrelated families. Their plasma acylcarnitine profiles suggested the presence of LCHAD deficiency by demonstrating highly elevated 3-hydroxyacyl carnitines by tandem mass spectrometry (MS/MS). Patients 1 and 2 had siblings who had died of lactic acidemia during the neonatal period. These patients also manifested lactic acidemia and died in the neonatal period. Patient 3 had a family history of Reye-like syndrome. She exhibited acute renal failure, rhabdomyolysis, pericardial effusion, and myopathy at the age of 12 years. DNA analysis of patients 1 and 2 revealed homozygosity for a c.1689+2T>G mutation of the HADHA gene, resulting in the skipping of exon 16 with an in-frame 69-bp deletion. Patient 3 was a compound heterozygosity of the HADHB gene, N307D/N389D. Patient 4, a 25-month-old baby, manifested recurrent episodes of lethargy, metabolic acidosis, elevated liver enzymes, and dark urine from the age of 10 months. Mutation analysis of the HADHB gene of patient 4 identified compound heterozygosity of N114D/N307D.  相似文献   

2.
Summary Continuing the analysis of rat liver mitochondria) DNA, we have determined the sequences of two segments containing several tRNA genes. One of these segments also comprises the L-strand origin of replication. The characteristics of the 15 rat liver mitochondrial tRNA structures known at present are compared with those from other mammalian mitochondria.Abbreviations mtDNA mitochondrial DNA - U.R.F. unidentified reading frame (Anderson et al. 1981) - bp and Kbp base pairs and Kilobase pairs - Pu and Py purine and pyrimidine residues  相似文献   

3.
Two new mitochondrial mutations conferring heat sensitivity on glycerol medium to the cells that carry them and affecting mitochondrial protein synthesis were investigated. Both map in the mitochondrial tRNAphe gene and have C-to-U transitions, one at position 2 (ts22b16) and the other at 62 (ts1345). The latter mutation clearly affects the 3′ end-maturation of tRNAphe, while the former presents normal patterns of both tRNA processing and amino-acylation. The defective phenotype resulting from the ts22b16 mutation can be corrected by over-expressing either the mitochondrial elongation factor EF-Tu or the mutated form of the tRNA. These results suggest that this mutation's primary effect might involve modified interactions during the ternary complex formation. Received: 27 July / 14 October 1997  相似文献   

4.
To gain a better understanding of the molecular basisof mitochondrial (mt) encephalomyopathies, a highly heterogeneous condition, we developed a denaturing gradient gel electrophoresis-based approach that allows rapid and exhaustive screening for mutations of all 22 mt tRNA- encoding genes and their flanking regions in large cohorts of patients. This method, that detects heteroplasmy (i.e. co-existence of mutant and wild-type mtDNA species in various ratios) directly, was applied to the investigation of 35 independent patients with a disease phenotype compatible with a mitochondrial encephalomyopathy. Twenty-five of the 35 patients investigated displayed a sequence variation in at least one tRNA gene. A total of 46 different sequence variations (41 point mutations, four short insertions and one short deletion), among which 20 are new, were characterized. Forty of them were present in a homoplasmic state, whereas six were heteroplasmic. Twenty-two were located in tRNA genes, among which 10 are new homoplasmic or heteroplasmic sequence variations; 24 were located in flanking regions (12 in mRNA-encoding genes, seven of them leading to missense sequence variations; two in rRNA genes; and 10 in non-coding regions). This study demonstrates (i) the high frequency of homoplasmic tRNA gene sequence variations in our patient sample, and (ii) the existence of several polymorphic sites in tRNA gene regions that may be helpful for defining haplogroups in different populations. It relies on a screening method that can now be applied easily to other population samples.   相似文献   

5.
6.
7.
8.
The mechanisms underlying the appearance of lipomas in patients bearing mutations in the tRNA(Lys) gene of mitochondrial DNA are unknown. We investigated changes in gene expression patterns in lipomas from three patients bearing A8344G or G8363A tRNA(Lys) gene mutations. Uncoupling protein-1 mRNA was detected in the lipomas, in contrast with undetectable expression in normal adipose tissue. However, expression of other markers of brown fat, such as PGC-1alpha, was unaltered. PPARgamma and retinoblastoma gene expression was down regulated in the lipomas, but C/EBPalpha mRNA was not affected. The expression of Pref-1 was dramatically down regulated. Thus, lipomatosis due to tRNA(Lys) mutations is associated with a pattern of altered expression of master regulators of adipogenesis consistent with enhanced proliferation but maintenance of adipocyte features, and with a distorted pattern of brown versus white adipocyte differentiation.  相似文献   

9.
Clustering of tRNA genes in Paracentrotus lividus mitochondrial DNA   总被引:5,自引:0,他引:5  
Cantatore  P.  Roberti  M.  Rainaldi  G.  Saccone  C.  Gadaleta  M. N. 《Current genetics》1988,13(1):91-96
Summary We have determined the base sequence of the restriction fragment Bam1-2 (3,593) of Paracentrotus lividus (sea urchin) mtDNA. This fragment contains, in addition to genes previously identified (part of the 12S rRNA, ND1 and part of the ND2 mRNA), a cluster of 15 tRNA genes located between the 12S and ND1 genes. Also to be found in the tRNA gene cluster, between the tRNAThr and tRNAPro genes, is a sequence of 134 bp which constitutes the only non-coding region of this DNA so far identified. The distinctive organization of the tRNA genes and the extreme size reduction of the non-coding region suggest the existence of unique mechanisms for the regulation of gene expression in this organism.  相似文献   

10.
Tricho-dento-osseous syndrome (TDO) is a rare type of dominantly inherited ectodermal dysplasia so far described only in a few families and associated with 3 known mutations in the DLX3 homeobox gene. Here, we describe two families of Finnish origin that segregate features of TDO in several generations. The affected family members have sparse or curly/kinky hair at birth, markedly delayed or advanced dental maturity, defective tooth enamel and dentin, taurodontic molars, multiple dental abscesses and filling of tooth pulps with amorphous denticle-like material as well as an increased density and/or thickness of craniofacial bones. The disease is especially accentuated in one of the families in which the patients develop only lanugo-type hair and the dental abnormalities are severe. After mutational analysis of DLX3, we identified 2 missense mutations affecting the conserved homeodomain. We suggest that TDO is essentially caused by loss of function and haploinsufficiency of DLX3.  相似文献   

11.
Thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) are the two key enzymes in mitochondrial DNA (mtDNA) precursor synthesis. Deficiencies in TK2 or dGK activity, due to genetic alteration, have been shown to cause tissue-specific depletion of mtDNA. In the case of TK2 deficiency, affected individuals suffer severe myopathy and, in the case of dGK deficiency, devastating liver or multi-systemic disease. Here, we report clinical and biochemical findings from two patients with mtDNA depletion syndrome. Patient A was a compound heterozygote carrying the previously reported T77M mutation and a novel mutation (R161K) in the TK2 gene. Patient B carried a novel mutation (L250S) in the dGK gene. The clinical symptoms of patient A included muscular weakness and exercise intolerance due to a severe mitochondrial myopathy associated with a 92% reduction in mtDNA. There was minimal involvement of other organs. Patient B suffered from rapidly progressive, early onset fatal liver failure associated with profoundly decreased mtDNA levels in liver and, to a lesser extent, in skeletal muscle. Site-directed mutagenesis was used to introduce the mutations detected in patients A and B into the TK2 and dGK cDNAs, respectively. We then characterized each of these recombinant enzymes. Catalytic activities of the three mutant enzymes were reduced to about 2-4% for TK2 and 0.5% for dGK as compared to the wild-type enzymes. Altered competition between dCyd and dThd was observed for the T77M mutant. The residual activities of the two mitochondrial enzymes correlated directly with disease development.  相似文献   

12.
《Genetics in medicine》2017,19(9):998-1006
PurposeUp to 1% of all men experience azoospermia, a condition of complete absence of sperm in the semen. The mechanisms and genes involved in spermatogenesis are mainly studied in model organisms, and their relevance to humans is unclear because human genetic studies are very scarce. Our objective was to uncover novel human mutations and genes causing azoospermia due to testicular meiotic maturation arrest.MethodsAffected and unaffected siblings from three families were subjected to whole-exome or whole-genome sequencing, followed by comprehensive bioinformatics analyses to identify mutations suspected to cause azoospermia. These likely mutations were further screened in azoospermic and normozoospermic men and in men proven to be fertile, as well as in a reference database of local populations.ResultsWe identified three novel likely causative mutations of azoospermia in three genes: MEIOB, TEX14, and DNAH6. These genes are associated with different meiotic processes: meiotic crossovers, daughter cell abscission, and possibly rapid prophase movements.ConclusionThe genes and pathways we identified are fundamental for delineating common causes of azoospermia originating in mutations affecting diverse meiotic processes and have great potential for accelerating approaches to diagnose, treat, and prevent infertility.Genet Med advance online publication 16 February 2017  相似文献   

13.
14.
Eighteen unrelated pyruvate kinase (PK)-deficient Indian patients were identified in the past 4 years with varied clinical phenotypes ranging from a mild chronic haemolytic anaemia to a severe transfusion-dependent disorder. We identified 17 different mutations in the PKLR gene among the 36 mutated alleles. Ten novel mutations were identified: 427G>A, 499C>A, 1072G>A, 1180G>T, 1216G>A, 1220A>G, 644delG, IVS5 (+20) C>A, IVS9 (+44) C>T, and IVS9 (+93) A>C. A severe syndrome was commonly associated with some mutations, 992A>G, 1436G>A, 1220A>G, 644delG and IVS9 (+93) A>C, in the PKLR gene. Molecular graphics analysis of human red blood cell PK (RPK), based on the crystal structure of human PK, shows that mutations located near the substrate or fructose 1,6-diphosphate binding site may change the conformation of the active site, resulting in very low PK activity and severe clinical symptoms. The mutations target distinct regions of RPK structure, including domain interfaces and catalytic and allosteric sites. In particular, the 1216G>A and 1219G>A mutations significantly affect the interdomain interaction because they are located near the catalytic site in the A/B interface domains. The most frequent mutations in the Indian population appear to be 1436G>A (19.44%), followed by 1456C>T (16.66%) and 992A>G (16.66%). This is the first study to correlate the clinical profile with the molecular defects causing PK deficiency from India where 10 novel mutations that produce non-spherocytic haemolytic anaemia were identified.  相似文献   

15.
16.
Mitochondrial DNA (mtDNA) mutations have been assigned as a major cause of genetic disease. When a novel sequence variation is found, it is necessary to evaluate its functional impact, usually requiring functional molecular studies. Given the fact that this approach is difficult to put in practice in a routine basis, it is possible to take advantage of the in silico tools available and predict protein/RNA structure changes and therefore pathogenicity. Here, we describe the characterization of five undescribed mtDNA variants, upon detection of 23 unclassified alterations at Laboratory of Biochemical Genetics, from 2004 to 2014. Those five sequence variations are located in protein-coding genes, in five patients with a diverse range of mitochondrial respiratory chain disease phenotypes including encephalopathy, optic neuropathy, developmental delay, deafness and epilepsy. According to the prediction established by in silico analysis using tools to predict structure and function changes (ClustalW2®, PolyPhen-2®, SIFT®, MutationAssessor®, PredictProtein®, Provean®, I-TASSER®, Haplogrep®), from the 23 variants analyzed, the five described are potentially pathogenic. This approach is inexpensive and compatible with a rapid first line response to clinical demanding, contributing to a more rationale genetic diagnosis concerning novel mutations and to clarify the mtDNA involvement in these pathologies.  相似文献   

17.
We report noggin mutations in three Spanish families with fibrodysplasia ossificans progressiva (FOP). The three propositi have typical FOP findings; in the first and third families the parents are unaffected, while in the second family the father is partially affected. DNA of the three propositi and their parents was screened by sequencing for mutations in the noggin gene (NOG). Sequencing indicated a G to C mutation at nucleotide 274 of the NOG gene in the first propositus, encoding for the G92R substitution at the peptide level; this first mutation is de novo, the corresponding change not being observed in parents. In the second propositus, a G to T mutation at nucleotide 271 encodes for the G91C substitution, transmitted in the corresponding family by the partially affected father. In the third propositus, sequencing indicated a G to A mutation at nucleotide 275, encoding for the G92E substitution; this third mutation is de novo. All three mutations, as well as the Delta42 deletion already reported, resulted in the alteration of the portion of the NOG gene at positions 265-282, encoding for the potential N-myristoylation site at residues 89-GGGGGA-94.  相似文献   

18.
19.
Somatic mutations in mitochondrial DNA (mtDNA) have been long proposed to drive the pathogenesis and progression of human malignancies. Previous investigations have revealed a high frequency of somatic mutations in the D‐loop control region of mtDNA in osteosarcoma. However, little is known with regard to whether or not somatic mutations also occur in the coding regions of mtDNA in osteosarcoma. To test this possibility, in the present study we screened somatic mutations over the full‐length mitochondrial genome of 31 osteosarcoma tumour tissue samples, and corresponding peripheral blood samples from the same cohort of patients. We detected a sum of 11 somatic mutations in the mtDNA coding regions in our series. Nine of them were missense or frameshift mutations that have the potential to hamper mitochondrial respiratory function. In combination with our earlier observations on the D‐loop fragment, 71.0% (22/31) of patients with osteosarcoma carried at least one somatic mtDNA mutation, and a total of 40 somatic mutations were identified. Amongst them, 29 (72.5%) were located in the D‐loop region, two (5%) were in the sequences of the tRNA genes, two (5%) were in the mitochondrial ATP synthase subunit 6 gene and seven (17.5%) occurred in genes encoding components of the mitochondrial respiratory complexes. In addition, somatic mtDNA mutation was not closely associated with the clinicopathological characteristics of osteosarcoma. Together, these findings suggest that somatic mutations are highly prevalent events in both coding and non‐coding regions of mtDNA in osteosarcoma. Some missense and frameshift mutations are putatively harmful to proper mitochondrial activity and might play vital roles in osteosarcoma carcinogenesis.  相似文献   

20.
Summary Base substitutions have been compared in two mitochondrial and two nuclear genes from three yeasts and three mammals. In yeasts, the two mitochondrial genes, cytochrome oxidase subunit 2 (COX2) and apocytochrome b (CYB), have fewer changes on a percentage basis than the nuclear-encoded cytochrome c (CYC) gene. By contrast, in mammals, the same mitochondrial genes have more mutations than CYC on a percentage basis. Sequence comparisons of the nuclear small-subunit ribosomal RNA (nSSU) gene shows that there are more substitutions per unit length in the three yeasts than in the three mammals. This result suggests that although the yeasts are more distantly related than the mammals, their mitochondrial genes have accumulated fewer changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号