首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Pituitary adenylate cyclase activating peptide (PACAP) is a vasoactive intestinal peptide (VIP)-like hypothalamic peptide occurring in two forms, PACAP-27 and the C-terminally extended PACAP-38. The predicted rat and human PACAP sequence is identical to the isolated ovine one. In the present study, the occurrence and distribution of PACAP-like peptides were examined in the gut of several species by immunocytochemistry and immunochemistry using an antibody raised against PACAP-27. PACAP-like immunoreactivity was observed in nerve fibers in the gut wall of all species examined (chicken, mouse, rat, hamster, guinea-pig, ferret, cat, pig, sheep and man). In the chicken and human gut, immunoreactive fibers were numerous in all layers. In the other species examined the fibers were predominantly found in the myenteric ganglia and smooth muscle. Delicate PACAP-immunoreactive fibers were seen in the gastric mucosa of mouse, rat, hamster and man but not in the other species examined. The chicken proventriculus harbored numerous PACAP-immunoreactive endocrine cells which were identical with the serotonin-containing cells storing gastrin-releasing peptide. PACAP-immunoreactive nerve cell bodies were numerous in the submucous ganglia and moderate in number in the myenteric ganglia of the human gut. They were few in the intramural ganglia of the other species examined. Extrinsic denervation (performed on segments of rat and guinea-pig small intestine) did not visibly affect the PACAP innervation, indicating an intramural origin of most PACAP-immunoreactive fibers. Double immunostaining for VIP and PACAP revealed co-existence of the two peptides in nerve cell bodies and nerve fibers of the human and chicken gut and in fibers in the gastric mucosa of mouse and rat. In all other species examined and in all other locations in the gut PACAP-immunoreactive nerve cell bodies and nerve fibers were distinct from those storing VIP; many of them contained gastrin-releasing peptide instead. Immunochemistry revealed PACAP-like peptides in gut extracts of all species studied; upon high performance liquid chromatography the immunoreactive material co-eluted with synthetic PACAP-27. The distribution of PACAP-immunoreactive nerve cell bodies and nerve fibers in the gut wall suggests their involvement in the regulation of both motor and secretory activities.  相似文献   

2.
 Pituitary adenylate cyclase-activating peptide (PACAP)-immunoreactive (IR) neurons in the myenteric and submucosal plexus of the rat small and large intestine were examined by immunostaining with purified polyclonal antiserum against PACAP (1–15), using both light and electron microscopy. Many PACAP-IR neuronal cell bodies and fibers were found in the myenteric and submucosal plexus. Many of the PACAP-IR fibers originated from the cell bodies of the myenteric and submucosal ganglia. The ganglia were also innervated by PACAP-IR fibers. PACAP-IR fibers penetrated both the circular and longitudinal muscle layers, confirming the previous observations indicating that PACAP neurons act as motor neurons. Ultrastructural study demonstrated that PACAP-IR nerve terminals formed synaptic contacts with PACAP-IR nerve cell bodies or dendritic processes. This observation suggests that PACAP-IR neurons innervate other PACAP-IR neurons, and that PACAP neurons work as interneurons in the enteric nervous system. PACAP-IR nerve cells received not only PACAP-positive nerve terminal input also PACAP-negative nerve terminal input. It also suggests that PACAP neurons are regulated not only by PACAP-IR enteric neurons, but also by neurons originating elsewhere. Our observations support the view that PACAP-IR neurons are involved in the control of gut motility. Accepted: 20 April 1998  相似文献   

3.
采用免疫荧光组织化学技术及迷走神经切断术,探讨猪食管一氧化氮类及肽类神经支配的神经化学特性。在光学显微镜下可观察到肌间神经丛及粘膜下神经丛中有部分神经元呈nNOS、VIP、GAL、NPY、PACAP、L-ENK、SP、5-HT及CB免疫阳性,但未见CGRP及SOM阳性神经元。nNOS及CB免疫阳性产物主要分布于不同的神经元胞体内。将PGP9.5作为神经元胞体的标记物,并采用免疫荧光免疫组织化学双重染色方法,分别观察了PGP9.5与nNOS、VIP、SP的双标情况。结果如下:(1)nNOS免疫阳性神经元约占PGP9.5标记神经元总数的63%,而VIP免疫阳性神经元约占36%,SP免疫阳性神经元约占28%;(2)神经节内神经元的平均数量呈现吻尾方向的递增趋势,且食管腹段神经丛内神经节数量明显高于食管其他部位;(3)食管肌层内VIP/GAL/NPY免疫阳性纤维分布最广,其中部分阳性纤维同时呈nNOS或PACAP免疫阳性;SP和/或L-ENK免疫阳性纤维在粘膜肌层的分布明显多于平滑肌层。CGRP阳性纤维非常少见,这一点不同于对其他动物的观察结果;(4)经一侧迷走神经切断后,肌间神经丛内PACAP及5-HT免疫阳性纤维明显减少,提示这些纤维可能来源于迷走神经;而平滑肌中VIP/GAL/NPY和/或nNOS免疫阳性纤维数量未发现明显变化,可能为内源性来源。  相似文献   

4.
5.
The expression of DbetaH and several neuropeptides was investigated in neuronal elements of the ovine pancreas using double immunocytochemical stainings. Immunoreactivities to DbetaH, NPY, VIP and SP were seen to various extents in nerve terminals associated with the acini, islets, ducts, blood vessels, interlobular connective tissue as well as in the neurons of intrapancreatic ganglia. The expression of CGRP was limited to nerve fibers lying in the connective tissue septa, amongst the acini and in close vicinity to the pancreatic blood vessels. Single GRP-positive nerve endings were located around the acini, ducts and in the interlobular connective tissue. With the exception of the ductal system in a co-localization of NPY with DbetaH was frequently found in all regions of the pancreas. Moderately numerous blood vessel-associated VIP-positive nerve fibers as well as the vast majority of VIP-containing intrapancreatic neurons were found to co-express DbetaH. Single SP-immunoreactive (IR) nerve fibers of the exocrine pancreas and interlobular connective tissue as well as SP-positive intrapancreatic neurons additionally showed the presence of DbetaH. The co-localization of VIP and NPY was found in nerve terminals located around the blood vessels and acini, in the connective tissue septa as well as in numerous pancreatic neuronal perikarya. Rare nerve terminals located between the acini and around small blood vessels as well as several neurons of intrapancreatic ganglia were VIP-IR/ SP-IR. Simultaneous expression of SP and CGRP was found in nerve fibers supplying large pancreatic arteries and veins, interlobular connective tissue and, occasionally, around the acini. Throughout the pancreas the population of CGRP-positive nerve endings showed lack of VIP and NPY. In a moderate number of GRP-containing nerve fibers, a co-expression of NPY was noted. Nerve terminals containing both GRP and VIP were detected sporadically, whereas none of the GRP-positive nerve terminals showed expression of SP. We conclude that the presented noradrenergic as well as peptidergic innervation patterns of the ovine pancreas are species-dependent. On the basis of the occurrence of DbetaH, NPY, VIP and SP (alone or in combination) in pancreatic neuronal elements we can suggest that these substances presumably act as regulators of the endocrine and/or exocrine pancreas. Involvement of CGRP and GRP in the ovine pancreas physiology seems to be of minor importance. The co-localization study indicated that the pancreas of the sheep is innervated from several sources including intrinsic as well as extrinsic ganglia.  相似文献   

6.
The locations of cell bodies of sympathetic neurons projecting to the stomach, the duodenum, the ileum, the colon, the spleen and the pancreas have been studied using retrograde tracing. Projections arose from both pre- and paravertebral ganglia. In the rat, the prevertebral ganglia are the paired coeliac ganglia lying caudo-lateral to the root of the coeliac artery, paired splanchnic ganglia in the abdominal segments of the greater splanchnic nerves, unpaired superior mesenteric and inter-renal ganglia and the inferior mesenteric ganglia. The projections from the prevertebral sympathetic ganglia to the different parts of the gut were organised somatotopically. The most rostral ganglia (splanchnic, coeliac, and superior mesenteric ganglia) contained neurons innervating all regions of the gastrointestinal tract, the pancreas and the spleen. The inter-renal and inferior mesenteric ganglia, located more caudally, contained neurons innervating the distal part of the gut (distal ileum and colon). The innervation of the spleen and the pancreas came from the closest ganglia (sympathetic chains, splanchnic and coeliac ganglia). This organotopic organisation was not found in the sympathetic chain ganglia; the innervation of all organs came predominantly from the lower part of the thoracic chains. A large proportion of the retrogradely labelled nerve cells in the splanchnic ganglia received nitric oxide synthase immunoreactive innervation probably from the spinal cord. In the other prevertebral ganglia, most of the neurons received nitric oxide synthase immunoreactive innervation and/or bombesin immunoreactive innervation. This leads to the conclusion that, in these ganglia, many neurons receive projections from the gastrointestinal tract in addition to the spinal cord.  相似文献   

7.
Neurons in ganglia of the myenteric plexus of the duodenum and stomach have recently been demonstrated to innervate pancreatic ganglia and transsynaptically to excite acinar and islet cells. The hypothesis that crest-derived cells first colonize the foregut and secondarily enter the pancreas by way of the pancreatic buds was tested. Studies were done with fetal rats (days E11-E15). Pancreatic rudiments and foregut were explanted separately and in co-culture. The development of neurons in the explants, identified by demonstrating the immunoreactivities of neurofilaments and growth-associated protein-43 (GAP-43), provided an indirect assay for the presence of neural precursors in the tissue at the time of explantation. Cells of putative neural crest origin were visualized immunocytochemically using the monoclonal antibody, NC-1. Additional markers included the immunoreactivities of dopamine-beta-hydroxylase (DBH), which is expressed by vagal crest-derived cells that colonize the bowel, neuropeptides (substance P and neuropeptide Y [NPY]) found in mature pancreatic neurons, and serotonin (5-HT), which is located in the cell bodies of enteric but not pancreatic neurons. Neurons were detected in cultures of foregut, but not pancreas, when these tissues were explanted by themselves at days E11 and E12. At E11 neural precursors did not leave explants of bowel or migrate into co-cultured pancreatic rudiments. When the foregut was explanted at E12, however, neural precursors migrated away from the bowel, giving rise both to distant ganglia and to neurons within co-cultured pancreatic rudiments. Intrapancreatic ganglia developed in the co-cultures even when the pancreatic attachment to the bowel was severed. Neurons appeared in pancreatic rudiments explanted by themselves on day E13. Neurons developing in pancreatic explants expressed the immunoreactivities of DBH, substance P, and NPY, but not 5-HT. These observations support the idea that pancreatic ganglia develop from crest-derived cells that first colonize the fetal rat foregut and there acquire the ability to colonize the pancreas. A later migration into the pancreatic rudiments of a subset of the original émigrés or their progeny between days E12 and E13 gives rise to a network of pancreatic ganglia that can be regarded as an extension of the enteric nervous system.  相似文献   

8.
 The distribution and origin of nerve fibers containing neuropeptides and NOS projecting to the temporomandibular joint capsule (TMJ) of the rat were studied by retrograde tracing in combination with immunocytochemistry. Numerous nerve fibers were seen in the TMJ as revealed by the neuronal marker protein gene product 9.5. Nerve fibers containing neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), pituitary adenylate cyclase activating peptide (PACAP), substance P (SP), calcitonin gene-related peptide (CGRP), and nitric oxide synthase (NOS) were seen in the synovial membrane, the joint capsule and entering the articular disc. Injection of the retrograde tracer True Blue (TB) into the TMJ resulted in the appearance of numerous labeled nerve cell bodies in the trigeminal and superior cervical ganglia, and moderate numbers in the nodose, the otic, the sphenopalatine, the stellate and the dorsal root ganglia at levels C2–C5. Most of the TB-labeled cell bodies in the superior cervical and stellate ganglia contained NPY. In the trigeminal ganglion, numerous TB labeled cell bodies contained CGRP and a minor population stored SP, a few cell bodies were seen to store NOS or PACAP. In the sphenopalatine and otic ganglia, TB labeled cell bodies contained NOS or VIP. In the nodose ganglion, labeled cell bodies contained CGRP; other labeled cell bodies harbored NOS. In the cervical dorsal root ganglia, the majority of the labeled cell bodies stored CGRP and smaller populations stored SP and PACAP. Thus, the innervation of the TMJ is complex and many different ganglia are involved. Accepted: 13 October 1997  相似文献   

9.
The aim of this study was to show the presence, distribution and function of the pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors in the CNS and peripheral nervous system of the mollusk, Helix pomatia. PACAP-like and pituitary adenylate cyclase activating polypeptide receptor (PAC1-R)-like immunoreactivity was abundant both in the CNS and the peripheral nervous system of the snail. In addition several non-neuronal cells also revealed PACAP-like immunoreactivity. In inactive animals labeled cell bodies were mainly found and in the neuropile of active animals dense immunostained fiber system was additionally detected suggesting that expression of PACAP-like peptide was affected by the behavioral state of the animal. RIA measurements revealed the existence of both forms of PACAP in the CNS where the 27 amino acid form was found to be dominant. The concentration of PACAP27 was significantly higher in samples from active animals supporting the data obtained by immunohistochemistry. In Western blot experiments PACAP27 and PACAP38 antibodies specifically labeled protein band at 4.5 kDa both in rat and snail brain homogenates, and additionally an approximately 14 kDa band in snail. The 4.5 kDa protein corresponds to PACAP38 and the 14 kDa protein corresponds to the preproPACAP or to a PACAP-like peptide having larger molecular weight than mammalian PACAP38. In matrix-assisted laser desorption ionization time of flight (MALDI TOF) measurements fragments of PACAP38 were identified in brain samples suggesting the presence of a large molecular weight peptide in the snail. Applying antibodies developed against the PACAP receptor PAC1-R, immunopositive stained neurons and a dense network of fibers were identified in each of the ganglia. In electrophysiological experiments, extracellular application of PACAP27 and PACAP38 transiently depolarized or increased postsynaptic activity of neurons expressing PAC1-R. In several neurons PACAP elicited a long lasting hyperpolarization which was eliminated after 1.5 h continuous washing. Taken together, these results indicate that PACAP may have significant role in a wide range of basic physiological functions in snail.  相似文献   

10.
In order to gain insight into the process of colonization of the bowel by the neural crest-derived precursors of enteric neurons, the development of the enteric nervous system was examined in lethal spotted mutant mice, a strain in which a segment of bowel is congenitally aganglionic. In addition, nerve fibers within the ganglionic and aganglionic zones of the gut of adult mutant mice were investigated with respect to their content of acetylcholinesterase, immunoreactive substance P, vasoactive intestinal polypeptide and serotonin, and their ability to take up [3Hserotonin. In both the fetal gut of developing mutant mice and in the mature bowel of adult animals abnormalities were limited to the terminal 2 mm of colon. The enteric nervous system in the proximal alimentary tract was indistinguishable from that of control animals for all of the parameters examined. In the terminal bowel, the normal plexiform pattern of the innervation and ganglion cell bodies were replaced by a coarse reticulum of nerve fibers that stained for acetylcholineserase and were continuous with extrinsic nerves running between the colon and the pelvic plexus. These coarse nerve bundles contained greatly reduced numbers of fibers that displayed substance P- and vasoactive intestinal polypeptide-like immunoreactivity, but a serotonergic innervation was totally missing from the aganglionic bowel. During development, acetylcholineserase and uptake of [3Hserotonin appeared in neural elements in the foregut of mutant mice on the 12th day of embryonic life (E12), about the same time these markers appeared in the forgut in normal mice. By day E14, neurons expressing one or the other marker were recognizable as far distally as about 2 mm from the anus. The appearance of neurons in segments of gut grown for 2 weeks as expiants in culture was used as an assay for the presence of neuronal progenitor cells in the segments of fetal bowel at the time of explantation. Both acetyl- cholinesterase activity and uptake of [3Hserotonin developed in neuronsin vitro in expiants of proximal bowel between days E10 and E17. At all times, however, the terminal 2mm of mutant but not normal fetal gut gave rise to aneuronal cultures. In some mutant mice rare, small, ectopically-situated pelvic ganglia were found just outside aganglionic segments of fetal colon. Uptake of [3Hserotonin, normally a marker for intrinsic enteric neurites, was found in these ganglia.The experiments suppport the hypothesis that the terminal 2 mm of the gut in lethal spotted mutant mice is intrinsically abnormal and thus cannot be colonized by the precursors of enteric neurons. The defect seems to be specific in that both cells and processes of intrinsic enteric neurons, including all serotonergic and most peptidergic neurites, seem to be excluded from the abnormal region while extrinsic nerve fibers, including sympathetic and sensory axons, are able to enter the aganglionic zones. Since examination of neural progenitor cells has failed to reveal a significant proximo-distal displacement of these cells through the enteric tube during development of the murine bowel, a defect in the migration of precursor cells down the alimentary tract to the terminal gut seems unlikely to be substantially involved in the pathogenesis of aganglionosis. This conclusion is supported by the normal enteric nervous system in proximal regions of the mutant gut and the presence of enteric type neurons outside of, but at the same level as the aganglionic region.  相似文献   

11.
The neurochemical profiles of neurons in ferret tracheal ganglia has been characterized, but their projections to smooth muscle and epithelium in ferret trachea has not been examined. The purpose of this study is to determine the location of cell bodies that project VIP‐, SP‐, and NPY‐containing fibers to the ferret tracheal smooth muscle and epithelium. Segments of ferret trachea were cultured for 0, 1, 3, or 7 days, some in the presence of 3 μm capsaicin. VIP, SP, or NPY nerve fiber density was measured using morphometric procedures. A retrograde tracer, rhodamine‐labeled microspheres, identified neurons projecting to the epithelium. The density of SP fibers in the epithelium was reduced after culture, but VIP innervation was not different. In tracheal smooth muscle, the density of VIP‐ and SP‐IR fibers was not different during the culture period, but NPY fiber density was reduced at all culture times. Capsaicin treatment did not affect nerve fiber density in the tracheal smooth muscle but produced a significant reduction in the density of epithelial VIP‐ and SP‐IR nerve fibers after 1 day. Rhodamine‐labeled microspheres were identified in VIP‐containing nerve cell bodies of the ferret tracheal plexus. VIP innervation to the airway epithelium in ferret originates both from cell bodies in airway ganglia and cell bodies in sensory ganglia. The pathway from airway ganglia suggest the existence of a local reflex mechanisms initiated by epithelial irritation. Anat Rec 254:166–172, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
13.
Anatomical and physiological studies of cardiovascular control are lacking in the ray-finned fish, the bichirs. The present immunohistochemical studies on the bichir (Polypterus bichir bichir) demonstrated the occurrence of intracardiac neurons and nerve fibers in the heart. Immunoreactivity to tyrosine hydroxylase (TH) and acetylcholinesterase (AchE) and various neuropeptides (substance P, galanin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP)), including neuronal nitric oxide synthase (nNOS), was found in the nerve cell bodies lying close to the Sinus venosus and the sino-atrial region. The main intracardiac localization of the nervous tissue is a network of nerve fibers, presumably corresponding to the postganglionic outflow giving rise to nerve terminals and the nerve cell bodies. In addition, the heart is innervated by extrinsic monoamine-containing nerve fibers supplying the Conus arteriosus and Sinus venosus, and substance P and galanin immunopositive fibers probably originating from cranial and spinal ganglia. The adrenergic innervation of the heart of the bichir is similar to that of the teleosts, but further studies are required on nervous control of the heart.  相似文献   

14.
The complexity of the neural regulation of the gallbladder is reflected by the variety of neuroactive compounds that are found in the intrinsic and extrinsic nerves of the guinea pig gallbladder. The studies reported here used antisera to test for the presence of gallbladder nerves that are immunoreactive for the neuroactive peptides, pituitary adenylyl activating polypeptide (PACAP), and/or orphanin FQ (OFQ, also known as nociceptin). PACAP immunoreactivity was observed in nerve fibers of the paravascular plexus that were also immunoreactive for calcitonin gene-related peptide. These nerve fibers, which are also immunoreactive for substance P, could be followed into the ganglionated plexus. Within the ganglia, a small proportion of neurons was found to be immunoreactive for PACAP; these neurons were also immunoreactive for vasoactive intestinal peptide and nitric oxide synthase. Immunoreactivity for OFQ was observed in the perivascular plexus in nerve fibers that were also immunoreactive for tyrosine hydroxylase. These nerves were previously shown to be immunoreactive for neuropeptide Y. In the ganglionated plexus, immunoreactivity was observed in all gallbladder neurons, as demonstrated by double staining with antiserum directed against the neuron-specific RNA binding protein, Hu. OFQ immunoreactivity was also present in the small catecholaminergic neurons that are observed in a subset of the ganglia. These results further demonstrate the neurotransmitter diversity of the nerves of the gallbladder, and they provide an incentive for studies of the actions of these compounds in the gallbladder wall.  相似文献   

15.
We investigated the effect of pituitary adenylate cyclase activating peptide (PACAP) on the colon–inferior mesenteric ganglion (IMG) reflex loop in vitro . PACAP27 and PACAP38 applied to the IMG caused a prolonged depolarization and intense generation of fast EPSPs and action potentials in IMG neurones. Activation of PACAP-preferring receptors (PAC1-Rs) with the selective agonist maxadilan or vasoactive intestinal peptide (VIP)/PACAP (VPAC) receptors with VIP produced similar effects whereas prior incubation of the IMG with selective PAC1-R antagonists PACAP6-38 and M65 inhibited the effects of PACAP. Colonic distension evoked a slow EPSP in IMG neurones that was reduced in amplitude by prolonged superfusion of the IMG with either PACAP27, maxidilan, PACAP6-38, M65 or VIP. Activation of IMG neurones by PACAP27 or maxadilan resulted in an inhibition of ongoing spontaneous colonic contractions. PACAP-LI was detected in nerve trunks attached to the IMG and in varicosities surrounding IMG neurones. Cell bodies with PACAP-LI were present in lumbar 2–3 dorsal root ganglia and in colonic myenteric ganglia. Colonic distension evoked release of PACAP peptides in the IMG as measured by radioimmunoassay. Volume reconstructed images showed that a majority of PACAP-LI, VIP-LI and VAChT-LI nerve endings making putative synaptic contact onto IMG neurones and a majority of putative receptor sites containing PAC1-R-LI and nAChR-LI on the neurones were distributed along secondary and tertiary dendrites. These results suggest involvement of a PACAP-ergic pathway, operated through PAC1-Rs, in controlling the colon–IMG reflex.  相似文献   

16.
Changes in the distribution of 5-hydroxytryptamine-like immunoreactivity have been examined in enteric neurons at various times after microsurgical lesions of the enteric plexuses. In the myenteric plexus, varicose immunoreactive nerve fibres disappeared or were reduced in number in ganglia anal to an interruption of the myenteric plexus. Up to about 2 mm on the anal side, all varicose immunoreactive fibres disappeared from the ganglia. At about 14–16 mm below an interruption, there were about 50% of the normal number of fibres in the myenteric ganglia and at about 24 mm the innervation was normal. In the submucosa, fibres immunoreactive for 5-hydroxytryptamine were absent from an area on the anal side following interruption of the myenteric plexus. From consideration of the pattern of disappearance, it is deduced that some myenteric nerve cell bodies send immunoreactive axons in an anal direction to supply submucous ganglia. The axons run for about 8 mm in the myenteric plexus, enter the submucosa and then run for a further 4 mm approximately.Thus, varicose fibres immunoreactive for 5-hydroxytryptamine, which occur around the enteric ganglion cells of both plexuses arise from nerve cell bodies in the myenteric ganglia that send their axons in an anal direction.  相似文献   

17.
The occurrence and distribution of Trk proteins, which are the high-affinity signal-transducing receptors for neurotrophins, have been investigated in earthworms (Eisenia foetida) using polyclonal antibodies which map within their catalytic domain. Western-blot analysis identified major protein bands whose estimated molecular masses were consistent with those of the full-length Trk proteins in vertebrates. Specific immunoreactivity for TrkA-, TrkB-, and TrkC-like was observed in neuronal populations of the dorsal cerebral, subpharyngeal and ventral cord ganglia. Furthermore, TrkA-like immunoreactivity was observed in subcutaneous neurons and nerve fibers between muscle layers in the peripheral nervous system. TrkB- and TrkC-like immunoreactivity was observed in the gut innervation. Non-neuronal expression of TrkB and TrkC proteins was found in epidermal cells, and TrkC-like immunoreactivity was detected in the gut epithelium.  相似文献   

18.
Experiments were performed to determine if the distribution of vasoactive intestinal peptide(VIP)-like immunoreactivity in nerve cell bodies and axons of the myenteric plexus and circular muscle of the small intestine is consistent with VIP being the transmitter of enteric inhibitory neurons. Immunoreactivity for VIP was found in nerve cell bodies of the myenteric plexus and in axons within the myenteric plexus and circular muscle. When the axons in the myenteric plexus were interrupted, there was accumulation of material showing reactivity for VIP on the oral side, indicating that the neurons project in an anal direction. The VIP-like immunoreactivity in axons which supply the circular muscle disappeared after a myectomy in which the overlying myenteric plexus was removed, but remained intact when extrinsic nerves were served. The projections of VIP neurons from the myenteric plexus to the circular muscle correspond to the expected projections of enteric inhibitory neurons determined by functional studies.  相似文献   

19.
20.
Innervation of the extrahepatic biliary tract   总被引:5,自引:0,他引:5  
The extrahepatic biliary tract is innervated by dense networks of extrinsic and intrinsic nerves that regulates smooth muscle tone and epithelial cell function of extrahepatic biliary tree. Although these ganglia are derived from the same set of precursor neural crest cells that colonize the gut, they exhibit structural, neurochemical, and physiological characteristics that are distinct from the neurons of the enteric nervous system. Gallbladder neurons are relatively inexcitable, and their output is driven by vagal inputs and modulated by hormones, peptides released from sensory fibers, and inflammatory mediators. Gallbladder neurons are cholinergic and they can express a number of other neural active compounds, including substance P, galanin, nitric oxide, and vasoactive intestinal peptide. Sphincter of Oddi (SO) ganglia, which are connected to ganglia of the duodenum, appear to be comprised of distinct populations of excitatory and inhibitory neurons, based on their expression of choline acetyltransferase and substance P or nitric oxide synthase, respectively. While SO neurons likely receive vagal input and their activity is modulated by release of neuropeptides from sensory fibers, a significant source of excitatory synaptic input to these cells arise from the duodenum. This duodenum-SO circuit is likely to play an important role in the coordination of SO tone with gallbladder motility in the process of gallbladder emptying. Now that we have gained a relatively thorough understanding of the innervation of the biliary tree under healthy conditions, the way is paved for future studies of altered neural function in biliary disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号