首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

Inflammation and wound healing play critical roles in the integration of biologic and biodegradable meshes (BMs) at hernia repair sites. Monocytes/macrophages (M/MØs) are key cells controlling inflammation and wound healing. These cells release inflammatory cytokines and growth factors such as interleukin (IL)-1β, IL-6, IL-8, and vascular endothelial growth factor (VEGF) upon activation. Although BMs have been increasingly used in hernia repairs worldwide, to date, investigations of inflammatory responses to various BMs have been limited.

Methods

Mesh samples of three acellular human dermis-derived biologic meshes (AlloDerm, AlloMax, FlexHD) and one biodegradable synthetic mesh (Bio-A) were placed in 96-well plates. Human peripheral blood mononuclear cells (PBMCs) were isolated from six healthy subjects, added to each well, and incubated for 7 days. Culture supernatants were assayed for IL-1β, IL-6, IL-8, and VEGF levels using a multiplex bead-base immunoassay system (Bio-Plex).

Results

All four meshes induced cytokine expression from activated M/MØs to varying degrees in vitro. FlexHD induced significantly more IL-1β (2,591 pg/ml) than AlloMax (517 pg/ml), AlloDerm (48 pg/ml), or Bio-A (28 pg/ml) (p < 0.001). AlloMax stimulated a significantly greater quantity of IL-6 (38,343 pg/ml) than FlexHD (19,317 pg/ml), Bio-A (191 pg/ml), or AlloDerm (103 pg/ml) (p < 0.05). Interleukin-8 and VEGF displayed trends similar to that of IL-6. There were no significant differences in cytokine production between AlloDerm and Bio-A.

Conclusion

This study demonstrated that human macrophages are activated by human dermis-derived biologic and biodegradable meshes in vitro. A wide range of cytokine and growth factor induction was seen among the different mesh products. These differences in M/MØ activation may be related to the proprietary processing technologies of the studied meshes. The study results raise the possibility that these differences in M/MØ activation could indicate varying intensities of inflammation that control integration of different biologic meshes at the sites of hernia repair.  相似文献   

3.

Objectives

Biologic mesh (BM) prostheses are increasingly utilized for hernia repairs. Modern BMs are not only derived from different tissue sources, but also undergo various proprietary processing steps—factors that likely impact host tissue responses and mesh performance. We aimed to compare histopathologic responses to various BMs after implantation in a mouse model.

Materials and methods

Five-mm samples of non-crosslinked [Strattice (ST)], and intentionally crosslinked [CollaMend (CM), Permacol (PC)] porcine-derived biologic meshes were implanted subcutaneously in C57BL/6 mice. 1, 4, 8, and 12 weeks post-implantation, meshes were assessed for inflammation, foreign body reaction (FBR), neocellularization, and collagen deposition using H&E and trichrome stains.

Results

All meshes induced early polymorphonuclear cell infiltration (highest in CM; lowest in ST) that resolved by 4 weeks. ST was associated with extensive macrophage presence at 12 weeks. Foreign body response was not seen in the ST group, but was present abundantly in the CM and PC groups, highest at 8 weeks. New peripheral collagen deposition was seen only in the ST group at 12 weeks. Collagen organization was highest in the ST group as well. Both CM and PC groups were associated with fibrous encapsulation and no evidence of integration or remodeling.

Conclusions

Inflammation appears to be a common component of integration of all biologic meshes studied. Pronounced inflammatory responses as well as profound FBR likely lead to observed encapsulation and poor host integration of the crosslinked BMs. Overall, ST was associated with the lowest foreign body response and the highest degree of new collagen deposition and organization. These features may be key predictors for improved mesh performance during hernia repair.  相似文献   

4.
BACKGROUND: The induction of immunologic tolerance to pig antigens in primates may facilitate the development of successful clinical xenotransplantation protocols. The infusion of mobilized porcine peripheral blood leukocytes (PBPC, consisting of approximately 2% peripheral blood progenitor cells) into preconditioned baboons, intended to induce mixed hematopoietic cell chimerism, however, results in a severe thrombotic microangiopathy (TM) that includes vascular injury, microvascular thrombosis, and pronounced thrombocytopenia. Because the mechanisms responsible for TM are unclear, we have explored the effects of PBPC on human umbilical vein endothelial cell (HUVEC) activation. METHODS: Confluent HUVEC monolayers were established in 96-well cell culture clusters. PBPC were mobilized from miniature swine with porcine interleukin 3 (pIL-3), porcine stem cell factor (pSCF), and human granulocyte-colony stimulating factor (hG-CSF) and were collected by leukapheresis. PBPC were added to HUVEC (0-1x10(7) PBPC/well) for 3- to 24-hr periods and, with cell-based ELISA techniques, surface levels of E-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) were measured. In some cases, peripheral blood leukocytes (PBL) were collected from pigs that did not receive pIL-3, pSCF, or hG-CSF and were added to HUVEC. PBPC were also sorted into subsets of CD2- cells, CD2+ cells, and cellular debris, each of which were added separately to HUVEC. Transwell permeable membrane inserts were placed over HUVEC to prevent direct cell-cell contact with PBPC in some instances. RESULTS: PBPC from different pigs (n=6) induced an increase in the expression of E-selectin, VCAM-1, and ICAM-1 to levels 5, 4, and 2 times greater than baseline, respectively. ICAM-1 expression reached maximum levels after the addition of 6x10(5) PBPC/well. Expression of E-selectin and VCAM-1 increased further with the addition of greater numbers of PBPC, reaching maximum levels after the addition of 1x10(7) PBPC/well. PBPC-induced up-regulation of E-selectin, VCAM-1, and ICAM-1 had a maximum effect after approximately 6 hr, 12 hr, and 6 to 9 hr, respectively (n=3). The effects of fresh and frozen PBPC on HUVEC were similar (n=2). Compared to PBPC, PBL induced higher levels of E-selectin, VCAM-1, and ICAM-1 on HUVEC (n=2). The addition of CD2- cells to HUVEC induced an increase in E-selectin and VCAM-1 to levels 4 times greater than baseline, whereas the addition of CD2+ cells or debris did not elicit a substantial effect (n=2). Transwell permeable membranes prevented PBPC-induced up-regulation of E-selectin, VCAM-1, and ICAM-1 on HUVEC (n=2), suggesting that the mechanism of activation requires direct cell-cell contact. CONCLUSIONS: Porcine PBPC activate HUVEC, as suggested by an increase in surface E-selectin, VCAM-1, and ICAM-1 levels, and have a maximum effect after 9 hr. Freezing of PBPC does not affect PBPC-induced activation of HUVEC. PBL induce greater activation of HUVEC than do PBPC. CD2- cells are primarily responsible for PBPC-induced activation of HUVEC and direct cell-cell contact is required. Removal of CD2- cells before the administration of PBPC or the use of agents that interrupt PBPC-endothelial cell interactions may prevent or treat TM in baboons.  相似文献   

5.
6.
7.

Purpose

Biologic meshes have unique physical properties as a result of manufacturing techniques such as decellularization, crosslinking, and sterilization. The purpose of this study is to directly compare the biocompatibility profiles of five different biologic meshes, AlloDerm® (non-crosslinked human dermal matrix), PeriGuard® (crosslinked bovine pericardium), Permacol® (crosslinked porcine dermal matrix), Strattice® (non-crosslinked porcine dermal matrix), and Veritas® (non-crosslinked bovine pericardium), using a porcine model of ventral hernia repair.

Methods

Full-thickness fascial defects were created in 20 Yucatan minipigs and repaired with the retromuscular placement of biologic mesh 3 weeks later. Animals were euthanized at 1 month and the repair sites were subjected to tensile testing and histologic analysis. Samples of unimplanted (de novo) meshes and native porcine abdominal wall were also analyzed for their mechanical properties.

Results

There were no significant differences in the biomechanical characteristics between any of the mesh-repaired sites at 1 month postimplantation or between the native porcine abdominal wall without implanted mesh and the mesh-repaired sites (P > 0.05 for all comparisons). Histologically, non-crosslinked materials exhibited greater cellular infiltration, extracellular matrix (ECM) deposition, and neovascularization compared to crosslinked meshes.

Conclusions

While crosslinking differentiates biologic meshes with regard to cellular infiltration, ECM deposition, scaffold degradation, and neovascularization, the integrity and strength of the repair site at 1 month is not significantly impacted by crosslinking or by the de novo strength/stiffness of the mesh.
  相似文献   

8.
Cell-mediated and acute vascular rejections remain to be one of the primary hurdles to achieve successful xenotransplantation. Fas ligand is known to be an important molecule for the formation of ‘immune-privileged’ condition and dendritic cells treated with dexamethasone (Dex-DCs) acting like tolerogenic DCs (tDCs) which are known to protect transplanted cells and organs from unwanted immune responses. The present study investigated the possibility that porcine fibroblasts expressing human Fas ligand (PhF) together with human Dex-DCs could induce prolonged survival of porcine fibroblasts in vitro. PhF was collected from an ear of human Fas ligand transgenic porcine and cell-line was established by MGEM Inc. PhF labeled with CFSE co-cultured with human peripheral blood mononuclear cells (hPBMCs) were examined with respect to induction of tolerance and cell death when co-cultured with Dex-DCs for 3 days. PhF induced the apoptosis in hPBMCs, especially CD4+ T cells. Dex-DCs showed significant (P < 0.05) reduction on the expression of CD80, CD86 and MHC class I/II, and the secretion of IL-12p70, TNF-α and IL-10, but increase of latency-associated peptide (LAP). Survival of PhF was significantly higher than that of WT and it was increased in the presence of Dex-DCs when compared to the other DCs (i.e.,DCs, LPS-treated DCs and LPS/Dex-treated DCs) in vitro. Survival of PhF did not change by co-culture with Dex-DCs due to apoptotic cell death of Dex-DCs. Dex-DCs reduced the death of porcine fibroblasts and, at the same time, PhF induced the apoptosis from hPBMCs, but it was not synergistic.  相似文献   

9.
Monocytes from patients treated by long-term haemodialysis with cellulosic membranes can show functional signs of activation depending on the dialyser module. To elucidate the mechanism of this phenomenon, aqueous extracts of various hollow-fibre dialysers were tested for their ability to induce in-vitro interleukin-1 generation in peripheral blood mononuclear cells from healthy donors. Extracts were prepared by passing 0.5 litres of sterile endotoxin-free water from the dialysate to the blood compartment of the dialyser. Different dialysers containing cellulosic membranes, i.e. cuprophan, and hemophan, were studied. Extracts were dried by lyophilisation and resuspended in cell culture medium before incubation with peripheral blood mononuclear cells for 18 hours at 37 degrees C in a 5% CO2 atmosphere. Interleukin-1 was assayed by biological or radioimmunological methods. Extracts from steam-autoclaved, dry-stored, or gamma-sterilised, wet-stored cuprophan and hemophan modules resulted in interleukin-1 activity that did not differ from negative controls. By contrast, extracts from cuprophan caused significant interleukin-1 production when prepared from ethylene oxide-sterilised, dry-stored dialysers. This monokine-inducing activity could not be neutralised by the addition of polymyxin B and was heat unstable, indicating that the cell-activating stimulus was not endotoxin. Extensive rinsing of the module with water before extract preparation totally mitigated the in-vitro production of interleukin-1. Our results suggest that the extract-induced activation of peripheral blood mononuclear cells found with some dialysers containing membranes of cellulosic origin cannot be exclusively related to the membrane polymer, but depends on a number of other parameters such as sterilisation and storage mode of a given membrane.  相似文献   

10.
11.
Yang J  Cho B  Choi I  Kim DH  Kim SD  Koh HS  Ro H  Oh KH  Chung J  Kim JY  Ahn C  Kim S  Lee JS 《Transplantation》2006,82(9):1229-1233
To elucidate the potential role of porcine RANTES (Regulated upon Activation Normal T cells Expressed and Secreted) in xenograft rejection, we investigated its chemotactic activity for human mononuclear cells, as well as the effect of human cytokines on its expression in porcine endothelial cells. Porcine RANTES cDNA was successfully cloned from aortic endothelial cells of miniature pigs, and its protein expression was induced by transfection. Its deduced amino acid sequence was 83.5% identical to that of human RANTES. Porcine RANTES triggered transmigration of human mononuclear cells across the species barrier, and this chemotactic effect was suppressed by anti-RANTES neutralizing antibodies. The chemotactic effect of porcine RANTES was most prominent on human monocytes. Human tumor necrosis factor-alpha induced significant expression of porcine RANTES messenger RNA in endothelial cells; however both human interferon-gamma and interleukin-1beta failed. These results suggest that porcine RANTES can play an important role in xenotransplant rejection, through participating in the interaction between porcine endothelial cells and human monocytes.  相似文献   

12.
The infusion of pig progenitor cells into baboons is associated with a thrombotic microangiopathy probably related to the interaction of these cells with the baboon endothelial cells and platelets. We have shown previously that pig peripheral blood mononuclear cells (p-PBMC), are able to activate the human coagulation cascade as they are able to generate thrombin when added to defibrinated plasma. In this work, we have tested the interaction of p-PBMC with human platelets to assess the capacity of p-PBMC to cause platelet aggregation and the possible role of complement activation in this aggregation. Human platelet aggregation assays, using collagen (1 or 2 microg/ml), were performed with platelets in platelet-rich plasma (PRP) or platelets washed by filtration. PRP or washed platelets were also incubated with p-PBMC or human PBMC (h-PBMC) at several concentrations and aggregation was measured. The effect of Dansylarginine N-(3-ethyl-1,5-pentanediyl)amide (DAPA), an inhibitor of thrombin, was studied on platelet aggregation caused by the pig cells. Complement activation was measured by deposition of fragment c derived from C3 splitting (C3c) on pig cells incubated with citrated platelet poor plasma (PPP). When human PRP was incubated with p-PBMC, aggregation was a consistent event quantitatively similar to that induced by collagen. No aggregation of washed platelets was observed when these were incubated with p-PBMC or h-PBMC. Aggregation of human platelets in PRP, induced by p-PBMC, was inhibited when DAPA (100 microm) was added to the incubation mixture (23%), indicating that the thrombin inhibitor blocked the capacity of p-PBMC to aggregate human platelets. No deposition of C3c fragments on p-PBMC was detected when the porcine cells were incubated for up to 20 min with citrated PPP. The fact is that p-PBMC induces human platelet aggregation in plasma being thrombin generation a likely explanation for this observation. Our data suggest that, in the system assayed, complement activation is not a cause of platelet aggregation. These findings are relevant for the clarification of the reported thrombotic microangiopathy complicating the intravenous infusion of pig cells in primates in attempts to induce pig tolerance in baboons.  相似文献   

13.
Cultured human fibroblasts represent an appropriate model for studying both insulin receptor interaction and hormone responsiveness. We have investigated the properties of the pyruvate dehydrogenase multi-enzyme complex (PDC) and have studied the effects of various concentrations of porcine and biosynthetic human insulin (BHI) on the activity of the enzyme. Under optimal conditions of the assay, both BHI and porcine insulin activated PDC in a dose-dependent fashion in which full activation of the enzyme was achieved with 10(-8) M insulin. The half-maximal concentration for porcine and human insulin was similar, occurring at the level of 5 X 10(-9) M for activation of the PDC of human fibroblasts. We conclude that the PDC of cultured human fibroblasts is activated by both human and porcine insulin at a comparable physiologic concentration. Human fibroblasts may therefore serve as a useful model to study insulin action in isolated human tissue.  相似文献   

14.
Paris LL, Chihara RK, Sidner RA, Tector AJ, Burlak C. Differences in human and porcine platelet oligosaccharides may influence phagocytosis by liver sinusoidal cells in vitro. Xenotransplantation 2012; 19: 31–39. © 2012 John Wiley & Sons A/S. Abstract: Background: Acute thrombocytopenia was revealed as a limiting factor to porcine liver xenotransplantation from in vitro and in vivo studies using porcine liver in human and baboon transplant models. The asialoglycoprotein receptor 1 (ASGR1) on liver sinusoidal endothelial cells (LSEC) and macrophage antigen complex‐1 (Mac‐1) on Kupffer cells (KC) mediate platelet phagocytosis and have carbohydrate‐binding sites that recognize galactose and N‐acetyl glucosamine in the beta conformation. Analysis of these receptor carbohydrate‐binding domains and surface carbohydrates on human and porcine platelets may shed light on the mechanism of xenotransplantation‐induced thrombocytopenia. Methods: An amino acid sequence comparison of human and porcine ASGR1 lectin‐binding domains was performed. Using fluorescent labeled‐lectins, human platelets, domestic and α1,3 galactosyltransferase knockout/human decay accelerating factor, porcine platelets were characterized by flow cytometry and lectin blot analyses. After desialylation, human and porcine platelets were examined by flow cytometry to determine whether sialic acid capping of galactose and N‐acetyl glucosamine oligosaccharides in the beta conformation was a factor. Further, desialylated human platelets were studied on primary porcine liver sinusoidal cells with regard to binding and phagocytosis. Results: Human platelets have four times more exposed galactose β1‐4 N‐acetyl glucosamine (Galβ) and N‐acetyl glucosamine β1‐4 N‐acetyl glucosamine (βGlcNAc) than fresh porcine platelets. Galβ and βGlcNAc moieties on porcine platelets were not masked by sialic acid. Removal of sialic acid from human platelets increased binding and phagocytosis by LSEC and KC. Conclusions: Differences between human and porcine ASGR1 and Mac‐1, in combination with a significantly higher number of galactose and N‐acetyl glucosamine‐containing oligosaccharides on human platelets contribute, in part, to platelet loss seen in porcine liver xenotransplantation.  相似文献   

15.
Paris LL, Chihara RK, Reyes LM, Sidner RA, Estrada JL, Downey SM, Milgrom DA, Joseph Tector A, Burlak C. ASGR1 expressed by porcine enriched liver sinusoidal endothelial cells mediates human platelet phagocytosis in vitro. Xenotransplantation 2011; 18: 245–251. © 2011 John Wiley & Sons A/S. Abstract: Background: Porcine liver xenografts represent a potential solution to the organ shortage, but thrombocytopenia occurs within minutes to hours after xenotransplantation, preventing clinical application. Recently, it was discovered that porcine liver sinusoidal endothelial cells (LSEC) bind and phagocytose human platelets. We examined the role of ASGR1 in binding and removing human platelets by the pig liver endothelium. Methods: Primary porcine enriched LSEC (eLSEC) were characterized by flow cytometry, immunoblot, quantitative PCR, and immunohistochemistry using confocal microscopy. Phagocytosis inhibition assays using anti‐ASGR1 and an ASGR1 substrate were performed. ASGR1 was targeted for siRNA knockdown, and ASGR1‐reduced cells were tested for human platelet binding and phagocytosis. Results: ASGR1 is expressed by eLSEC. Human platelet binding and phagocytosis by porcine eLSEC was inhibited by asialofetuin, but not fetuin, suggesting an interaction with galactose β1‐4 N‐acetyl glucosamine. Anti‐ASGR1 antibodies inhibited human platelet binding in a dose‐dependent manner. Knockdown experiments using siRNA reduced ASGR1 expression in asynchronous primary eLSEC by 40%–80%. There was a 20% reduction in translated protein significantly correlated with a 21% decrease in human platelet binding. Conclusions: ASGR1 on porcine eLSEC mediates phagocytosis of xenogeneic platelets.  相似文献   

16.
The in vitro effects of a local anesthetic, a membrane active drug, procaine, on some functional activities of circulating human lymphocytes and monocytes were studied. Procaine inhibited spontaneous E-rosette formation between T-lymphocytes and sheep erythrocytes and EAC-rosettes with B-lymphocytes. In addition, procaine inhibited both the phagocytosis of latex particles by normal monocytes and the proliferation of lymphocytes in an allogeneic mixed leukocyte culture. Morphologically the procaine-treated cells exhibited a relative increase in the size of the cytoplasmic rim around their nuclei. The results indicated that procaine might be considered as a non-specific immunoregulator, modulating to some extent the functional expression of human peripheral blood mononuclear cells activities.  相似文献   

17.
18.
19.
20.
Abstract: The chronic shortage of human organs, tissues and cells for transplantation has inspired research on the possibility of using animal donor tissue instead. Transplantation over a species barrier is associated with rejections which are difficult to control. Therefore, it is generally agreed that successful pig to human xenotransplantation requires donor pigs to be genetically modified. Vascular endothelium is the most immediate barrier between the xenogeneic donor organ and host immune and nonimmune defense systems. Thus, these cells are the prime targets for such genetic modifications. Luciferase assays were used to evaluate the activity and specificity of human endothelial-cell specific promoters in porcine aortic-, microvascular- and nonendothelial cells. The promoters for human Flk-1 (fetal liver kinase-1), Flt-1 (fms-like tyrosine kinase), ICAM-2 (intercellular adhesion molecule-2), thrombomodulin and vWf (von Willebrand factor) supported similar levels of luciferase expression in human and porcine aortic endothelial cells, with the Flk-1 promoter being the strongest followed by the thrombomodulin promoter. Relative to the activity of the CMV promoter, the human endothelial cell-specific promoters all showed less activity in porcine kidney microvascular endothelial cells than in liver or brain microvascular endothelial cells. The thrombomodulin and Flk-1 promoters exhibited similar activity in liver and kidney microvascular endothelial cells, whereas the Flk-1 promoter was stronger in aortic and brain microvascular endothelial cells. Human endothelial cell-specific promoters also showed some degree of specificity in pig, because they supported less luciferase activity in porcine nonendothelial cell lines. Based on the in vitro data and previously published in vivo data, the human Flk-1 and thrombomodulin promoters are good candidate promoters for strong endothelial cell-specific gene expression in transgenic pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号