首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study compared voluntary (VOL) and electrically evoked isometric contractions by muscle stimulation (EMS) for changes in biceps brachii muscle oxygenation (tissue oxygenation index, ?TOI) and total haemoglobin concentration (?tHb = oxygenated haemoglobin + deoxygenated haemoglobin) determined by near-infrared spectroscopy. Twelve men performed EMS with one arm followed 24 h later by VOL with the contralateral arm, consisting of 30 repeated (1-s contraction, 1-s relaxation) isometric contractions at 30% of maximal voluntary contraction (MVC) for the first 60 s, and maximal intensity contractions thereafter (MVC for VOL and maximal tolerable current at 30 Hz for EMS) until MVC decreased ~30% of pre-exercise MVC. During the 30 contractions at 30% MVC, ?TOI decrease was significantly (P < 0.05) greater and ?tHb was significantly (P < 0.05) lower for EMS than VOL, suggesting that the metabolic demand for oxygen in EMS is greater than VOL at the same torque level. However, during maximal intensity contractions, although EMS torque (~40% of VOL) was significantly (P < 0.05) lower than VOL, ?TOI was similar and ?tHb was significantly (P < 0.05) lower for EMS than VOL towards the end, without significant differences between the two sessions in the recovery period. It is concluded that the oxygen demand of the activated biceps brachii muscle in EMS is comparable to VOL at maximal intensity.  相似文献   

2.
The purpose of this study was to examine force steadiness in three positions of the forearm in young men and women across a variety of force levels. Eight young men and eight young women performed three maximum voluntary contractions (MVCs) in the neutral, supinated, and pronated forearm positions. Viewing a target line on a computer screen, subjects performed submaximal isometric contractions relative to their own MVC at 2.5, 5, 10, 25, 50, and 75% in each of the three forearm positions. Force steadiness was determined as the coefficient of variation (standard deviation around the mean force). A repeated-measures three-way ANOVA was used to assess the differences in force steadiness between sex, position, and force level. Men were stronger than women in all three forearm positions. Overall, men were steadier than women across all force levels and forearm positions. The neutral and supinated positions were equally strong and steady, and the pronated position was the weakest and least steady position. The forearm was most steady between 25 and 75% MVC, and least steady at the lower force levels. When correlations were run between MVC and coefficient of variation at all force levels and all forearm positions, a strong negative relationship was found (r = ?0.49). In conclusion, men were stronger, as well as steadier, than women. The neutral and supinated forearm positions were both stronger and steadier than the pronated position. Results suggest that one of the primary factors influencing sex differences in force steadiness is absolute strength.  相似文献   

3.
The aim of this work is to show how changes in surface electromyographic activity (sEMG) during a repetitive, non-constant force contraction can be detected and interpreted on the basis of the amplitude distribution provided by high-density sEMG techniques. Twelve healthy male subjects performed isometric shoulder elevations, repeating five times a force ramp profile up to 25 % of the maximal voluntary contraction (MVC). A 64-electrode matrix was used to detect sEMG from the trapezius muscle. The sEMG amplitude distribution was obtained for the force levels in the range 5–25 % MVC with steps of 5 % MVC. The effect of force level, subject, electrode position and ramp repetition on the sEMG amplitude distribution was tested. The sEMG amplitude was significantly smaller in the columns of the electrode grid over the tendons (repeated measures ANOVA, p < 0.01). The barycentre of the distribution of sEMG amplitude was subject-specific (Kruskal–Wallis test, p < 0.01), and shifted caudally with the increase of force levels and cranially with the repetition of the motor task (both p < 0.01, repeated measures ANOVA). The results are discussed in terms of motor unit recruitment in different muscle sub-portions. It is concluded that the sEMG amplitude distribution obtained by multichannel techniques provides useful information in the study of muscle activity, and that changes in the spatial distribution of the recruited motor units during a force varying isometric contraction might partially explain the variability observed in the activation pattern of the upper trapezius muscle.  相似文献   

4.
Many tasks require synergistic activation of muscles that possess different architectural, mechanical, and neural control properties. However, investigations of the motor unit (MU) mechanisms which modulate force are mostly restricted to individual muscles and low forces. To explore the pattern of MU recruitment and discharge behavior among three elbow extensors (lateral and long heads of the triceps brachii, and anconeus) during ramp isometric contractions, recruitment thresholds of 77 MUs in five young men were determined and corresponding MU discharge rates were tracked in 1-s epochs over forces ranging from 0 to 75 % of maximal voluntary isometric force (MVC). Across all forces, MUs in the lateral head discharged at higher rates than those in the anconeus (p < 0.001, Δ = 0.23). When all MUs were considered, recruitment thresholds in the long head of the triceps brachii were higher than the lateral head (p < 0.05, Δ = 0.70) with a trend (p = 0.08, Δ = 0.48) for higher recruitment thresholds in the long head compared with the anconeus. Together, these data indicate a potential mechanical disadvantage of the long head of the triceps brachii at 0° shoulder flexion. However, among low-threshold MUs (<10 % MVC), recruitment thresholds were lower in the anconeus than in both heads of the triceps brachii consistent with the expected twitch contractile and fiber type differences among these muscles. These findings illustrate the importance of considering synergistic relations among muscles used for a coordinated task, and the sensitivity of synergies to muscle architectural, mechanical, and possibly specific synaptic input factors.  相似文献   

5.
Time to failure for sustained isometric contractions of the elbow flexors is briefer when maintaining a constant elbow angle while supporting an inertial load (position task) compared with exerting an equivalent torque against a rigid restraint (force task). Our primary purpose was to determine whether the effects of load type on time to task failure exist when motor unit recruitment cannot be enhanced during a sustained submaximal contraction of an intrinsic hand muscle. A second purpose was to determine whether a greater reserve remains in the muscle after early failure of the position task. Two groups of 10 strength-matched men performed the force and position tasks at either 20% or 60% of maximal force (MVC) with the first dorsal interosseus, followed by a second force task at the same relative intensity. The rate of increase in surface EMG was greater (P = 0.002) and time to failure was briefer (P = 0.005) for the position task (593±212 s) compared with the force task (983±328 s) at 20% MVC, whereas there were no task differences in these variables at 60% MVC (P ≥ 0.200). Time to failure for the second force tasks did not differ at either contraction intensity (P≥0.743). These results demonstrate that previously observed effects of load type generalize to a hand muscle, although only for low-intensity contractions. For the position task at low forces, muscle activity increased more rapidly and no additional reserve remained in the muscle at failure compared with the force task. We propose that the briefer time to failure for the position task during sustained, low-intensity contractions is due to earlier recruitment of the motor unit pool.  相似文献   

6.
Knee pain is a common symptom of different knee pathologies, affecting muscle strength and force generation. Although the control of precise three-dimensional forces is essential for the performance of functional tasks, current evidence of pain effects in force variability is limited to single-directional assessments of contractions at moderate force levels. This study assessed the effects of experimental knee joint pain in the three-dimensional force variability during isometric knee extensions at a wide range of target forces (2.5–80 % of maximal voluntary contraction, MVC). Fifteen healthy subjects performed contractions before, immediately following, and after injections of hypertonic (painful) or isotonic (control) saline into the infrapatellar fat pad. Pain intensity was measured on a 10-cm visual analogue scale. Force magnitude, direction, and variability were assessed using a six-axis force sensor while activity of quadriceps and hamstring muscles was recorded by surface electromyography. Significant correlation was found between tangential force displacements and variability of quadriceps muscle activity. Experimental knee pain increased the variability of the task-related force component at all force levels, while variability of tangential force components increased at low forces (≤5 % of MVC). The mean quadriceps activity decreased during painful contractions only at 80 % of MVC. Pain adaptations underlying increased force variability at low contraction levels probably involve heterogeneous reorganization of muscle activity, which could not be detected by surface electrodes. These findings indicate a less efficient motor strategy during knee joint pain, suggesting that pain relief may enhance training for the control of smooth forces by knee pain patients.  相似文献   

7.
Exercise-induced fatigue causes changes within the central nervous system that decrease force production capacity in fatigued muscles. The impact on unrelated, non-exercised muscle performance is still unclear. The primary aim of this study was to examine the impact of a bilateral forearm muscle contraction on the motor function of the distal and unrelated ankle plantar-flexor muscles. The secondary aim was to compare the impact of maximal and submaximal forearm contractions on the non-fatigued ankle plantar-flexor muscles. Maximal voluntary contractions (MVC) of the forearm and ankle plantar-flexor muscles as well as voluntary activation (VA) and twitch torque of the ankle plantar-flexor muscles were assessed pre-fatigue and throughout a 10-min recovery period. Maximal (100 % MVC) and submaximal (30 % MVC) sustained isometric handgrip contractions caused a decreased handgrip MVC (to 49.3 ± 15.4 and 45.4 ± 11.4 % of the initial MVC for maximal and submaximal contraction, respectively) that remained throughout the 10-min recovery period. The fatigue protocols also caused a decreased ankle plantar-flexor MVC (to 77 ± 8.3 and 92.4 ± 6.2 % of pre-fatigue MVC for maximal and submaximal contraction, respectively) and VA (to 84.3 ± 15.7 and 97.7 ± 16.1 % of pre-fatigue VA for maximal and submaximal contraction, respectively). These results suggest central fatigue created by the fatiguing handgrip contraction translated to the performance of the non-exercised ankle muscles. Our results also show that the maximal fatigue protocol affected ankle plantar-flexor MVC and VA more severely than the submaximal protocol, highlighting the task-specificity of neuromuscular fatigue.  相似文献   

8.
The concept of fatigue refers to a class of acute effects that can impair motor performance, and not to a single mechanism. A great deal is known about the peripheral mechanisms underlying the process of fatigue, but our knowledge of the roles of the central structures in that process is still very limited. During fatigue, it has been shown that peripheral apparatus is capable of generating adequate force while central structures become insufficient/sub-optimal in driving them. This is known as central fatigue, and it can vary between muscles and different tasks. Fatigue induced by submaximal isometric contraction may have a greater central component than fatigue induced by prolonged maximal efforts. We studied the changes in regional cerebral blood flow (rCBF) of brain structures after sustained isometric muscle contractions of different submaximal force levels and of different durations, and compared them with the conditions observed when the sustained muscle contraction becomes fatiguing. Changes in cortical activity, as indicated by changes in rCBF, were measured using positron emission tomography (PET). Twelve subjects were studied under four conditions: (1) rest condition; (2) contraction of the m. biceps brachii at 30% of MVC, sustained for 60 s; (3) contraction at 30% of MVC, sustained for 120 s, and; (4) contraction at 50% of MVC, sustained for 120 s. The level of rCBF in the activated cortical areas gradually increased with the level and duration of muscle contraction. The fatiguing condition was associated with predominantly contralateral activation of the primary motor (MI) and the primary and secondary somatosensory areas (SI and SII), the somatosensory association area (SAA), and the temporal areas AA and AI. The supplementary motor area (SMA) and the cingula were activated bilaterally. The results show increased cortical activation, confirming that increased effort aimed at maintaining force in muscle fatigue is associated with increased activation of cortical neurons. At the same time, the activation spread to several cortical areas and probably reflects changes in both excitatory and inhibitory cortical circuits. It is suggested that further studies aimed at controlling afferent input from the muscle during fatigue may allow a more precise examination of the roles of each particular region involved in the processing of muscle fatigue.  相似文献   

9.
This study compared the first and second exercise bouts consisting of electrically evoked isometric contractions for muscle damage profile. Nine healthy men (31 ± 4 years) had two electrical muscle stimulation (EMS) bouts separated by 2 weeks. The knee extensors of one leg were stimulated by biphasic rectangular pulses (75 Hz, 400 μs, on–off ratio 5–15 s) at the knee joint angle of 100° (0°, full extension) to induce 40 isometric contractions, while the current amplitude was increased to maintain maximal force generation. Maximal voluntary isometric contraction (MVC) torque of the knee extensors at 100°, muscle soreness, pressure pain threshold and plasma creatine kinase (CK) activity were used as indirect markers of muscle damage, and measured before and 1, 24, 48, 72 and 96 h after EMS bout, and the changes over time were compared between bouts. The torque produced during exercise was approximately 30% of MVC, and no significant difference between bouts was evident for the changes in peak and average torque over 40 contractions. MVC decreased significantly (P < 0.05) by 26% immediately and 1 h after both bouts, but the recovery was significantly (P < 0.05) faster after the second bout (100% at 96 h) compared with the first bout (81% at 96 h). Development of muscle soreness and tenderness, and increases in plasma CK activity were significantly (P < 0.05) smaller after the second than the first bout. These results show that changes in muscle damage markers were attenuated in the second EMS bout compared with the initial EMS bout.  相似文献   

10.

Purpose

The purpose of this study was to investigate the effects of a fatigue-inducing bout of submaximal, intermittent isometric contractions on the electromechanical delay (EMD) of the leg extensors and flexors in young and old men.

Methods

Twenty young (mean ± SD: age = 25 ± 2.8 years) and sixteen old (age = 70.8 ± 3.8) recreationally active men performed maximal voluntary contractions (MVCs) followed by a fatigue-inducing protocol consisting of intermittent isometric contractions of the leg extensors or flexors using a 0.6 duty cycle (6 s contraction, 4 s relaxation) at 60 % of MVC until volitional fatigue. MVCs were again performed at 0, 7, 15, and 30 min post fatigue. A three-way mixed factorial ANOVA was used to analyze the EMD data.

Results

There was a two-way muscle × time interaction (P = 0.039) where the EMD of the leg flexors was greater (P = 0.001–0.034) compared with baseline at all post fatigue time periods, but was only greater at immediately post fatigue for the extensors (P = 0.001). A significant two-way interaction for muscle × age (P = 0.009) revealed that the EMD was greater (P = 0.003) for the extensors for the old compared with the young men, but not different for the flexors (P = 0.506).

Conclusions

These findings showed differential fatigue-induced EMD recovery patterns between the leg extensors and flexors with the flexors being slower to recover and also that age-related increases of EMD are muscle group specific. The sustained increased EMD of the flexors during recovery may have important injury and performance implications in a variety of populations and settings.  相似文献   

11.
Aim: Knee extensor neuromuscular activity, rectified surface electromyography (rsEMG) and single motor unit EMG was investigated during isometric (60° knee angle), shortening and lengthening contractions (50–70°, 10° s?1) corrected for force–velocity‐related differences in force‐generating capacity. However, during dynamic contractions additional factors such as shortening‐induced force losses and lengthening‐induced force gains may also affect force capacity and thereby neuromuscular activity. Therefore, even after correction for force–velocity‐related differences in force capacity we expected neuromuscular activity to be higher and lower during shortening and lengthening, respectively, compared to isometric contractions. Methods: rsEMG of the three superficial muscle heads was obtained in a first session [10 and 50% maximal voluntary contraction (MVC)] and additionally EMG of (46) vastus lateralis motor units was recorded during a second session (4–76% MVC). Using superimposed electrical stimulation, force‐generating capacity for shortening and lengthening contractions was found to be 0.96 and 1.16 times isometric (Iso) force capacity respectively. Therefore, neuromuscular activity during submaximal shortening and lengthening was compared with isometric contractions of respectively 1.04Iso (=1/0.96) and 0.86Iso (=1/1.16). rsEMG and discharge rates were normalized to isometric values. Results: rsEMG behaviour was similar (P > 0.05) during both sessions. Shortening rsEMG (1.30 ± 0.11) and discharge rate (1.22 ± 0.13) were higher (P < 0.05) than 1.04Iso values (1.05 ± 0.05 and 1.03 ± 0.04 respectively), but lengthening rsEMG (1.05 ± 0.12) and discharge rate (0.90 ± 0.08) were not lower (P > 0.05) than 0.86Iso values (0.76 ± 0.04 and 0.91 ± 0.07 respectively). Conclusion: When force–velocity‐related differences in force capacity were taken into account, neuromuscular activity was not lower during lengthening but was still higher during shortening compared with isometric contractions.  相似文献   

12.
This study investigated the influence of different initial conditions on a subsequent fast (ballistic) isometric contraction of the ankle dorsiflexor muscles. Surface electromyograms (EMGs) of dorsiflexor and plantarflexor muscles were recorded during ballistic contractions performed without any pre-activation (BAL) and in ballistic contractions preceded by a sustained submaximal contraction (20% MVC) that was followed either by a rapid voluntary relaxation of the agonist muscle (VRBAL) or by a rapid antagonist (reversal) contraction (ARBAL). In the latter condition, three different antagonist torque levels were compared (25, 50 and 75% MVC). The results showed that the mean average rate of torque development was significantly (P < 0.001) greater for the ARBAL condition (968.5 ± 183.9% MVC/s) compared with the VRBAL (509.3 ± 78.7% MVC/s) and BAL (461.8 ± 79.9% MVC/s) conditions. Furthermore, the mean value recorded for VRBAL was significantly (P < 0.05) greater than for BAL condition. The faster increases in torque during the VRBAL and ARBAL conditions were associated with a greater agonist EMG activity. Compared with VRBAL, performance during the ARBAL condition was improved by a greater level of antagonist coactivation and, in some trials, by the presence of a silent EMG period between the end of the antagonist activation and the onset of the agonist ballistic contraction. Together, these results indicate that the initial conditions can have a substantial influence on the rate of torque development during ballistic contractions performed in isometric conditions.  相似文献   

13.
The purpose of this study was to determine the effect of task-specificity on knee extensor steadiness adaptations in functionally limited older adults. Twenty-four functionally limited older adults (74.6±7.6 years: 22 women, 2 men) completed a 10-week control period followed by 10 weeks (2 days/week) of resistance (RT), functional (FT) (practicing everyday tasks, i.e., chair rises) or functional + resistance (FRT) training, which featured both shortening and lengthening movements. During testing, subjects performed a steady isometric [10, 25, 50% of maximal voluntary contraction (MVC)] and shortening/lengthening (5, 30, 65% of MVC) knee extensor contractions. There were no steadiness (isometric, shortening or lengthening contractions) changes in the control period and no adaptations in isometric steadiness due to training. RT induced a 37% reduction in shortening fluctuations at 5% of MVC and 35% reduction in lengthening fluctuations at both 30% and 65% of MVC. FRT induced a 60% reduction in shortening fluctuations at 30% of MVC. No adaptations in dynamic steadiness were observed in the FT group. Further analysis indicated that those who were the least steady at baseline showed the greatest training effects during isometric (RT: R 2=0.25, FRT: R 2=0.49, FT: R 2=0.38), shortening (RT: R 2=0.36, FRT: R 2=0.36, FT: R 2=0.35) and lengthening (RT: r 2=0.29, FRT: r 2=0.44) contractions. In conclusion, steadiness improvements in groups performing resistance exercise, without a concomitant improvement in the FT group, supports a role for task-specificity in explaining steadiness adaptations, particularly for unsteady older adults.  相似文献   

14.
The aim of this study was to examine submaximal isometric force production guided by perceptual feelings of exertion. Thirty young adults performed isometric knee extensions on an isokinetic dynamometer. Subjects performed five different tests; the first test was the same for all subjects (standard naïve test). During the standard naïve test, subjects were asked to randomly produce force at perceived contraction intensities (25%, 50% and 75% of their maximum voluntary contraction (MVC)), with 100% MVC performed as the final intensity. All intensities, including the 100% MVC, were randomly performed in the other four tests (control tests 1 and 2, post 20% MVC and post 100% MVC tests). Post 20% MVC and post 100% MVC tests included fatiguing isometric exercise at 20% and 100% MVC respectively, which were performed prior to the test protocol. Results show that absolute peak force increased with increasing intensity (P<0.001) during all tests. During the standard naïve test, absolute peak force at 25% and 50% MVC was significantly lower (P=0.009) compared to control test 2, post 20% MVC and 100% MVC tests, and relative peak force was lower at all intensities compared to all other tests (P<0.001). Absolute and relative peak force was most accurate at 50% MVC (?12.06 N and ?2.42%, respectively). Prior fatiguing isometric exercise did not affect the subsequent perceptual response range. In conclusion, isometric force was most accurate at 25% MVC but under-produced (perceptually overestimated) during higher contraction intensities preceding a maximal voluntary contraction (100% MVC). The ability to match absolute force with target contraction intensities was most accurate at 50% MVC during all five experimental conditions and poor at opposite ends of the force domain. Furthermore, prior fatiguing isometric exercise did not have an effect on the subsequent perceptual response range.  相似文献   

15.
Motor imagery is defined as the mental execution of a movement without any muscle activity. In the present study, corticospinal excitability was assessed by motor evoked potentials (MEPs) when the subjects imagined isometric elbow flexion at various force levels. Electromyography was recorded from the right brachioradialis, the biceps brachii and the triceps brachii muscles. First, the maximum voluntary contraction (MVC) of elbow flexion was recorded in each subject. Subjects practiced performing 10, 30 and 60 % MVC using visual feedback. After the practice, MEPs were recorded during the imagery of elbow flexion with the forces of 10, 30 and 60 % MVC without any feedback. After the MEPs recording, we assigned subjects to reproduce the actual elbow flexion force at 10, 30 and 60 % MVC. The MEPs amplitudes in the brachioradialis and biceps brachii in the 60 % MVC condition were significantly greater than those in the 10 % MVC condition (p < 0.05). These findings suggest that the enhancement of corticospinal excitability during motor imagery is associated with an increase in imagined force level.  相似文献   

16.
The fatigue-related changes in soleus motoneuron pool reflex excitability and surface electromyography (EMG) parameters, and maximal voluntary contraction (MVC) force of the plantarflexor (PF) muscles during repeatedly sustained low- (30% MVC) vs. high-intensity (70% MVC) isometric contractions were evaluated Twelve young men with mean (+/- SE) age of 22.4 +/- 0.3 years participated in two fatigue tasks on separate days with at least 1-week interval. The fatigue task consisted of three sustained isometric contractions of PF muscles at a target force level until exhaustion separated with 2-min pause between contractions. M-wave (muscle compound action potential) amplitude (M(max)), Hoffmann reflex maximal amplitude (H(max)) to M-wave amplitude ratio (H(max)/M(max)), and root mean square amplitude (RMS) and median frequency (MF) of EMG power spectrum were recorded from the soleus muscle. The M(max) remained constant immediately post-fatigue and during recovery for low- and high-intensity fatigue tasks, whereas H(max)/M(max) was significantly (p < 0.05) reduced only after high-intensity fatigue task. The increase in RMS and decrease in MF during isometric contractions, and reduction in MVC force immediately after the exercise was greater (p < 0.05) for low-intensity fatigue task. We conclude that low-intensity isometric contractions, repeatedly sustained to fatigue, resulted in a marked increase in the EMG amplitude and spectral compression without a significant post-fatigue reflex inhibition of soleus motoneuron pool. High-intensity contractions, however, resulted in post-fatigue reflex inhibition of soleus motoneuron pool and less pronounced EMG spectral compression during fatiguing contractions. A failure of neuromuscular transmission-propagation was not evident after repetitive fatiguing isometric contractions.  相似文献   

17.
It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24?h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2?h after maximal eccentric (ECC group, N?=?12) and concentric (CON group, N?=?12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7?±?12.0% (±SD, p?<?0.01) and by 30.0?±?17.7% (p?<?0.001) in ECC immediately post-exercise when compared to baseline. At 2?h post-exercise, ECC showed a reduction in isometric MVC by 24.7?±?13.7% (p?<?0.01) when compared to baseline, while no significant reduction (by 8.0?±?17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16?±?0.3 to 3.43?±?0.4?m/s, p?<?0.001) and the electrically evoked contractions (from baseline of 4.33?±?0.4 to 3.82?±?0.3?m/s, p?<?0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercise.  相似文献   

18.

Purpose

The influence of muscle/tendon vibration on maximal muscle performance is unclear. This study examined the effect of a prolonged tendon vibration stimulus on maximum voluntary contraction (MVC) and explosive voluntary contraction (EVC) performance.

Methods

Eighteen young healthy males (nine strength trained and nine untrained) completed a series of isometric unilateral knee extensions (EVCs, electrically evoked octet responses, MVCs, ramp contractions) pre and post two separate 30-min intervention trials; infrapatellar tendon vibration (80 Hz), and quiet sitting (control). H max and M max were measured at the start and end of each series of contractions, both pre- and post-intervention (i.e., at four time points). Knee extensor force and both quadriceps and hamstrings EMG were measured throughout each series of contractions.

Results

Vibration had no effect on either maximum force (ANOVA, trial × time interaction P = 0.92), explosive force (P ≥ 0.36), or the associated agonist EMG amplitude during these tasks (P ≥ 0.23). Octet responses were also unaffected by vibration (P ≥ 0.39). Conversely, post-intervention H max/M max was 60 % lower in the vibration trial vs. control, and remained 38 % lower at the end of the post-intervention measurements (t test, both P < 0.01). Individual H max/M max depression did not correlate to changes in either maximum or explosive force (Spearman’s Rank, P ≥ 0.54), and training status had no influence on the effect of vibration.

Conclusion

Prolonged infrapatellar tendon vibration depressed H-reflex amplitude, but did not affect either maximal or explosive isometric force production of the quadriceps.  相似文献   

19.
This study investigates the effects of eccentric exercise and delayed onset muscle soreness (DOMS) of the quadriceps on agonist–antagonist activity during a range of motor tasks. Ten healthy volunteers (age, mean ± SD, 24.9 ± 3.2 years) performed maximum voluntary contractions (MVC) and explosive isometric contractions of the knee extensors followed by isometric contractions at 2.5, 5, 10, 15, 20, and 30% MVC at baseline, immediately after and 24 h after eccentric exercise of the quadriceps. During each task, force of the knee extensors and surface EMG of the vasti and hamstrings muscles were recorded concurrently. Rate of force development (RFD) was computed from the explosive isometric contraction, and the coefficient of variation of the force (CoV) signal was estimated from the submaximal contractions. Twenty-four hours after exercise, the subjects rated their perceived pain intensity as 4.1 ± 1.2 (score out of 10). The maximum RFD and MVC of the knee extensors was reduced immediately post- and 24 h after eccentric exercise compared to baseline (average across both time points: 19.1 ± 17.1% and 11.9 ± 9.8% lower, respectively, P < 0.05). The CoV for force during the submaximal contractions was greater immediately after eccentric exercise (up to 66% higher than baseline, P < 0.001) and remained higher 24 h post-exercise during the presence of DOMS (P < 0.01). For the explosive and MVC tasks, the EMG amplitude of the vasti muscles decreased immediately after exercise and was accompanied by increased antagonist EMG for the explosive contraction only. On the contrary, reduced force steadiness was accompanied by a general increase in EMG amplitude of the vasti muscles and was accompanied by increased antagonist activity, but only at higher force levels (>15% MVC). This study shows that eccentric exercise and subsequent DOMS of the quadriceps reduce the maximal force, rate of force development and force steadiness of the knee extensors, and is accompanied by different adjustments of agonist and antagonist muscle activities.  相似文献   

20.
It has been suggested that a transient limitation in blood flow during intermittent muscular contractions can contribute to muscle fatigue, and that this limitation is greater as contraction intensity increases. We investigated skeletal muscle blood flow and fatigue in 13 healthy, untrained men (21–27 years) during 16 min of intermittent (4 s contract, 6 s relax) isometric dorsiflexor contractions. Contractions began at 10% of pre-exercise maximal voluntary contraction (MVC) force and increased by 10% every 2 min. Hyperemia (i.e., post-contraction blood flow, measured by venous occlusion plethysmography) and MVC were measured at the end of each stage. Muscle volume measures were obtained using magnetic resonance imaging. After 10 min of exercise, submaximal force and post-contraction hyperemia plateaued. MVC fell from 8 min of exercise onwards (p=0.004), and this onset of fatigue preceded the plateau in submaximal force and hyperemia. Despite a large range in dorsiflexor muscle size (66.3–176.4 cm3) and strength (112.5–421.8 N), neither muscle size nor strength were related to fatigue. The temporal dissociation between changes in blood flow and the onset of fatigue (fall of MVC) suggest that limited blood flow was not a factor in the impaired force production observed during intermittent isometric dorsiflexor contractions in healthy young men. Additionally, post-contraction hyperemia increased linearly with increasing contraction intensity, reflecting a match between blood flow and force production throughout the protocol that was independent of fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号