首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two classes of sterols, cholesterol and oxysterols, block export of sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi by preventing the binding of COPII-coated proteins to a hexapeptide sorting signal (MELADL) in Scap, the SREBP-escort protein. Here, we show that anti-MELADL blocks COPII binding in vitro, and microinjection of Fab anti-MELADL blocks Scap.SREBP movement in cells. Cholesterol and oxysterols block COPII binding to MELADL by binding to different intracellular receptors, cholesterol to Scap and oxysterols to Insig. Cysteine labeling shows that both binding events produce a conformational change near the MELADL sequence, abrogating COPII binding but not anti-MELADL binding. Mutagenesis experiments raise the possibility that the distance of MELADL from the ER membrane is crucial for COPII binding, and we speculate that sterols and Insig block SREBP transport by altering the location of MELADL with respect to the membrane, rendering it inaccessible to COPII proteins.  相似文献   

2.
The insulin-like growth factors (IGF) stimulate growth in multiple connective tissue cell types. The capacity of IGF-I and -II to access cell surface receptors is controlled by insulin-like growth factor binding proteins (IGFBPs). Connective tissue cells synthesize four of the IGFBPs (IGFBP-2 through -5). Synthesis is controlled by growth hormone and several other growth factors. In addition to regulating synthesis, other variables regulate the abundance of the IGFBPs including specific serine proteases that are produced for each form of IGFBP. Following cleavage, the IGFBPs have reduced affinity for IGF-I and -II, thus allowing release to receptors. Variables that regulate the amount of proteolysis have been shown to regulate IGF action. In addition to being proteolytically cleaved, three forms of IGFBPs (IGFBP-2, -3 and -5) can associate with extracellular matrix (ECM). In the case of IGFBP-5 binding to ECM, its affinity is lowered substantially allowing IGF to better equilibrate with the receptors. This event results in a potentiation of IGF-I action on fibroblasts and smooth muscle cells (SMC). In summary, IGFBPs are important molecules for regulating the bioavailability of IGF-I and -II to receptors. Understanding the variables that regulate their abundance may lead to a better understanding of the factors that regulate IGF action in skeletal tissues.  相似文献   

3.
4.
5.
6.
This paper describes insig-2, a second protein of the endoplasmic reticulum that blocks the processing of sterol regulatory element-binding proteins (SREBPs) by binding to SCAP (SREBP cleavage-activating protein) in a sterol-regulated fashion, thus preventing it from escorting SREBPs to the Golgi. By blocking this movement, insig-2, like the previously described insig-1, prevents the proteolytic processing of SREBPs by Golgi enzymes, thereby blocking cholesterol synthesis. The sequences of human insig-1 and -2 are 59% identical. Both proteins are predicted to contain six transmembrane helices. The proteins differ functionally in two respects: (i) production of insig-1, but not insig-2, in cultured mammalian cells requires nuclear SREBPs; and (ii) at high levels of expression, insig-1, but not insig-2, can block SCAP movement in the absence of exogenous sterols. The combined actions of insig-1 and -2 permit feedback regulation of cholesterol synthesis over a wide range of sterol concentrations.  相似文献   

7.
8.
9.
10.
Triiodothyronine binding to liver nuclear solubilized proteins in vitro.   总被引:6,自引:0,他引:6  
Nuclear proteins extracted from purified nuclei with 0.4M KCl at pH 7.4 OR 8.5 are able to bind L-triiodothyronine (T3) giving rise to nuclear thyroid hormone binding protein-T3 (NTBP-T3) complexes. Binding is maximum in 3 h at 20 C. It is thermolabile even at 36 C, inhibited by p-hydroxymercuribenzoate and markedly enhanced by dithiothreitol. Optimum pH is between 7.8 and 8.5. Divalent cations are not necessary. The NTBP-T3 complex exhibits similar anodal electrophoretic migration in polyacrylamide gel at pH 8.5, whether formed in vivo or in vitro. Scatchard plots obtained with various amounts of T3 from 0.15 nM TO 0.15 MUM and either unlabeled nuclear proteins or in vivo formed NTBP-[125I]-T3 complexes, give apparent association constants K-a of 0.2 X 10-10 M minus at pH 7.4 and 0.8 X 10-10 M minus 1 at pH 8.5. Capacity is about 0.5 pmol T3 per mg protein or 800 pg/g liver. The presence of dithiothreitol markedly enhances the Ka. The nuclear binding sites are not highly specific for L-T3 since they are able to bind D-T3 with almost equal affinity and triiodothyroacetic acid with a higher affinity. L-thyroxine (T4) can also displace L-T3 but with about 10-fold lesser effectiveness. Nuclear binding proteins of low capacity and high affinity have been demonstrated in vitro. The NTBP-T3 complexes formed in vivo, with whole nuclei, or in vitro are indistinguishable.  相似文献   

11.
Nutritional state has profound actions at all levels of the GH/IGF-I axis and growth hormone has potent effects on nutritional state. The growth promoting effects of GH on linear height in children has long been recognised and, more recently, the important action of GH in maintaining adult body composition have been appreciated. The strong anabolic actions of GH have made it a drug of abuse among athletes and, of interest, clinicians, as a potent anti-catabolic therapy. In this review we consider the effects of nutrition on the GH/IGF-I axis and then discuss its potential use as an anti-catabolic agent. We also note the recent study in critically ill patients which has been associated with a poor outcome using high dose GH therapy.  相似文献   

12.
13.
Endocrine, neuroendocrine and exocrine cells store regulated secretory proteins in secretory granules, while constitutive and constitutive-like secretory proteins are secreted directly without storage. Sorting of secretory proteins takes place in the trans-Golgi network (sorting for entry) or immature secretory granules (sorting by retention). The relative contribution of these sorting steps and the sorting signals and mechanisms involved in each step has been the subject of intense studies and debate in recent years. New evidence now suggests that: (1) two proteins with structurally similar sorting signals can use different sorting mechanisms; (2) one protein with multiple sorting signals can be sorted differently in different cell types; and (3) one cell type can recognize different sorting signals and use different sorting mechanisms. The latter finding suggests that sorting must be a regulated event. While the current image of sorting is complex, recent findings are pointing to common features that form a mosaic of related sorting mechanisms.  相似文献   

14.
15.
The growth of most tissues is markedly depressed as a result of zinc deficiency by uncharacterized mechanisms that clearly involve the insulin-like growth factor (IGF) system. Herein, we describe the mechanism by which zinc (Zn2+) maintains IGF-II in an active form by directly regulating IGF-II binding to IGF-binding proteins (IGFBPs) and the type 1 IGF receptor (IGF-1R). The specificity of Zn2+ effects was confirmed by using other cations that can (Cd2+ and Au3+) or cannot (La3+) mimic Zn2+ actions. Human fibroblasts, glioblastoma cells, and murine myoblasts were used to determine the kinetics of IGF-II binding to cell surface IGFBP-3, IGFBP-5, and the IGF-1R, respectively. Zn2+, Cd2+, and Au3+, but not La3+, decreased total binding and the affinity for [125I]IGF-II association with IGFBP-3 and IGFBP-5. These effects were a result of lowered rate of ligand association without affecting rate of dissociation. In contrast, Zn2+ enhanced [125I]IGF-II binding to the IGF-1R by enhancing the rate of ligand association and decreasing the rate of dissociation. Our previous work had shown that Zn2+ acts at physiological levels to alter IGF binding. Together with the current work, these findings imply that Zn2+ acts in vivo to prevent secreted IGF-II from binding to IGFBP-3 and IGFBP-5, thus maintaining IGF-II in an “active state,” i.e., readily available for IGF-1R association.  相似文献   

16.
17.
The replacement of each one of the eight serine residues present in the amino acid sequence of the Saccharomyces cerevisiae acidic ribosomal phosphoprotein YP2 beta (L45) by different amino acids has been performed by heteroduplex site-directed mutagenesis in the cloned gene. The mutated DNA was used to transform a yeast strain previously deprived of the original protein YP2 beta (L45) by gene disruption. The replacement of serine in position 19 by either alanine, aspartic acid, or threonine prevents in vivo phosphorylation of the protein and its interaction with the ribosome. The serine-19 mutated gene is unable to rescue the negative effect on the growth rate caused by elimination of the original protein in YP2 beta (L45) gene disrupted strains. The mutation of any one of the other seven serine residues has no effect on either the phosphorylation or the ribosome binding capacity of the protein, although replacement of serine-72 seems to increase the sensitivity of the polypeptide to degradation. These results provide strong evidence indicating that ribosomal protein phosphorylation plays an important part in the activity of the particle and that it supports the existence of a control mechanism of protein synthesis, which would regulate the level of phosphorylation of acidic proteins.  相似文献   

18.
19.
20.
The lens is an ideal model system for the study of macromolecular aging and its consequences for cellular function, since there is no turnover of lens fibre cells. To examine biochemical processes that take place in the lens and that may also occur in other long-lived cells, membranes were isolated from defined regions of human lenses that are synthesised at different times during life, and assayed for the presence of tightly bound cytosolic proteins using quantitative iTRAQ proteomics technology. A majority of lens beta crystallins and all gamma crystallins became increasingly membrane bound with age, however, the chaperone proteins alpha A and alpha B crystallin, as well as the thermally-stable protein, βB2 crystallin, did not. Other proteins such as brain-associated signal protein 1 and paralemmin 1 became less tightly bound in the older regions of the lens. It is evident that protein–membrane interactions change significantly with age. Selected proteins that were formerly cytosolic become increasingly tightly bound to cell membranes with age and are not removed even by treatment with 7 M urea. It is likely that such processes reflect polypeptide denaturation over time and the untoward binding of proteins to membranes may alter membrane properties and contribute to impairment of communication between older cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号