首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The bone marrow micro-environment produces a number of different survival factors that are important for the malignant growth and drug resistance of multiple myeloma (MM) cells. One of the main factors reported to be essential for survival and growth of MM cells in some experimental systems is IL-6. Therefore, the development and testing of substances that interfere with IL-6 or IL-6 receptor (IL-6R) function might have therapeutic value for the treatment of MM. We analyzed the effect of the IL-6R antagonist SANT-7 on growth and survival of the IL-6--dependent MM cell lines INA-6 and XG-1 as well as primary MM cells from 7 patients co-cultured with bone marrow stromal cells (BMSCs). In particular, we were interested in whether SANT-7 enhances the growth-inhibitory effects of dexamethasone (Dex) and all-trans-retinoic acid (ATRA). None of the drugs when tested as a single substance, including SANT-7, induced major growth inhibition if MM cells were co-cultured with primary human BMSCs. However, when Dex and ATRA were given in combination with SANT-7, strong growth inhibition was achieved in cell lines and primary MM cells. This effect was due to cell-cycle arrest and induction of apoptosis.  相似文献   

4.
Interleukin 6 (IL-6) has been shown to be a key growth factor for myeloma cells. To study IL-6 signal transduction in multiple myeloma (MM), we employed chimeric receptors composed of the epidermal growth factor receptor (EGFR) extracellular domain, gp130 transmembrane domain, and full-length or truncated gp130 cytoplasmic domains lacking regions previously shown to be necessary for MAPK, STAT1, and STAT3 activation. The IL-6-dependent KAS-6/1 MM cell line was transfected with various chimeric receptor constructs and assayed for EGF responsiveness. EGF stimulation surprisingly stimulated DNA synthesis in all transfectants, regardless of receptor length. When cell proliferation was assayed instead, only transfectants capable of inducing high levels of STAT3 activation proliferated in response to EGF. Additional studies revealed that EGF stimulation resulted in tyrosine phosphorylation of endogenous gp130 in cells expressing the chimeric receptor. Replacing the gp130 transmembrane region with the EGFR transmembrane domain diminished but did not disrupt this interaction. This receptor interaction was also observed in the IL-6-dependent MM cell line ANBL-6. In summary, although our results suggest that STAT activation is crucial in gp130-mediated proliferation of myeloma cells, these results must be interpreted with caution given our demonstration of the interaction between chimeric and endogenous receptors in myeloma cells. Importantly, this interaction has not been noted in studies utilizing the same gp130 chimeric receptor system in non-MM cells.  相似文献   

5.
6.
Tu Y  Gardner A  Lichtenstein A 《Cancer research》2000,60(23):6763-6770
Interleukin 6 (IL-6) and insulin-like growth factor I (IGF-I) induce proliferative and antiapoptotic responses in multiple myeloma (MM) plasma cells. Because these cytokines may activate the phosphatidylinositol 3-kinase (PI 3-K)/AKT kinase pathway in other cell types, we investigated the role of PI 3-K/AKT in MM cell responses. IGF-I effectively activated PI 3-K in 8226 and OCI-My5 MM cells, but IL-6 was ineffective. However, IL-6 successfully activated PI 3-K in AF-10 MM cells and IL-6-dependent MH.60 plasmacytoma/hybridoma cells. IGF-I also successfully activated PI 3-K in four of four MM patient specimens, and IL-6 activated PI 3-K in three of four specimens. Inhibition of PI 3-K activity with wortmannin or Ly294002 blocked the antiapoptotic effect of IGF-I and the proliferative effect of IL-6 in the myeloma cell lines. Furthermore, a dominant negative PI 3-K construct, expressed in AF-10 cells by adenoviral infection, also significantly inhibited the IL-6 proliferative response in MM cells. In correlation with activation of PI 3-K, IGF-I also effectively activated the AKT kinase in 8226 and OCI-My5 cells, and IL-6 activated AKT in AF-10 and MH.60 cells. However, although incapable of activating PI 3-K in 8226 and OCI-My5 cells, IL-6 successfully activated AKT in these MM lines, suggesting PI 3-K-independent mechanisms of AKT activation. The prevention of a myeloma cell proliferative response resulting from inhibition of PI 3-K activity was not associated with an inhibition of IL-6-dependent extracellular signal-regulated kinase (ERK) activation. These results support a role for the PI 3-K/AKT pathway in cytokine-dependent responses in myeloma cells, which is independent of any activation of the ERK pathway.  相似文献   

7.
8.
In polycythemia vera (PV) and essential thrombocythemia (ET) specific JAK2 mutations constitutively activate the JAK-STAT pathway, explaining biologic findings such as endogenous erythroid colony (EECs) growth or PRV-1 RNA overexpression. Since these markers are detected also in JAK2 wild type patients, we hypothesized that, in these cases, the activation of the JAK-STAT pathway could be produced by a deregulation of the suppressor of cytokine signaling (SOCS) protein system. Eighty-one patients with PV and ET (53 adults and 28 children) were investigated for the methylation status of the SOCS-1, SOCS-2 and SOCS-3 CpG islands and for several myeloproliferative markers (including JAK2 and MPL mutations and clonality of hematopoiesis). SOCS-1 or SOCS-3 hypermethylation was identified in 23 patients and was associated with a significant decrease of SOCS-1 or SOCS-3 RNA and protein levels. The gene expression was restored by exposing cells to the demethylating agent 2-deoxyazacytidin. Interestingly, SOCS-1 or SOCS-3 hypermethylation was detected in 6 female patients, proved negative for JAK2 or MPL mutations and exhibiting monoclonal hematopoiesis. In conclusion, SOCS-1 or SOCS-3 hypermethylation can activate the JAK-STAT signaling pathway in alternative or together with JAK2 mutations. These alterations might represent a potential therapeutic target.  相似文献   

9.
Interleukin-6 (IL-6) plays a pathogenetic role in B-cell malignancies and is a growth factor for multiple myeloma (MM) cells. Elevated serum IL-6 levels and a higher proliferative activity of bone marrow plasma cells are poor prognostic factors in MM patients. In addition to clinical trials with anti-IL-6 monoclonal antibodies, an alternative therapeutic approach based on the use of IL-6 receptor (R) super-antagonists (Sants) has been proposed. Sants are variants of the native cytokine characterized by a wild type affinity for the ligand-specific receptor chain IL-6R alpha and by a reduced ability to bind and/or dimerize the signaling chain gp-130. We report the in vitro effects of four different Sants on cell kinetic modulation and induction of apoptosis of primary cells from MM patients. Ten MM samples were cultured in the presence of four different Sants and heterogeneous effects in terms of reduction of proliferation and induction of apoptosis could be observed. A decrease of the S phase cells (> or = 25%) coupled with the induction of apoptosis was obtained in 4/10 samples: three of these samples had a diploid DNA stem line and an inferior initial percentage of S phase cells. Serum IL-6 concentrations did not correlate with the anti-proliferative activities of the Sants. Cell growth inhibition was observed especially in samples with soluble IL-6R serum concentrations > 200 ng/ml. We conclude that Sants can exert antiproliferative effects on selected MM samples. Such effects may depend on the availability of large amounts of soluble IL-6R. Further studies should aim at defining the conditions necessary for optimal antiproliferative activity.  相似文献   

10.
Lung cancer (LC) is the major cause of death by cancer and the number of LC patients is increasing worldwide. This study investigated the therapeutic potential of gene delivery using suppressor of cytokine signaling 1 (SOCS‐1), an endogenous inhibitor of intracellular signaling pathways, for the treatment of LC. To examine the antitumor effect of SOCS‐1 overexpression on non‐small‐cell lung cancer (NSCLC) cells, NSCLC cells (A549, LU65, and PC9) were infected with adenovirus‐expressing SOCS‐1 vector. The cell proliferation assay showed that A549 and LU65, but not PC9, were sensitive to SOCS‐1 gene‐mediated suppression of cell growth. Although JAK inhibitor I could also inhibit proliferation of A549 and LU65 cells, SOCS‐1 gene delivery appeared to be more potent as SOCS‐1 could suppress focal adhesion kinase and epidermal growth factor receptor, as well as the JAK/STAT3 signaling pathway. Enhanced phosphorylation of the p53 protein was detected by means of phospho‐kinase array in SOCS‐1 overexpressed A549 cells compared with control cells, whereas no phosphorylation of p53 was observed when JAK inhibitor I was used. Furthermore, treatment with adenoviral vector AdSOCS‐1 in vivo significantly suppressed NSCLC proliferation in a xenograft model. These results suggest that the overexpression of SOCS‐1 gene is effective for antitumor therapy by suppressing the JAK/STAT, focal adhesion kinase, and epidermal growth factor receptor signaling pathways and enhancing p53‐mediated antitumor activity in NSCLC.  相似文献   

11.
12.
13.
The purpose of this study was to determine the effects of interferon-beta (IFN-beta) gene transfer on the growth of PC3MM2 human prostate cancer cells in nude mice. Intralesional delivery of an adenoviral vector encoding murine IFN-beta (AdIFN-beta), but not a vector encoding bacterial beta-galactosidase (AdLacZ), suppressed PC3MM2 tumors in a dose-dependent manner. At the highest dose (2x10(9) plaque-forming units, PFU), a single injection of AdIFN-beta (but not AdLacZ) suppressed orthotopic PC3MM2 tumors and development of metastasis by 80%, and eradicated the tumors in 20% of mice. Immunohistochemical staining showed that AdIFN-beta-treated tumors contained fewer microvessels, fewer proliferating cells, and more apoptotic cells than did the control tumors. Compared with controls, tumors injected with AdIFN-beta expressed higher levels of IFN-beta and inducible nitric oxide synthase (iNOS) and lower levels of basic fibroblast growth factor (bFGF) and transforming growth factor beta1 (TGF-beta1). In vitro analysis indicated that expression of bFGF and TGF-beta1 in PC3MM2 cells could be suppressed by the nitric oxide donor sodium nitroprusside. These data suggest that intratumoral delivery of the IFN-beta gene with adenoviral vectors could be an effective therapy for prostate cancer and that tumor suppression by AdIFN-beta correlated with up-regulation of iNOS and down-regulation of angiogenesis.  相似文献   

14.
15.
Cytokine network in human multiple myeloma.   总被引:7,自引:0,他引:7  
In multiple myeloma (MM), an overproduction of IL-6, indicated by increased plasma C-reactive protein levels, is found in 37% of MM patients at diagnosis and is associated with disease aggressiveness, myeloma-cell proliferation, and poor prognosis. IL-6 is produced by the tumoral environment mainly and not by myeloma cells themselves. IL-6 is a major growth factor for malignant plasmablastic cells in vitro, and it is possible to reproducibly obtain IL-6-dependent myeloma-cell lines. Moreover, anti-IL-6 therapies in patients with terminal disease block myeloma-cell proliferation in vivo. The myeloma-cell growth factor activity of IL-6 is probably the consequence of IL-6 being a growth factor for normal plasmablastic cells. Hematopoietic cytokines (GM-CSF, IL-3, IL-5, G-CSF) synergize with IL-6 to support myeloma-cell proliferation. IFN-alpha and TNF induce an autocrine production of IL-6 in myeloma-cell lines and make possible the autonomous growth of these cell lines. On the contrary, IFN-gamma completely inhibits the IL-6-mediated myeloma-cell proliferation. The identification of some major cytokines involved in the control of the myeloma clone has immediate therapeutic implications, because some of these cytokines are, or might be, used in the treatment of patients with MM.  相似文献   

16.
17.
The EphA2 receptor tyrosine kinase is frequently overexpressed in invasive breast cancer cells. Moreover, these malignant cells have unstable cell-cell contacts, which preclude EphA2 from interacting with its ligand, EphrinA1, which is anchored to the membrane of adjacent cells. This defect is important because ligand binding causes EphA2 to transmit signals that negatively regulate tumor cell growth and survival, whereas the absence of ligand binding favors these same behaviors. In our present study, human adenoviral type 5 (HAd) vectors were engineered to express secreted-forms of EphrinA1. These vectors were used to infect MDA-MB-231 human breast cancer cells, or MCF-10A human breast epithelial cells providing matched controls. Infection with HAd-EphrinA1-Fc (HAd vector expressing extracellular domain of human EphrinA1 attached to Fc portion of human IgG1 heavy chain) caused increased EphA2 activation and turnover and consequently decreased tumor cell viability in soft agar assays. Consistent with this observation, infection of MDA-MB-231 cells with HAd-EphrinA1-Fc prevented tumor formation in xenograft models. Furthermore, therapeutic modeling via intratumoral inoculation revealed that HAd-EphrinA1-Fc significantly inhibited subsequent tumor growth as compared to matched controls. These results suggest that targeting of EphA2 with adenoviral vectors may have therapeutic value.  相似文献   

18.
19.
Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.  相似文献   

20.
Replication-defective adenoviral vectors are currently being employed as gene delivery vehicles for cancer gene therapy. To address the hypothesis that the therapeutic efficacy of adenoviral vectors is restricted by their inability to infect tumour cells expressing low levels of the primary cellular receptor for adenoviruses, the coxsackievirus and adenovirus receptor (CAR), we have employed a pair of ovarian cancer cell lines differing only in the expression of a primary receptor for Ad5. This novel system thus allowed the direct evaluation of the relationship between the efficacy of an adenoviral vector and the primary receptor levels of the host cancer cell, without the confounding influence of other variable cellular factors. We demonstrate that a deficiency of the primary cellular receptor on the tumour cells restricts the efficacy of adenoviral vectors in two distinct cancer gene therapy approaches, TP53 gene replacement therapy and herpes simplex virus thymidine kinase/ganciclovir suicide gene therapy. Moreover, we show that a deficiency of the primary receptor on the tumour cells limits the efficiency of adenovirus-mediated gene transfer in vivo. Since a number of studies have reported that primary cancer cells express only low levels of CAR, our results suggest that strategies to redirect adenoviruses to achieve CAR-independent infection will be necessary to realize the full potential of adenoviral vectors in the clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号