首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet radiation A (UVA)-induced oxidative stress is recognized as an important factor in the development of skin carcinogenesis. Resveratrol is demonstrated to possess remarkable antioxidant activity in the organism. The aim of this study was to investigate the protective role of resveratrol in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism of the translocation of NF-E2-related factor-2 (Nrf2) into the nucleus. The HaCaT cells were UVA-irradiated and the effects of resveratrol on cell viability, reactive oxygen species generation and membrane-lipid peroxidation were measured. The proteins and mRNA of Nrf2 and Kelch-like-ECH-associated protein 1 (Keap1) were determined by immunofluorescence staining, Western blot and quantitative PCR, respectively. UVA exposure led to a decrease in viability and an increase in reactive oxygen species generation in HaCaT cells. Resveratrol could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, resveratrol increased the level of Nrf2 protein and facilitated Nrf2 accumulation in the nucleus; as a result, the activity of antioxidant enzymes was also upregulated. The main finding was that Keap1 protein, a repressor of Nrf2 in the cytoplasm, was clearly decreased by resveratrol treatment 12 h and beyond though the level of Keap1 mRNA still increased. Our results suggest that resveratrol can degrade Keap1 protein and facilitate Nrf2 accumulation in the nucleus, thereby protecting HaCaT cells from UVA-induced oxidative stress. Resveratrol could be a more useful natural medicine for the protection of epidermal cells from UVA-induced damage.  相似文献   

2.
3.
4.
5.
6.
Nrf2 plays a central role in the response to xenobiotics and oxidative stress. The activation of Nrf2 induces the expression of drug-metabolizing enzymes (DMEs) and is important for cytoprotection. Keap1 is a widely accepted proteasome-dependent regulator of Nrf2. Keap1 was reported to be absent in Caenorhabditis elegans, and the level of the Nrf2 ortholog SKN-1 was mainly regulated by WDR23. The WDR23 locus is highly conserved from C. elegans to humans. We investigated whether WDR23 regulates Nrf2 activity in mammalian cells, hepatocellular carcinoma cells (Hep3B) and human cervical carcinoma cells (HeLa). We found that WDR23 has two isoforms (1 and 2) and that knockdown of WDR23 was sufficient to stabilize Nrf2 and alter the expression of several DMEs. Keap1 knockdown resulted in higher Nrf2 levels than WDR23 knockdown, and their effects on DMEs differed. These results were consistent with Keap1 being a canonical regulator of Nrf2, and that WDR23 may assist in Nrf2 regulation. We confirmed that WDR23 physically interacted with Nrf2, suggesting that WDR23 directly regulates Nrf2-dependent DMEs. In immunostaining experiments, human WDR23 isoform 1 was localized to the cytoplasm, whereas isoform 2 mainly resided in the nucleus. Taken together, our results suggested WDR23 is a novel regulator of DME expression.  相似文献   

7.
8.
Oxidative stress and lipid accumulation play important roles in alcohol-induced liver injury. Previous reports showed that, in livers of nuclear factor erythroid 2-related factor 2 (Nrf2)-activated mice, genes involved in antioxidant defense are induced, whereas genes involved in lipid biosynthesis are suppressed. To investigate the role of Nrf2 in ethanol-induced hepatic alterations, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation, were treated with ethanol (5 g/kg, po). Blood and liver samples were collected 6 h thereafter. Ethanol increased alanine aminotransferase and lactate dehydrogenase activities as well as thiobarbituric acid reactive substances in serum of Nrf2-null and wild-type mice, but not in Nrf2-enhanced mice. After ethanol administration, mitochondrial glutathione concentrations decreased markedly in Nrf2-null mice but not in Nrf2-enhanced mice. H2DCFDA staining of primary hepatocytes isolated from the four genotypes of mice indicates that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. Ethanol increased serum triglycerides and hepatic free fatty acids in Nrf2-null mice, and these increases were blunted in Nrf2-enhanced mice. In addition, the basal mRNA and nuclear protein levels of sterol regulatory element-binding protein 1(Srebp-1) were decreased with graded Nrf2 activation. Ethanol further induced Srebp-1 mRNA in Nrf2-null mice but not in Nrf2-enhanced mice. In conclusion, Nrf2 activation prevented alcohol-induced oxidative stress and accumulation of free fatty acids in liver by increasing genes involved in antioxidant defense and decreasing genes involved in lipogenesis.  相似文献   

9.
10.
11.
Mechanistic studies of the Nrf2-Keap1 signaling pathway   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
目的:探讨美洲大蠊提取物(PAS840)对大鼠肾上腺嗜铬细胞瘤(PC12)细胞氧化损伤模型的保护作用及机制。方法:采用H2O2刺激PC12细胞建立神经细胞氧化损伤模型,实验分为正常组(Con)、模型组(Mod)、PAS840低中高剂量组(20,50,125 μg·mL-1的PAS840培养基溶液进行处理),采用倒置显微镜观察细胞形态并采用CCK-8法检测各组细胞存活率,生化试剂盒检测各组超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、乳酸脱氢酶(LDH)、谷胱甘肽(GSH)和丙二醛(MDA)的水平;DCFH-DA荧光探针检测各组活性氧簇(ROS)的水平;流式细胞术检测各组细胞凋亡率;JC-1法染色检测各组细胞线粒体膜电位(MMP);RT-qPCR检测各组Nrf2/HO-1通路因子(Nrf2、Keap1、HO-1和NQO1)、凋亡因子(Bcl-2、Bax和Caspase-3)、炎症因子(TNF-α、IL-1β和IL-6)、乙酰胆碱酯酶(AchE)和过氧化氢酶(CAT) mRNA的表达水平;Western blot法检测各组Nrf2、HO-1、Bcl-2、Bax和Caspase-3蛋白的表达水平。结果:PAS840可显著提高氧化损伤细胞的存活率、MMP及SOD、GSH-Px和GSH的水平,降低LDH、MDA和ROS的水平;显著降低Keap1、TNF-α、IL-1β、IL-6和AchE mRNA表达的同时,显著增加CAT和NQO1 mRNA的表达,显著降低Nrf2、Bax和Caspase-3的mRNA及其蛋白表达,显著增加HO-1和Bcl-2的mRNA及其蛋白表达。结论:PAS840可以抑制H2O2诱导的PC12细胞凋亡,减轻炎症,其机制可能与降低ROS、调控Nrf2/HO-1通路因子减轻细胞的氧化损伤程度有关。  相似文献   

14.
15.
16.
Cadmium (Cd) is a highly toxic metal that affects a variety of cellular events, such as cell proliferation, differentiation and survival. Cd generates reactive oxygen species (ROS) that induce apoptosis. We previously demonstrated that Cd induces apoptosis in testicular germ cells and that apoptosis was prevented by the administration of ascorbic acid (AA), an ROS scavenger. However, little is known about the signaling pathways underlying Cd-induced apoptosis in rat testes. Here, we report that Cd-induced apoptosis in rat testes was associated with the translocation of apoptosis inducing factor (AIF) from mitochondria to the nucleus, and that this was prevented by treatment with AA. Cd-induced cleavage of poly ADP-ribose polymerase-1 (PARP-1), and this was also inhibited by treatment with AA. Taken together, these results suggest that Cd-induced ROS was responsible for the upregulation of PARP-1, the translocation of AIF to the nucleus, and apoptosis of testicular cells in rat testes.  相似文献   

17.
Cigarette smoking extract (CSE)‐induced autophagic injury has been regarded as an important contributor to the pathogenesis of lung cancer. We previously found that Eclipta prostrata L. component (CCE) reduced CSE‐induced bronchial epithelial cells damage. However, the mechanism remains unknown. Human normal bronchial epithelial cells (NHBE) were exposed to CSE to establish stress model. Nrf2‐siRNA and Keap1‐siRNA transfection were performed. mRFP‐GFP‐LC3 dual fluorescence and transmission electron microscopy were used to observe the autophagic characteristics. CCE prevented CSE‐induced Nrf2 transfer into cytoplasm and up‐regulated Keap1 level of NHBE cells. Furthermore, CCE significantly increased p‐p16, p‐p21 and p‐p53 phosphorylation levels in Nrf2‐siRNA‐ or Keap1‐siRNA‐transfected cells. As demonstrated by transmission electron microscopy and mRFP‐GFP‐LC3 dual fluorescence assays, CCE mitigated autophagic injury, and also down‐regulated autophagy‐related Beclin‐1, LC3II/LC3I ratio, Atg5 and ATF4 levels. Our findings showed the attenuation of CCE on CSE‐induced NHBE cells injury was associated with Nrf‐2‐mediated oxidative signaling pathway.  相似文献   

18.
Pal S  Pal PB  Das J  Sil PC 《Toxicology》2011,283(2-3):129-139
Cadmium (Cd) is one of the ubiquitous environmental pollutants and is responsible for various organ pathophysiology including hepatic disorders. It is extremely toxic even in low concentrations and bioaccumulate in organisms. The present study has been carried out to investigate the cytoprotective role of arjunolic acid (AA), a tri terpenoid saponin, against Cd induced oxidative impairment and cell death in murine hepatocytes. Administration of cadmium (30 μM), in the form of chloride (CdCl(2)) for 2h, significantly enhanced the ALT, ALP and LDH leakage, increased reactive oxygen species (ROS) production, reduced hepatocytes viability and altered the antioxidant status of hepatocytes by reducing intracellular GSH level, anti-oxidant enzymes activity and increasing intracellular GSSG and lipid peroxidation. Evidence for Cd-induced nature of cell death was sought by flow cytometric analysis. Signal transduction studies revealed that Cd markedly increased the levels of caspase-9, -8, -3, Fas and Bid, decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol, disturbed the Bcl-2 family protein balance, cleaved PARP protein and ultimately led to apoptotic cell death. Results showed that Cd could trigger both intrinsic and extrinsic apoptotic pathways. In addition, Cd markedly increased NF-κB nuclear translocation in association with IKKα/β phosphorylation and IκBα degradation. Simultaneous treatment with AA (200 μM), however, reduced Cd-induced oxidative stress, attenuated the nuclear translocation of NF-κB and protects the hepatocytes from Cd-induced apoptotic death. Combining, data suggest that Cd-induced hepatic dysfunction and apoptosis might be supported by the ROS formation and mediated via the activation of NF-κB. AA treatment, on the other hand, reduced Cd-induced oxidative stress, attenuated the activation of NF-κB and mitochondrion-dependent and independent apoptotic signaling pathways.  相似文献   

19.
In this study, we examined the levels of Cadmium (Cd), iron (Fe) and zinc (Zn), which were considered to be involved in Sertoli cell damage caused by Cd exposure. We also examined metallothionein (MT), heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1) expressions in Sertoli cells induced by Cd exposure. Evaluation by the in-air micro-particle induced X-ray emission (PIXE) method revealed that Cd and Fe distribution was increased in the cytoplasm of Sertoli cells after Cd exposure. By contrast, Zn was decreased in the cytoplasm of Sertoli cells after Cd exposure. It was suggested that the target of Cd toxicity was the cytoplasm of Sertoli cells, Fe was considered to enhance damage to Sertoli cells caused by Cd exposure. The DNA fragmentation rate was determined by ELISA after Cd exposure to Sertoli cells. It remained essentially unchanged with 2.5muM Cd exposure of Sertoli cells; however, MT, Hsp70 and HO-1 were significantly increased by Cd exposure. As a result, Cd-induced MT was protected Sertoli cells against apoptosis, and Cd-induced HO-1 was involved in protection against oxidative stress. Incidentally, MT, Hsp70 and HO-1 showed similar responses to Cd exposure.  相似文献   

20.
Ambient airborne particulate matter (PM) is an important environmental pollutant responsible for many human diseases. Oxidative stress is suggested to be involved in PM-induced cell injury. The present study is designed to study unsalutary effects of the organic extracts of PM with an aerodynamic diameter of less than 2.5 μm (PM2.5) and protective effect of Ginsenoside Rg1 (Rg1) against PM2.5 on human umbilical vein endothelial cells (HUVECs) in vitro. Cytotoxic effects of the organic extract PM2.5 on HUVECs were measured by means of HUVEC cell viability and the generation of intracellular reactive oxygen species (ROS). Expression of heme oxygenase-1(HO-1) and Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Nrf2 cytoplasm–nucleus location were assayed. The present results showed that PM2.5 (50–800 μg/ml) decreased HUVEC viability and increased intracellular generation of ROS and malondialdehyde (MDA) in a concentration dependent manner, but increased HO-1 expression without concentration dependence. Rg1 (10 and 40 μg/ml) diminished PM2.5-induced HUVEC viability, decrease ROS and MDA generation, increased HO-1 and Nrf2 expression and promoted Nrf2 translocation to nucleus in a concentration dependent manner. These results suggested that organic extracts of PM2.5 increase oxidative stress and decrease cell viability; Rg1 antagonize PM2.5-induced excess oxidative stress; HO-1 expression increase and Nrf2 translocation to nucleus may be involved in the effects of both PM2.5 and Rg1 on HUVECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号