首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole.  相似文献   

2.
Summary: The gut harbors an extremely dense and complex community of microorganisms that are in constant dialog with our immune cells. The gut bacteria provide strong selective pressure to the host to evolve innate and adaptive immune responses required for the maintenance of local and systemic homeostasis. One of the most conspicuous responses of the gut immune system following microbial colonization is the production of immunoglobulin A (IgA). In this review, we discuss the roles of B-1 and B-2 cells in IgA-mediated immunity and present an updated view for the sites and mechanisms of IgA synthesis in the gut. We summarize the role of secretory IgAs for regulation of microbial communities and provide clues as to how the gut microbiota contributes to the development of the gut-associated lymphoid tissues.  相似文献   

3.
In June 2009, the National Institute of Allergy and Infectious Diseases (NIAID), Division of Allergy, Immunology and Transplantation (DAIT), sponsored a workshop entitled Mast Cells in Innate and Adaptive Immunity. International experts in mast cell biology discussed recent advances in the field and future areas of research aimed at advancing our understanding of the importance of mast cells in shaping nonallergic, adaptive immunity to infection.  相似文献   

4.
5.
To compare the roles of programmed death 1 ligand 1 (PD-L1) and PD-L2 in regulating immunity to infection, we investigated responses of mice lacking PD-L1 or PD-L2 to infection with Leishmania mexicana. PD-L1(-/-) and PD-L2(-/-) mice exhibited distinct disease outcomes following infection with L. mexicana. In comparison to susceptible WT mice, PD-L1(-/-) mice showed resistance to L. mexicana, as demonstrated by reduced growth of cutaneous lesions and parasite burden. In contrast, PD-L2(-/-) mice developed exacerbated disease with increased parasite burden. Host resistance to L. mexicana is partly associated with the development of a Th1 response and down-regulation of the Th2 response. Both PD-L1(-/-) and PD-L2(-/-) mice produced levels of IFN-gamma similar to WT mice. However, the development of IL-4-producing cells was reduced in PD-L1(-/-) mice, demonstrating a role for PD-L1 in regulating Th cell differentiation. This inadequate Th2 response may explain the increased resistance of PD-L1(-/-) mice. Although no alterations in Th1/Th2 skewing were observed in PD-L2(-/-) mice, PD-L2(-/-) mice exhibited a marked increase in L. mexicana-specific antibody production. Increased Leishmania-specific IgG production may suppress the healing response through FcgammaR ligation on macrophages. Taken together, our results demonstrate that PD-L1 and PD-L2 have distinct roles in regulating the immune response to L. mexicana.  相似文献   

6.
To examine the roles of activin type II receptor signaling in craniofacial development, full-length zebrafish acvr2a and acvr2b clones were isolated. Although ubiquitously expressed as maternal mRNAs and in early embryogenesis, by 24 hr postfertilization (hpf), acvr2a and acvr2b exhibit restricted expression in neural, hindbrain, and neural crest cells (NCCs). A morpholino-based targeted protein depletion approach was used to reveal discrete functions for each acvr2 gene product. The acvr2a morphants exhibited defects in the development of most cranial NCC-derived cartilage, bone, and pharyngeal tooth structures, whereas acvr2b morphant defects were largely restricted to posterior arch structures and included the absence and/or aberrant migration of posterior NCC streams, defects in NCC-derived posterior arch cartilages, and dysmorphic pharyngeal tooth development. These studies revealed previously uncharacterized roles for acvr2a and acvr2b in hindbrain and NCC patterning, in NCC derived pharyngeal arch cartilage and joint formation, and in tooth development.  相似文献   

7.
Qa-1, a nonclassical class I histocompatibility molecule expressed in mice, predominantly assembles with a single nonameric peptide, Qdm, derived from the signal sequence of certain class Ia molecules. The Qa-1/Qdm complex is the primary ligand for CD94/NKG2A inhibitory receptors expressed on a major fraction of natural killer (NK) cells. Cells become susceptible to killing by NK cells under conditions where surface expression of the Qa-1/Qdm inhibitory ligand is reduced. The CD94/NKG2 "missing-self" recognition system serves as mechanism for removing cells that have abnormalities in the intracellular machinery required for assembly and expression of class I-peptides complexes, as a consequence of viral infection, for example. Despite its highly focused peptide-binding specificity, Qa-1 also has a capacity to act as an antigen-presentation molecule for CD8+ T cells. It appears that a small subpopulation of these T cells undergoes positive selection by interaction with Qa-1 in the thymus, and they maintain their specificity for Qa-1 after maturation. The role of these unusual T cells in adaptive immune responses remains to be defined.  相似文献   

8.
Successful control of viral infection requires the host to eliminate the infecting pathogen without causing overt immunopathology. Here we showed that perforin (Prf1) and granzymes (Gzms) have distinct roles in defensive immunity and immunopathology in a well-established model of viral infection. Both Prf1 and Gzms drastically affected the outcome of murine cytomegalovirus (MCMV) infection. Viral titres increased markedly in both Prf1(-/-) and Gzma(-/-)Gzmb(-/-) mice, but Gzma(-/-)Gzmb(-/-) mice recovered and survived infection, whereas Prf1(-/-) mice did not. Indeed, infected Prf1-deficient hosts developed a fatal hemophagocytic lymphohistiocytosis (HLH)-like syndrome. This distinction in outcome depended on accumulation of mononuclear cells and T cells in infected Prf1(-/-) mice. Importantly, blocking experiments that clearly identified tumor necrosis factor-alpha (TNF-alpha) as the principal contributor to the lethality observed in infected Prf1(-/-) mice provided support for the clinical potential of such an approach in HLH patients whose disease is triggered by viral infection.  相似文献   

9.
Lysophosphatidic acid (LPA) can affect the growth, migration, and activation of many different cell types. Research in this field has recently accelerated due to the molecular cloning of LPA receptors as well as advances in our understanding of LPA metabolism. A major pathway for LPA generation is the hydrolysis of lysophosphatidylcholine by the enzyme autotaxin (ATX). Although most research to-date has been conducted in other disciplines (e.g., neurobiology and cardiovascular diseases), emerging data point to an important role for LPA and ATX in regulating immune responses. Here we review current understanding of LPA and ATX in immunity with an emphasis on migration and activation of lymphocytes and dendritic cells. New gene-targeted and transgenic mice, receptor-specific antibodies, and pathway antagonists should rapidly enhance our understanding of this versatile lysolipid in immune responses in the near future.  相似文献   

10.
The major role of cells of the dendritic family in immunity and tolerance has been amply documented. Since their discovery in 1973, these cells have gained increasing interest from immunologists, as they are able to detect infectious agents, migrate to secondary lymphoid tissue, and prime naive T lymphocytes, thereby driving immune responses. Surprisingly, they can also have the opposite function, that is, preventing immune responses, as they are involved in central and peripheral tolerance. Most dendritic cells (DCs) derive from a common precursor and do not arise from monocytes and are considered “conventional” DCs. However, a new population of DCs, namely “inflammat‐ory” DCs, has recently been identified, which is not present in the steady state but differentiates from monocytes during infection/inflammation. In this review, we summarize the role of these “inflammatory” DCs in innate and adaptive immunity.  相似文献   

11.
12.
Gan L  Li L 《Immunologic research》2006,35(3):295-302
The interleukin-1 receptor associated kinases (IRAKs) are critically involved in the IL-1R/Toll-like receptor (TLR)-mediated signal transduction processes and therefore regulate cellular innate immune responses. Four IRAK members have been identified in the human genome (IRAK-1, 2, M, and 4), which seem to play distinct roles. Recent studies further suggest that some of the IRAK members may also participate in T cell and B cell signaling and regulate adaptive immunity. Given the critical and complex roles IRAK proteins play, it is not surprising that genetic variations in human IRAK genes have been found to be linked with various human inflammatory diseases. This review intends to summarize the recent advances regarding the biochemical regulations of various IRAK proteins and their cellular functions in mediating innate and adaptive immunity.  相似文献   

13.
Re F  Strominger JL 《Immunobiology》2004,209(1-2):191-198
Toll-like receptors (TLR) mediate recognition of several microbial products. Accumulating evidence indicates that TLR are capable of inducing distinct responses in dendritic cells and other antigen-presenting cells, and can direct T-helper cell differentiation in opposing directions. The generation of such varied responses is achieved through the selective utilization of adaptor molecules that link TLR to distinct signal transduction pathways. The ability of TLR to activate and guide innate and adaptive immunity has the potential to be exploited for practical application that may lead to the development of more successful immunotherapies and vaccination strategies. A review of recent literature, unpublished observations, and future challenges is presented here.  相似文献   

14.
Kadowaki N  Liu YJ 《Human immunology》2002,63(12):1126-1132
Type I interferons (IFNs) are promptly produced upon invasion of pathogens, and activate a broad range of effector cells in the innate and adaptive immune system. LinCD4+CD11c plasmacytoid dendritic cell precursors (plasmacytoid pre-DCs) produce enormous amounts of type I IFNs in response to viruses and CpG DNA, thus corresponding to the previously described but not fully defined natural type I IFN-producing cells (IPCs). Plasmacytoid pre-DCs strongly express toll-like receptor (TLR) 7 and TLR9, in contrast to monocytes, which mainly express TLR1, 2, 4, 5, and 8, suggesting that these two DC precursors recognize different microbial molecules and that they may have developed through different evolutionary trails. Three different stimuli, CpG DNA plus CD40 ligand, interleukin-3 (IL-3), and herpes simplex virus, stimulate plasmacytoid pre-DCs to differentiate into DCs that induce distinct types of T helper cells, i.e., Th1, Th2, and IFN-γ- and IL-10-producing T cells, respectively. The remarkable versatility of plasmacytoid pre-DCs distinguishes them from other cell types in the immune system that have only limited functions, and suggests that these cells may play a key role in integrating the innate and adaptive aspects of various immune responses.  相似文献   

15.
NZB. H-2bm12 mice develop an autoimmune syndrome characterized by the overproduction of anti-DNA antibodies and the expansion of B-1 B cells. Thus, these animals provide a useful model to examine the antigenic specificity, cross-reactivity and functional capability of B-l versus conventional lymphocytes. Neither the repertoire expressed by in vivo activated Ly-1+ splenic lymphocytes, nor their cross-reactivity, differed significantly from that of conventional splenic B cells. When Ly-1+ cells were cultured in vitro in the presence of lipopolysac-charide plus interleukin-4 or interferon γ, they underwent isotype switching at the same frequency as conventional B cells. Of interest, B-l cells from the peritoneal cavity were significantly less likely to undergo isotype switching than those from the spleen. These findings indicate that in vivo activated B-la and conventional B cells from mice with lupus manifest similar functional characteristics.  相似文献   

16.
Harizi H  Gualde N 《Tissue antigens》2005,65(6):507-514
The innate immune response is essentially the first line of defense against an invading pathogen. Through specialized receptors, known as pattern recognition receptors, especially Toll-like receptors, specialized cells of myeloid origin, including macrophages and dendritic cells (DCs) are able to phagocytose microorganisms and induce an innate inflammatory response. Although B and T lymphocytes recognize tissue antigens with high specificity, they are unable to initiate immune responses. The decision to activate an appropriate immune response is made by unique DC, the most professional antigen-presenting cells (APCs) which control the responses of several types of lymphocytes and play central role in the transition between innate and adaptive immunity. Increased secretion of inflammatory endogenous mediators such as cytokines and arachidonic acid-derived lipid mediators, also termed eicosanoids, can activate APC, particularly DC, which in turn induce an adaptive immune response. There is an increasing evidence that eicosanoids play an important role in connecting innate and adaptive immunity by acting on cells of both systems. Prostanoids, a major class of eicosanoids, have a great impact on inflammatory and immune responses. PGE(2) is one of the best known and most well-characterized prostanoids in terms of immunomodulation. Although cytokines are known as key regulators of immunity, eicosanoids, including PGE(2), PGD(2), LTB(4), and LTC(4), may also affect cells of immune system by modulating cytokine release, cell differentiation, survival, migration, antigen presentation, and apoptosis. By acting on various aspects of immune and inflammatory reactions, these lipid mediators emerge as key regulators of the crosstalk between innate and adaptive immunity.  相似文献   

17.
The role of chemokines in linking innate and adaptive immunity.   总被引:21,自引:0,他引:21  
It is becoming clear that chemokine function is necessary to translate an innate-immune response into an acquired response. Dendritic cells activated by innate stimuli and loaded with foreign antigen travel to regional lymph nodes to activate the acquired-immune system. Subsequently, the activated acquired-immune cells move into tissue, where the innate immune system sets-off the danger signal. The chemokine system has emerged as an essential regulator of this dendritic cell and lymphocyte trafficking, which is necessary to turn an innate immune response into an adaptive response.  相似文献   

18.
《Human immunology》2016,77(11):1084-1091
Endothelial cells (ECs) located at the interface of blood and tissues display regulatory activities toward coagulation, inflammation and vascular homeostasis. By expressing MHC class I and II antigens, ECs also contribute to immune responses. In transplantation, graft ECs are both trigger and target of alloimmune responses. ECs express a set of MHC class I-like or structural related molecules such as HLA-E, MHC class I related chain A (MICA) and the endothelial protein C receptor (EPCR) that provide multiple and unique functions to ECs. HLA-E is a low polymorphic ligand for the CD94/NKG2A/C receptors, and triggers HLA-E-restricted CD8+αβT cell responses against viral and bacterial peptides. MICA is a highly polymorphic ligand for NKG2D activating NK and costimulating CD8+T cells and a ligand for tissue-resident Vδ1 γδ T subsets. More intriguing is the role of EPCR, a key regulator of coagulation, as a ligand for a circulating subset of Vδ2 γδ T cells. Coexpression of this set of MHC class I-related molecules that allow ECs to activate a subtle array of immune responses upon stress and infection may also influence transplant outcome. Here, the respective structure, expression, and functions of HLA-E, MICA and EPCR as well as the impact of their polymorphism are reviewed.  相似文献   

19.
Concomitant immunity is a phenomenon in which a tumour-bearing host is resistant to the growth of an implanted secondary tumour. Metastases are considered to be secondary tumours that develop spontaneously during primary tumour growth, suggesting the involvement of concomitant immunity in controlling the rise of metastases. It has been demonstrated that B-1 cells, a subset of B-lymphocytes found predominantly in pleural and peritoneal cavities, not only increase the metastatic development of murine melanoma B16F10, but also are capable of differentiating into mononuclear phagocytes, modulating inflammatory responses in wound healing, in oral tolerance and in Paracoccidiose brasiliensis infections. Here, we studied B-1 cells’ participation in concomitant immunity during Ehrlich tumour progression. Our results show that B-1 cells obtained from BALB/c mice previously injected with Ehrlich tumour in the footpad were able to protect BALB/c and BALB/Xid mice against Ehrlich tumour challenge. In addition, it was demonstrated that BALB/Xid show faster tumour growth and have lost concomitant immunity, and that this state can be partially restored by reconstituting these animals with B-1 cells. However, further researches are required to establish the mechanism involving B-1 cells in Ehrlich tumour growth.  相似文献   

20.
《Immunology today》1995,16(11):534-539
B-1 cells are distinguished from conventional B cells by their antomical localization, surface phenotypes and functional characteristics. The physiological functions and pathological roles of these cells remain controversial. In this review, Masao Murakami and Tasuku Honjo summarize recent evidence for the involvement of B-1 cells in mucosal immunity and autoimmunity, and discuss the relationship between these phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号